Corrosion Prevention and Protection Practical Solutions

V. S. SASTRI

Sai Ram Consultants, Ottawa, Ontario, Canada

EDWARD GHALI

Department of Metallurgical Engineering, Laval University, Quebec, Canada

MIMOUN ELBOUJDAINI

Materials Technology Laboratory, CANMET, Ottawa, Canada

John Wiley & Sons, Ltd

Corrosion Prevention and Protection

Corrosion Prevention and Protection Practical Solutions

V. S. SASTRI

Sai Ram Consultants, Ottawa, Ontario, Canada

EDWARD GHALI

Department of Metallurgical Engineering, Laval University, Quebec, Canada

MIMOUN ELBOUJDAINI

Materials Technology Laboratory, CANMET, Ottawa, Canada

John Wiley & Sons, Ltd

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London WIT 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The Publisher and the Author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the Publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions.

The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the Publisher nor the Author shall be liable for any damages arising herefrom.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sastri, V. S.

Corrosion prevention and protection: practical solutions / V. S. Sastri, Edward Ghali, Mimoun Elboujdaini.

p. cm.

Includes index.

ISBN-13: 978-0-470-02402-7

ISBN-10: 0-470-02402-X

1. Corrosion and anti-corrosives. I. Ghali, Edward. II. Elboujdaini, Mimoun. III. Title.

TA462.S3185 2006

620.1'1223-dc22 2006022728

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 0 470 02402 X (HB) ISBN 13: 978 0 470 02402 7 (HB)

Typeset in 10/12 pt Times by Thomson Digital, India Printed and bound in Great Britain by Antony Rowe, Chippenham, Wiltshire This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production I am grateful for the blessings of Sri Vighneswara, Sri Venkateswara, Sri Anjaneya, Sri Satya Sai Baba, my parents and teachers. I am also thankful for the support of my wife, Bonnie, and my children, Anjali and Martin Anil Kumar Sastri. We also recognise Anjali Sastri for her help with the figures, and to Gerry Burtenshaw for assistance in the preparation of the manuscript.

V. S. Sastri

I cannot adequately explain my gratitude to my wife, Helen, and Doctors Rafik and Sonia Ghali, whose encouragement, patience and love played an indispensable part in my career as Professor and participant in this book.

Edward Ghali

I would like to express my gratitude to my employer and my colleagues at CANMET Materials Technology Laboratory. I sincerely appreciate the exceptional understanding of my wife, Manon, along with my children Anaïs, Ismaël, and Gabriel, who sometimes did not get the attention they deserved.

Mimoun Elboujdaini

Contents

Pr	Preface			
Acknowledgments				
PA	ART I	Ī.		1
1	Intr	oductio	on and Principles of Corrosion	3
	1.1	Impac	et of Corrosion	12
	1.2	Prelin	ninary Aspects of Thermodynamics and Kinetics	18
	1.3	Natur	e of Corrosion Reactions	20
		1.3.1	Electrochemical Cells	22
		1.3.2	Standard Electrode Potentials	23
		1.3.3	Pourbaix Diagrams	28
		1.3.4	Dynamic Electrochemical Processes	33
		1.3.5	Concentration Polarization	46
	1.4		ation and High-temperature Corrosion	54
		1.4.1	Oxidation of Alloys	59
	1.5	Corro	sion Prevention	63
	1.6	_	n Factors	67
	1.7	Life F	Prediction Analysis of Materials	75
	1.8	Corro	sion Protection	80
		1.8.1	Corrosion Inhibitors	80
		1.8.2	Protective Coatings	90
		1.8.3	Cathodic Protection	100
			Impressed Current Protection	105
		1.8.5	Anodic Protection	106
	Refe	erences		106
2	Cor	rosion	Testing, Detection, Monitoring and Failure Analysis	109
	2.1	Corro	sion Testing	109
		2.1.1	Testing for Environmentally Assisted Cracking (EAC)	111
		2.1.2	Atmospheric Corrosion Testing	117
		2.1.3	Galvanic Corrosion Testing	119
		214	Testing of Polymeric Materials	120

