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Introduction

Why a Book on Digital Optics?

When a new technology is integrated into consumer electronic devices and sold worldwide in super-

markets and consumer electronic stores, it is usually understood that this technology has then entered the

realm of mainstream technology.

However, such progress does not come cheaply, and has a double-edge sword effect: first, it becomes

widely available and thus massively developed in various applications, but then it also becomes a

commodity, and thus there is tremendous pressure to minimize the production and integration costs while

not sacrificing any aspects of performance.

The field of digital optics is about to enter such a stage, which is why this book provides a timely insight

into this technology, for the following prospective groups of readers:

. for the research world (academia, government agencies and R&D centers) to have a broad but

condensed overview of the state of the art;
. for foundries (optical design houses, optical foundries and final product integrators) to have a broad

knowledge of the various design and production tools used today;
. for prospective industries – ‘How can I use digital optics in my products to make them smaller, better

and cheaper?’; and
. for the mainstream public – ‘Where are they used, and how do they work?’

This book is articulated around four main topics:

1. The state of the art and a classification of the different physical implementations of digital optics

(ranging from waveguide optics to diffractive optics, holographics, switchable optics, photonic

crystals and metamaterials).

2. The modeling tools used to design digital optics.

3. The fabrication and replication tools used to produce digital optics.

4. A review of the main applications, including digital optics in industry today.

This introductory chapter will define what the term digital opticsmeans today in industry, before we start

to review the various digital optics implementation schemes in the early chapters.

Applied Digital Optics: From Micro-optics to Nanophotonics Bernard C. Kress and Patrick Meyrueis

� 2009 John Wiley & Sons, Ltd



Digital versus Analog

In attempting to define the term ‘digital’ as introduced in the title of this book, one has to consider its

counterpart term ‘analog’. The ‘digital’ versus ‘analog’ concept can also be understood when considering

the term ‘continuous’ versus ‘discrete’ (see Figure 1).

History has proved that the move from analog systems to digital systems in technology (especially in

electronics) has brought about a large number of improvements, for example:

. added flexibility (easy to program) and faster, more precise, computers;

. new functionalities (built-in error detection and correction algorithms etc.);

. ease of miniaturization (very large scale integration, VLSI); and

. ease of mass replication (microlithographic fabrication techniques).

What are Digital Optics?

As far as optics are concerned, the move from analog (conventional lenses, mirrors and fiber optics) to

digital (planar optical elements composed of microscopic structures) has been mainly focused on the last

two points: miniaturization and mass replication. This said, new or improved optical functionalities have

also been discovered and investigated, especially through the introduction of digital diffractive optics and

digital waveguide optics, and their hybrid combination, as will be discussed in detail in the chapters to

come.

Miniaturization and mass-production have begun to lead the optical industry toward the same trend as

in themicro-electronics industry in the 1970s, namely to the integration of densely packed planar systems

in various fields of application (optical telecoms, optical data storage, optical information processing,

sensors, biophotonics, displays and consumer electronics).

At first sight, the term ‘digital optics’ could lead one to think that such elements might be either digital

in their functionality (in much the same way that digital electronics provide digital signal processing) or

digital in their form (much like digital – or binary – microscopic shapes rather than smooth shapes).Well,

it actually takes none of these forms.

The adjective ‘digital’ in ‘digital optics’ refers much more simply to the way they are designed and

fabricated (both in a digital – or binary – way). The design tool is usually a digital computer and the

fabrication tool is usually a digital (or binary) technology (e.g. by using binary microlithographic

fabrication techniques borrowed from the Integrated Circuit, or IC, manufacturing industry).

Figure 2 details the similarities between the electronic and optic realms, in both analog and digital

versions. In the 1970s, digital fabrication technology (binary microlithography) helped electronics move

from single-element fabrication to mass production in a planar way through very large scale integration

(VLSI). Similarly, identical microlithographic techniques would prove effective in helping the optics

industry to move from single-element fabrication (standard lenses or mirrors) down to planar integration

0000000000000000
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(a) Analog form (b) Sampled analog form (c) Digital form

Figure 1 Analog systems versus digital systems
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with similar VSLI features. The door to planar optics mass production has thus been opened, exactly as it

was for the IC industry 30 years earlier, with the noticeable difference that there was no need to invent a

new fabrication technology, since this had already been developed for digital electronics.

However, it is important to understand that although the fabrication technique used may be a binary

microfabrication process, the resulting elements are not necessarily binary in their shape or nature, but can

have quasi-analog surface reliefs, analog index modulations, gray-scale shades or even a combination

thereof.

Also, their final functionality might not be digital – or binary – as a digital IC chip would be, but could

instead have parallel and/or analog processing capabilities (information processing or wavefront

processing). This is especially true for free-space digital optics, and not so much for guided-wave digital

optics.

