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Foreword

The statistical evaluation of evidence is part of the scientific method, here
applied to forensic circumstances. Karl Pearson was both perceptive and correct
when he said that ‘the unity of all science consists alone in its method, not in
its material’. Science is a way of understanding and influencing the world in
which we live. In this view it is not correct to say that physics is a science,
whereas history is not: rather that the scientific method has been much used in
physics, whereas it is largely absent from history. Scientific method is essentially
a tool and, like any tool, is more useful in some fields than in others. If this
appreciation of science as a method is correct, one might enquire whether the
method could profitably be applied to the law, but before we can answer this
it is necessary to understand something of what the scientific method involves.
Books have been written on the topic, and here we confine ourselves to the
essential ingredients of the method.
Two ideas dominate the scientific approach, observation and reasoning.

Observation may be passive, as with a study of the motions of the heavenly
bodies or the collection of medical records. Often it is active, as when an exper-
iment is performed in a laboratory, or a controlled clinical trial is employed.
The next stage is to apply reasoning to the observed data, usually to think of
a theory that will account for at least some of the features seen in the data.
The theory can then be used to predict further observations which are then
made and compared with prediction. It is this see-saw between evidence and
theory that characterises the scientific method and which, if successful, leads
to a theory that accords with the observational material. Classic examples are
Newton’s theory to explain the motions of the planets, and Darwin’s develop-
ment of the theory of evolution. It is important to notice that, contrary to what
many people think, uncertainty is present throughout any scientific procedure.
There will almost always be errors in the measurements, due to variation in the
material or limitations of the apparatus. A theory is always uncertain, and that
is why it has to be rigorously tested. Only late in the cycle of movement between
hard fact and mental activity is a theory admitted as being true. Even then the
‘truth’ is, in the long run, not absolute, as can be seen in the replacement of

xxii
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Newton by Einstein. It is important to recognise the key role that uncertainty
plays in the scientific method.
If the above analysis is correct, it becomes natural to see connections between

the scientific method and legal procedures. All the ingredients are there,
although the terminology is different. In a court of law, the data consist of
the evidence pertinent to the case, evidence obtained by the police and other
bodies, and presented by counsels for the defence and prosecution. There are
typically only two theories, that the defendant is guilty or is innocent. As the
trial proceeds, the see-saw effect is exhibited as evidence accumulates. Lawyers
use an adversarial system, not openly present in scientific practice, but similar
to the peer reviews that are employed therein. The most striking similarity
between legal and scientific practice lies in the uncertainty that pervades both
and the near-certainty that hopefully emerges at the end, the jurors oscillating
as the evidence is presented. Indeed, it is striking that the law lightly uses the
same term ‘probability’, as does the scientist, for expressing the uncertainty, for
example in the phrase ‘the balance of probabilities’.
The case for using the scientific method in a court of law therefore looks

promising because the ingredients, in a modified form, are already present.
Indeed, the method has had limited use, often by people who did not realise that
they were acting in the scientific spirit, but it is only in the second half of the
twentieth century that the method has been widely and successfully adopted.
The major advances have taken place where the evidence itself is of the form
that a scientist would recognise as material for study. Examples are evidence in
the form of laboratory measurements on fragments of glass or types of blood,
and, more recently and dramatically, DNA data. This book tells the story of
this intrusion of science into law and, more importantly, provides the necessary
machinery that enables the transition to be effected.
It has been explained how uncertainty plays important roles in both scientific

method and courtroom procedure. It is now recognised that the only tool
for handling uncertainty is probability, so it is inevitable that probability is
to be found on almost every page of this book and must have a role in the
courtroom. There are two aspects to probability: firstly, the purely mathematical
rules and their manipulation; secondly, the interpretation of probability, that
is, the connection between the numbers and the reality. Fortunately for legal
applications, the mathematics is mostly rather simple – essentially it is a matter
of appreciating the language and the notation, together with the use of the
main tool, Bayes’ theorem. Lawyers will be familiar with the need for specialist
terms, so-called jargon, and will hopefully be appreciative of the need for a little
mathematical jargon. Interpretation of probability is a more delicate issue, and
difficulties here are experienced both by forensic scientists and lawyers. One
miscarriage of justice was influenced by a scientist’s flawed use of probability;
another by a lack of legal appreciation of Bayes’ theorem. A great strength of this
book lies in the clear recognition of the interpretative problem and the inclusion
of many examples of court cases, for example in Chapter 7. My personal view is
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that these problems are reduced by proper use of the mathematical notation and
language, and by insisting that every statement of uncertainty is in the form
of your probability of something, given clearly-stated assumptions. Thus the
probability of the blood match, given that the defendant is innocent. Language
that departs from this format can often lead to confusion.
The first edition (1995) of this book gave an admirable account of the subject