		2.1.5	Corrosion Testing of Refractories and Ceramic	
			Materials	122
		2.1.6	Testing of Corrosion Inhibitors	122
	2.2	Corro	sion Detection and Monitoring	125
		2.2.1	Visual Examination	127
		2.2.2	Laser Methods	128
		2.2.3	Replication Microscopy	129
		2.2.4	Radiographic Methods	129
		2.2.5	Liquid Penetrant Testing Method	134
		2.2.6	Magnetic Particle Testing	135
		2.2.7	Eddy Current Inspection Method	136
		2.2.8	Ultrasonic Inspection Method	137
		2.2.9	Acoustic Emission Technique	142
		2.2.10	Other Nondestructive Methods	145
		2.2.11	Thermal Methods of Inspection	149
	2.3	Failur	e Analysis	150
		2.3.1	Visual or Macroscopic Examination	154
		2.3.2	Metallography	156
		2.3.3	Microfractography	159
		2.3.4	Fracture Mechanics in Failure Analysis	159
		2.3.5	Determinaton of Residual Stress by X-ray Diffraction	161
		2.3.6	Mechanical Properties	162
		2.3.7	Corrosion and Wear-related Failures	164
		2.3.8	Failure Analysis of Polymeric Materials	169
		2.3.9	Failure Analysis of Ceramic Materials	172
	Refe	erences		173
3	Regi	ulation	s, Specifications and Safety	177
	3.1	Regul	ations and Specifications	177
	3.2	Safety	Considerations	181
		3.2.1	Safety in the Corrosion Laboratory	192
		3.2.2	General Outline for a Model Chemical	
			Hygiene Plan	193
		3.2.3	Safety Guidelines for Radiation Sources	194
		3.2.4	Nonionizing Radiation Sources	196
		3.2.5	Safety at the Design Stage	197
		3.2.6	Safety in Field Plant Inspection	198
		3.2.7	Safety in Storage and Transport	198
	Refe	erences		199
ı	Mat	erials:	Metals, Alloys, Steels and Plastics	201
	4.1	Cast I		201
	4.2	Carbo	n and Low-alloy Steels	202
		4.2.1	Corrosion of Carbon Steels in Fresh Waters	204
		4.2.2	Corrosion of Carbon Steels in Seawater	207
		4.2.3	Corrosion of Carbon Steels in Soils	210

		Contents ix
4.3	Stainless Steels	214
	4.3.1 Duplex Stainless Steels	219
	4.3.2 Martensitic Stainless Steels	224
4.4	Aluminum and Aluminum Alloys	227
	4.4.1 Corrosion Behavior of Aluminum and its Alloys	228
4.5	Copper and Copper Alloys	236
	4.5.1 Atmospheric Corrosion	237
	4.5.2 Soil Corrosion	238
	4.5.3 General Corrosion in Aqueous Media	238
	4.5.4 Pitting Corrosion	241
	4.5.5 Dealloying	241
	4.5.6 Flow-induced Corrosion	241
	4.5.7 Behavior in Chemical Environments	242
	4.5.8 Biofouling	242
	4.5.9 Stress–Corrosion Cracking	242
	4.5.10 Miscellaneous	244
4.6	Nickel and its Alloys	244
	Titanium and its Alloys	255
	4.7.1 Resistance to Waters	257
	4.7.2 Resistance to Chemical Environments	257
	4.7.3 Galvanic Corrosion	259
4.8	Cobalt Alloys	259
4.9	Lead and Lead Alloys	263
	4.9.1 Lead Alloys and their Uses	270
4.10	Magnesium and Magnesium Alloys	270
	4.10.1 Magnesium Alloys	271
	4.10.2 Corrosion of Magnesium and its Alloys	271
4.11	Zinc and Zinc Alloys	282
	4.11.1 Atmospheric Corrosion	282
	4.11.2 Corrosion in Aqueous Media	285
	4.11.3 Corrosion in Soils	287
	4.11.4 Corrosion of Painted Materials	287
	4.11.5 Corrosion in Concrete	288
	4.11.6 Forms of Corrosion	289
4.12	Zirconium and its Alloys	291
	4.12.1 Corrosion of Zirconium Alloys	291
	4.12.2 Corrosion of Zirconium Alloys in Acids and Alkalis	292
4.13	Tin and Tin Plate	292
	4.13.1 Aqueous Corrosion	293
	4.13.2 Corrosion of Tin Plate	296
4.14	Refractories and Ceramics	297
	4.14.1 Corrosion of Structural Ceramics	298
4.15	Polymeric Materials	300
	4.15.1 Application of Polymers in Corrosion Control	302
Refe	rences	305