It is therefore inaccurate to draw a quick comparison between analog electronics versus digital

electronics and analog (refractive) optics versus digital (diffractive or integrated) optics, since both

optical elements (analog or digital) can yield analog or digital physical shapes and/or processing

capabilities.

The Realm of Digital Optics

Now that we have defined the term ‘digital optics’ in the previous section, the various types of digital

optical elements will be described.

The realm of digital optics (also referred to as ‘micro-optics’ or ‘binary optics’) comprises two main

groups, the first relying on free-space wave propagation and the second relying on guided-wave

propagation (see Figure 3).

The various optical elements defining these two groups (free-space and guided-wave digital optics)

are designed by a computer and fabricated by means similar to those found in IC foundries

(microlithography).

Figure 3 shows, on the free-space optics side, threemain subdivisions,which are, in chronological order

of appearance, refractivemicro-optical elements, diffractive and holographic optical elements, and nano-

optics (photonic crystals). On the guided-wave optics side, there are also three main subdivisions, which

are, again in chronological order of appearance, fiber optics, integratedwaveguide optics and nano-optics.

It is worth noting that nano-optics (or photonic crystals) can actually be considered as guided-wave optics

or free-space optics, depending on how they are implemented (as 1D, 2D or 3D structures).

This book focuses on the analysis of free-space digital optics rather than on guided-wave optics.

Guided-wave micro-optics, or integrated optics, are well described in numerous books, published over

Analog electronics

Digital electronics

Analog optics

Digital optics

Optical realmElectronic realm

....

....

Singular, 3D elements
Small-scale integration
Analog functionality

Microscopic
Planar, lithographically printed  elements 
Large-scale integration
Digital/analog functionality

Macroscopic

Figure 2 Analogies between the electronics and optics realms
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more than three decades, and dedicated books on ‘guided-wave’ photonic crystals have been available for

more than five years now.

However, the combination of free-space digital optics and guided-wave digital optics is a very

important and growing field, sometimes also referred to as ‘planar optics’, and that is what will be

described in this book.

Supplementary Material

Supplementary book material is available at www.applieddigitaloptics.com including information about

workshops and short courses provided by the authors. The design andmodeling programs used in the book

can be downloaded from the website.

Digital optics

Free-space digital optics Guided-wave digital optics

Micro-refractives

Diffractive/holographic optics

Nano-optics

Fiber optics

Integrated wave optics
(PLCs)

Figure 3 The realm of digital optics
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1

From Refraction to Diffraction

1.1 Refraction and Diffraction Phenomena

In order to predict the behavior of light as it is affected when it propagates through digital optics, we have

to consider the various phenomena that can take place (refraction, reflection, diffraction and diffusion).

Thus, we have to introduce the dual nature of light, which can be understood and studied as a corpuscle

and/or an electromagnetic wave [1].

The corpuscular nature of light, materialized by the photon, is the basis of ray tracing and the classical

optical design of lenses and mirrors. The wave nature of light, considered as an electromagnetic wave, is

the basis of physical optics used to model diffractive optics and other micro- or nano-optical elements,

such as integrated waveguides, and photonic crystals (see Chapters 3–10).

In the simple knife-edge example presented in Figure 1.1, the corpuscular nature of light (through ray

tracing) accounts for the geometrical optics, whereas the wave nature of light (physical optics) accounts

not only for the light present in the optical path, but also for the light appearing inside the geometrical

shadow (the Gibbs phenomenon). According to geometrical optics, no light should appear in the

geometrical shadow. However, physical optics can predict accurately where light will appear within

the geometrical shadow region, and how much light will fall in particular locations.

In this case, the laws of reflection and refraction are inadequate to describe the propagation of light;

diffraction theory has to be introduced.

1.2 Understanding the Diffraction Phenomenon

Diffraction comes from the limitation of the lateral extent of awave. Put in simple terms, diffraction arises

when a wave of a certain wavelength collides with obstacles (amplitude or phase obstacles) that are either

singular or abrupt (the knife-edge test, Young’s holes experiment) smooth but repetitive (the sinusoidal

grating), or even abrupt and repetitive (binary gratings). The smaller the obstacles are, the larger the

diffraction effects become (and also the larger the diffraction angles become).