as it was almost a decade ago. The current edition is much larger, and the
enlargement reflects both the success of forensic science, by including recent
cases, and also the new methods that have been used. A problem that arises in a
courtroom, affecting both lawyers, witnesses and jurors, is that several pieces of
evidence have to be put together before a reasoned judgement can be reached;
as when motive has to be considered along with material evidence. Probability
is designed to effect such combinations but the accumulation of simple rules
can produce complicated procedures. Methods of handling sets of evidence
have been developed; for example, Bayes nets in Chapter 14 and multivariate
methods in Chapter 11. There is a fascinating interplay here between the lawyer
and the scientist where they can learn from each other and develop tools
that significantly assist in the production of a better judicial system. Another
indication of the progress that has been made in a decade is the doubling in
the size of the bibliography. There can be no doubt that the appreciation of
some evidence in a court of law has been greatly enhanced by the sound use of
statistical ideas, and one can be confident that the next decade will see further
developments, during which time this book will admirably serve those who
have cause to use statistics in forensic science.

D.V. Lindley
January 2004



Preface to the First
Edition

In 1977 a paper by Dennis Lindley was published in Biometrika with the simple
title ‘A problem in forensic science’. Using an example based on the refractive
indices of glass fragments, Lindley described a method for the evaluation of
evidence which combined the two requirements of the forensic scientist, those
of comparison and significance, into one statistic with a satisfactorily intu-
itive interpretation. Not unnaturally the method attracted considerable interest
amongst statisticians and forensic scientists interested in seeking good ways of
quantifying their evidence. Since then, the methodology and underlying ideas
have been developed and extended in theory and application into many areas.
These ideas, often with diverse terminology, have been scattered throughout
many journals in statistics and forensic science and, with the advent of DNA
profiling, in genetics. It is one of the aims of this book to bring these scattered
ideas together and, in so doing, to provide a coherent approach to the evaluation
of evidence.
The evidence to be evaluated is of a particular kind, known as transfer evid-

ence, or sometimes trace evidence. It is evidence which is transferred between
the scene of a crime and a criminal. It takes the form of traces − traces of
DNA, traces of blood, of glass, of fibres, of cat hairs and so on. It is amenable
to statistical analyses because data are available to assist in the assessment
of variability. Assessments of other kinds of evidence, for example, eyewitness
evidence, is not discussed.
The approach described in this book is based on the determination of a

so-called likelihood ratio. This is a ratio of two probabilities, the probability
of the evidence under two competing hypotheses. These hypotheses may be
that the defendant is guilty and that he is innocent. Other hypotheses may be
more suitable in certain circumstances and various of these are mentioned as
appropriate throughout the book.
There are broader connections between statistics and matters forensic which

could perhaps be covered by the title ‘forensic statistics’ and which are not
covered here, except briefly. These might include the determination of a prob-
ability of guilt, both in the dicta ‘innocent until proven guilty’ and ‘guilty

xxv
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beyond reasonable doubt’. Also, the role of statistical experts as expert witnesses
presenting statistical assessments of data or as consultants preparing analyses
for counsel is not discussed, nor is the possible involvement of statisticians as
independent court assessors. A brief review of books on these other areas in the
interface of statistics and the law is given in Chapter 1. There have also been
two conferences on forensic statistics (Aitken, 1991, and Kaye, 1993a) with a
third to be held in Edinburgh in 1996. These have included forensic science
within their programme but have extended beyond this. Papers have also been
presented and discussion sessions held at other conferences (e.g., Aitken, 1993,
and Fienberg and Finkelstein, 1996).
The role of uncertainty in forensic science is discussed in Chapter 1. The