x Contents

5	Cor	rosion	Economics and Corrosion Management	311
	5.1	Corro	osion Economics	311
	5.2	Corro	sion Management	317
	5.3	Comp	outer Applications	319
	Refe	erences		327
PA	ART I	II		329
6	The	Forms	s of Corrosion	331
	6.1	Corro	sion Reactions	331
	6.2	Corro	osion Media	332
		6.2.1	Atmospheric Exposure	332
			Aqueous Environments	332
			Underground Media	332
			Process Media	332
	6.3		e and Active-Passive Corrosion Behavior	333
	6.4		s of Corrosion	336
	6.5	Types	s and Modes of Corrosion	337
	6.6		Morphology of Corroded Materials	338
	6.7	Publis	shed Corrosion Data	339
		6.7.1	General Corrosion	340
			Galvanic Corrosion	344
			Localized Corrosion	355
		6.7.4	ē ,	370
		6.7.5	• •	384
		6.7.6	•	393
		6.7.7	Environmentally Induced Cracking	423
	Refe	erences		453
	Bibl	iograpł	ny	459
7			Solutions	461
	7.1		odic Protection of Water Mains	461
			Ductile Iron Main	461
			Cast-iron-lined Main	462
		iograpł	•	465
	7.2		nal Corrosion of Aluminum Compressed Air Cylinders	465
			Destructive Visual Inspection	465
			Corrosion-induced Cracking	466
			Corrosion Mechanism	468
			Summary	469
		iograpł	· ·	469
	7.3		Common Failure Modes in Aircraft Structures	469
		7.3.1	Example 1	470
		7.3.2	1	471
		7.3.3		472
	7.4		ature Failure of Tie Rods of a Suspension Bridge	473
		7.4.1	Conclusions	476

7.5	Corrosion and Lead Leaching of Domestic Hot and	
	Cold Water Loops in a Building	476
	7.5.1 Hot Water System Corrosion	476
	7.5.2 Conclusions	478
Refe	rences	478
7.6	Cathodic Protection of Steel in Concrete	478
Bibli	ography	480
	Corrosion of Aluminum Components in the Glass Curtain	
	Wall of a Building	480
	7.7.1 Introduction	481
	7.7.2 Observations	481
	7.7.3 Recommendations	483
Refe	rences	483
7.8	Corrosion in a Water Cooling System	483
7.9	Pitting Corrosion of 90/10 Cupronickel Chiller Tubes	486
	7.9.1 Optical Examination	486
	7.9.2 SEM and EDS Studies	486
	7.9.3 Pitting Initiation and Propagation Mechanism	487
	7.9.4 Conclusion	489
Bibli	ography	489
	Weld Metal Overlay: a Cost-effective Solution to High-tempera	ture
	Corrosion and Wear Problems	489
Bibli	ography	492
	Equipment Cracking Failure Case Studies	492
	7.11.1 Industrial Engine Crankshaft Failure	492
	7.11.2 Electric Motor Drive Shaft Failure	495
7.12	Failure of a Conveyor Drive Shaft	499
	7.12.1 Conclusions	500
7.13	Failure Analysis of Copper Pipe in a Sprinkler System	501
	7.13.1 Observations	501
	7.13.2 Conclusions	504
7.14	Failure of Rock Bolts	504
	7.14.1 Corrosion Modes of Rock Bolts	505
	7.14.2 Fracture and Failure	505
Refe	rences	509
7.15	Failure Analysis of 316L Stainless Steel Tubing of a	
	High-pressure Still Condenser	509
	7.15.1 Problem	509
	7.15.2 Material	510
	7.15.3 Results	510
	7.15.4 SEM Examination	511
	7.15.5 Conclusions	512
	7.15.6 Prevention	514
Refe	rences	514
	Failure of a Landing Gear Steel Pin	515
	rence	516