Today, when harnessing diffraction to be used in industrial applications, the obstacles are usually

designed and fabricated as pure phase obstacles, either in reflection or in transmission [2–4]. Fine-tuning

of the obstacle’s parameters through adequate modeling of the diffraction phenomenon can yield very

specific diffraction effects with a maximum intensity (or diffraction efficiency).
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1.2.1 Chronological Stages in Understanding Diffraction Phenomena

The diffraction phenomenon was demonstrated for the first time by Leonardo da Vinci (1452–1519) in a

very rudimentary way. The first accurate description of diffraction was introduced by Francesco Maria

Grimaldi (1618–1663) in his book published in 1665, two years after his death. In those times, corpuscular

theory, whichwaswidely believed accurately to describe the propagation of light, had failed to explain the

diffraction phenomenon. In 1678, Christian Huygens (1629–1695) proposed a wave theory for the

propagation of light that described diffraction as a source of secondary spherical disturbance

(see Appendix B). Sir Isaac Newton (1642–1727) had been a strong advocate of the corpuscular theory

since 1704. His strong influence over contemporary scientists had halted progress in understanding

diffraction during the 18th century. In 1804, Thomas Young (1773–1829) introduced the concept of

interference, which directly proceeds from the wave nature of light. Augustin Jean Fresnel (1788–1827)

brought together the ideas of Huygens and Young in his famous memoir. In 1860, James Clerk Maxwell

(1831–1879) identified light as an electromagnetic wave (see Appendix A). Gustav Kirchhoff

(1824–1887) gave a more mathematical form to Fresnel’s expression of diffraction. His work basically

relied on two assumptions concerning the field at the diffraction aperture. Although those assumptions

were quite empirical, his formulation provided a good approximation of the real diffracted field. In 1884,

Arnold J.W. Sommerfeld (1868–1951) refined Kirchhoff’s theory. Thanks to Green’s theorem, he

suppressed one of the two assumptions that Kirchhoff had made earlier, to derive the so-called

Rayleigh–Sommerfeld diffraction theory.

Table 1.1 summarizes, in a chronological way, the understanding of optics as both a corpuscular

phenomenon and an electromagnetic field.

When studying the propagation of light in a homogeneous or nonhomogeneous medium – such as a

lens, a waveguide, a hologram or a diffractive element (through refraction, diffraction or diffusion) – the

refractive index is one of the most important parameters. Light travels through a transparent medium

(transparent to its specific wavelength) of index n at a speed vn that is lower than its speed c in a vacuum.

The index of refraction, n, in a transparent medium is defined as the ratio between the speed of light in a
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Figure 1.1 The dual nature of light: geometrical and physical optics
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vacuum (c) and the speed of light in the medium. This index can also be defined as the square root of the

product of the permittivity and permeability of the material considered for the specific wavelength of

interest (for most media, m¼ 1):

n ¼ c

vn

n ¼ ffiffiffiffiffiffiffi
e:m

p

8<
: ð1:1Þ

At this point, one could ask whether there would be a medium with indices that are positive but lower

than 1 (whichwouldmean that lightwould travel faster than the speed of light in a vacuum). This is largely

improbable: however, there are media in which the phase velocity of light is greater than c, but cannot be

used to send energy or signals at a speed in excess of c.

It is worth noting that the range of refractive indices in nature is much higher than one would imagine

(from air¼ 1.0 to glass¼ 1.5). For example, silicon (Si) has a quite high index of 3.5 for infrared (IR)

wavelengths, which enables the fabrication of photonic crystals in which the index change has to be the

highest possible in order to achieve full photonic band gaps (see Chapter 10). Table 1.2 lists the refractive

indices for some common materials. Interestingly, the range of refractive indices found in nature can be

extrapolated by the fabrication of synthetic materials known as metamaterials (see also Chapter 10), and

even materials with negative indices can be produced.

1.3 No More Parasitic Effects

History shows us that optical engineering has usually considered diffraction effects to be negative and

parasitic. These effects usually manifest when the imaging resolution limit is approached. They are

Table 1.2 Refractive indices for conventional (natural) and nonconventional materials

Media Refractive index Type Examples

Conventional materials

Vacuum 1 exactly Natural —

Air (actual) 1.0003 Natural —

Air (accepted) 1.00 — —

Ice 1.309 Natural —

Water 1.33 Natural Liquid lenses

Oil 1.46 Natural/Synthetic Immersion lithography

Glass (typical) 1.50 Natural BK7 lenses

Polystyrene plastic 1.59 Natural/Synthetic Molded lenses

Diamond 2.42 Natural TIR in jewelry

Silicon 3.50 Natural Photonic crystals

Germanium (IR) 4.10 Natural IR lenses

Media Refractive index Type Examples

Nonconventional materials

Metamaterials Negative indices Synthetic, active

materials (plasmon)

High-resolution lens,

Harry Potter’s

invisibility cloak

Bose–Einstein

condensate

n� 1, validated at

n> 1 000 000 000!

Synthetic, T¼ 0�K
(v< 1mph)

Low-consumption chips,

telecom

? 0< n< 1.0 Improbable (v> c) Telecom, time machine,. . .

8 Applied Digital Optics