main theme of the book is that the evaluation of evidence is best achieved
through consideration of the likelihood ratio. The justification for this and the
derivation of the general result is given in Chapter 2. A correct understanding
of variation is required in order to derive expressions for the likelihood ratio
and variation is the theme for Chapter 3 where statistical models are given
for both discrete and continuous data. A review of other ways of evaluating
evidence is given in Chapter 4. However, no other appears, to the author at
least, to have the same appeal, both mathematically and forensically as the
likelihood ratio and the remainder of the book is concerned with applications of
the ratio to various forensic science problems. In Chapter 5, transfer evidence is
discussed with particular emphasis on the importance of the direction of transfer,
whether from the scene of the crime to the criminal or vice versa. Chapters
6 and 7 discuss examples for discrete and continuous data, respectively. The
final chapter, Chapter 8, is devoted to a review of DNA profiling, though, given
the continuing amount of work on the subject, it is of necessity brief and almost
certainly not completely up to date at the time of publication.
In keeping with the theme of the Series, Statistics in Practice, the book is

intended for forensic scientists as well as statisticians. Forensic scientists may
find some of the technical details rather too complicated. A complete under-
standing of these is, to a large extent, unneccesary if all that is required is an
ability to implement the results. Technical details in Chapters 7 and 8 have
been placed in Appendices to these chapters so as not to interrupt the flow of
the text. Statisticians may, in their turn, find some of the theory, for example in
Chapter 1, rather elementary and, if this is the case, then they should feel free
to skip over this and move on to the more technical parts of the later chapters.
The role of statistics in forensic science is continuing to increase. This is partly

because of the debate continuing over DNA profiling which looks as if it will
carry on into the foreseeable future. The increase is also because of increasing
research by forensic scientists into areas such as transfer and persistence and
because of increasing numbers of data sets. Incorporation of subjective probabil-
ities will also increase, particularly through the role of Bayesian belief networks
(Aitken and Gammerman, 1989) and knowledge-based systems (Buckleton and
Walsh, 1991; Evett, 1993b).
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Ian Evett and Dennis Lindley have been at the forefront of research in this
area for many years. They have given me invaluable help throughout this
time. Both made extremely helpful comments on earlier versions of the book
for which I am grateful. I thank Hazel Easey for the assistance she gave with
the production of the results in Chapter 8. I am grateful to Ian Evett also for
making available the data in Table 7.3. Thanks are due to The University of
Edinburgh for granting leave of absence and to my colleagues of the Department
of Mathematics and Statistics in particular for shouldering the extra burdens
such leave of absence by others entails. I thank also Vic Barnett, the Editor of
the Series and the staff of John Wiley and Sons, Ltd for their help throughout
the gestation period of this book.
Last, but by no means least, I thank my family for their support and encour-

agement.



Preface to the Second
Edition

In the Preface to the first edition of this book it was commented that the role
of statistics in forensic science was continuing to increase and that this was
partly because of the debate continuing over DNA profiling which looked as if
it would carry on into the foreseeable future. It now appears that the increase
is continuing and perhaps at a greater rate than in 1995. The debate over DNA
profiling continues unabated. We have left the minutiae of this debate to others,
restricting ourselves to an overview of that particular topic. Instead, we elaborate
on the many other areas in forensic science in which statistics can play a role.
There has been a tremendous expansion in the work in forensic statistics in

the nine years since the first edition of this book was published. This is reflected
in the increase in the size of the book. There are about 500 pages now, whereas
there were only about 250 in 1995, and the bibliography has increased from
10 pages to 20 pages. The number of chapters has increased from 8 to 14. The
title remains the same, yet there is more discussion of interpretation, in addition
to new material on evaluation.
The first four chapters are on the same topics as in the first edition, though

the order of Chapters 2 and 3 on evaluation and on variation has been reversed.
The chapter on variation, the new Chapter 2, has been expanded to include
many more probability distributions than mentioned in the first edition. As the
subject has expanded so has the need for the use of more distributions. These
have to be introduced sooner than before, hence the reversal of order with the
chapter on evaluation. Chapter 4 has an additional section on the work of early
twentieth-century forensic scientists as it has gradually emerged how far ahead
of their time these scientists were in their ideas. Three new chapters have then
been introduced before the chapter on transfer evidence. Bayesian inference has
an increasing role to play in the evaluation of evidence, yet its use is still contro-
versial and there have been some critical comments in the courts of some of its
perceived uses in the legal process. Chapter 5 provides a discussion of Bayesian
inference, somewhat separate from the main thrust of the book, in order to
emphasise its particular relevance for evidence evaluation and interpretation.
Appropriate sampling procedures are becoming ever more important. With
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