7.17	Hydrogen-induced Cracking	516
	7.17.1 Extent of Problem: Failures due to Hydrogen-induced Cracking	518
	7.17.2 HIC Development and Failures Occur Predominantly	
	in Welded Pipe	519
	7.17.3 Pipeline Failure	523
	7.17.4 Mechanism of Hydrogen-induced Cracking	523
Refe	erences	524
7.18	Micromechanisms of Liquid and Solid Metal-induced Embrittlement	525
	7.18.1 Liquid Metal-induced Embrittlement (LMIE)	525
	7.18.2 Conclusion	528
Refe	erences	528
7.19	Nitrate SCC of Carbon Steel in the Heat Recovery Steam	
	Generators of a Co-generation Plant	529
	7.19.1 Materials	529
	7.19.2 Conclusions	532
Refe	erences	532
7.20	Performance of Stainless Steel Rebar in Concrete	533
Bibl	iography	535
7.21	Corrosion of an Oil Storage Tank	536
	7.21.1 Sampling	536
	7.21.2 Color	537
	7.21.3 Corrosion	538
	7.21.4 Pitting	538
	7.21.5 Pitted Surface	539
	7.21.6 Factors Affecting Pitting	540
	7.21.7 Discussion	540
	7.21.8 Conclusions	541
Refe	erences	541
7.22	Corrosion of a Carbon Steel Tank in a Phosphatizing Process	541
	7.22.1 Galvanic Corrosion	543
	7.22.2 Localized Corrosion	545
	7.22.3 Overall Corrosion Scenario	547
7.23	Underground Corrosion of Water Pipes in Cities	547
	7.23.1 Observations	547
7.24	Corrosion in Drilling and Well Stimulation	549
	7.24.1 Materials	550
	7.24.2 Corrosion Inhibition	550
	7.24.3 Corrosion in Underbalanced Drilling Operations	550
Refe	erences	551
Index		553

Preface

There are many books and monographs on corrosion, such as *Corrosion and Corrosion Control* by H. H. Uhlig and R. W. Revie; *Corrosion Engineering* by M. G. Fontana and N. D. Greene; *Principles and Prevention of Corrosion* by D. A. Jones; *An Introduction to Corrosion and Protection of Metals* by G. Wranglen; and *Corrosion for Science and Engineering* by K. R. Trethewey and J. Chamberlain. The present title differs from existing books in more ways than one, such as the chapters dealing with practical solutions. The title was chosen to reflect the content of the subject matter, which is presented in two parts.

The first chapter presents the historical development of corrosion concepts, such as the electrochemical theory of corrosion, the economic significance of corrosion and its impact, cathodic protection, Faraday's laws, the role of oxygen, passivity, inhibitors and their classification, the role of thermodynamics, the historical development of the corrosion literature, and the establishment of scientific organizations dealing with corrosion, and centres and laboratories for studies on corrosion phenomena, progressive development of the scientific literature on corrosion, safety and its impact. The role of thermodynamics and kinetics in corrosion, electrochemical principles of corrosion, Pourbaix diagrams, the Helmholtz double layer and its significance in corrosion, electrochemical polarization, Tafel plots, activation polarization, hydrogen overvoltage, mixed potential theory of corrosion, AC impedance and potential noise in corrosion phenomena, high-temperature corrosion, corrosion prevention strategies such as design factors, corrosion-based life prediction analysis of materials, corrosion inhibitors and their role in corrosion prevention, coatings and their role in corrosion control, cathodic protection and impressed current protection are presented.

The second chapter deals with corrosion testing for environmentally assisted cracking, atmospheric corrosion, galvanic corrosion, tests for degradation of polymeric materials, refractories and ceramic materials and corrosion inhibitors. This is followed by a discussion of corrosion detection and monitoring by methods such as visual examination, laser inspection, replication microscopy, radiographic inspection, neutron radiography, liquid penetrant method, eddy current method, ultrasonic testing, acoustic emission testing, finite element analysis, strain gage methods and thermal methods of inspection. Failure analysis consisting of various modes of failure by different damage mechanisms are presented, including microfractography, fracture mechanics, determination of

residual stress by X-ray diffraction, role of surface analysis techniques in failure analysis, including failure in polymeric and ceramic materials.

The next chapter deals with regulations, specification and safety. The regulations and specifications of materials used in industry are briefly discussed. This is followed by safety considerations to be observed both in the corrosion laboratory and field inspection. Hazard identification techniques at different stages of the project, a checklist for process hazard analysis, safety procedures in the corrosion laboratory, including a model chemical hygiene plan, guidelines in using radiation sources including lasers and safety considerations in the design stage and field plant inspection are presented.

Materials such as metals, alloys, steels and plastics form the theme of the fourth chapter. The behavior and use of cast irons, low alloy carbon steels and their application in atmospheric corrosion, fresh waters, seawater and soils are presented. This is followed by a discussion of stainless steels, martensitic steels and duplex steels and their behavior in various media. Aluminum and its alloys and their corrosion behavior in acids, fresh water, seawater, outdoor atmospheres and soils, copper and its alloys and their corrosion resistance in various media, nickel and its alloys and their corrosion behavior in various industrial environments, titanium and its alloys and their performance in various chemical environments, cobalt alloys and their applications, corrosion behavior of lead and its alloys, magnesium and its alloys together with their corrosion behavior, zinc and its alloys, along with their corrosion behavior, zirconium, its alloys and their corrosion behavior, tin and tin plate with their applications in atmospheric corrosion are discussed. The final part of the chapter concerns refractories and ceramics and polymeric materials and their application in various corrosive media.

Corrosion economics and corrosion management forms the theme of the fifth chapter. Discounted cash flow calculations, depreciation, the declining balance method, double declining method, modified accelerated cost recovery system and present worth calculation procedures are given, together with examples. In the second part, corrosion management, including the people factor in corrosion failure is briefly presented. Some of the expert systems presently available in the literature are briefly discussed.

The second part of the book consists of two chapters; namely the forms of corrosion and practical solutions. The chapter, 'Forms of Corrosion' consists of a discussion of corrosion reactions, corrosion media, active and active–passive corrosion behavior, the forms of corrosion, namely, general corrosion, localized corrosion, metallurgically influenced corrosion, microbiologically influenced corrosion, mechanically assisted corrosion and environmentally induced cracking, the types and modes of corrosion, the morphology of corroded materials along with some published literature on corrosion.

The last chapter is a collection of case histories or practical solutions the authors have provided to various clients. These solutions span a wide range of industrial problems in a variety of environments frequently encountered.

It is the experience of the authors that the material in the first part of the book can be covered in one semester lasting 12 weeks. The second part of the book can be covered in a subsequent semester lasting 12 weeks. It is also possible that some laboratory work can be carried out by the students when the instructor is teaching the second part of the book.

The authors have received their education in universities in North America and Europe and have a combined experience of approximately 100 years in corrosion and its mitigation. The present monograph is a product of this rich experience.

Acknowledgments

I cannot adequately express my gratitude to my wife, Bonnie Sastri whose efforts and encouragement played the greatest role in sustaining me through the challenge of writing this book. Our children, Anjali and Martin Sastri, also deserve my appreciation for their help and understanding. Grateful appreciation is expressed to the American Chemical Society, the American Society of Metals, Plenum Publishing, EG&G Princeton Applied Research, and Longman Publishers, NACE International, Houston, Texas, John Wiley & Sons, N.Y., USA, McGraw-Hill, N.Y., Elsevier, Oxford, UK for their permission to reproduce figures or tables from the literature.

V. S. Sastri E. Ghali M. Elboujdaini

Please note that figures 7.53 (Plate 2), 7.54 (Plate 3), 7.55 (Plate 4), 7.56 (Plate 5), 7.57 (Plate 6), 7.58 (Plate 7), 7.59, 7.60 and 7.61 are © Crown in Right of Canada, sourced from Failure Investigation Report #0505007 (Report on Copper Pipe or Sprinkler Pipes Experiencing MIC), Mr. Nick Dawe, P. Eng, D/Chief Building Services - PSEPC.

Part I

1

Introduction and Principles of Corrosion

The term corrosion has its origin in Latin. The Latin term *rodere* means 'gnawing' and *corrodere* means 'gnawing to pieces'. It is rather interesting to examine the historical aspects of the developments of corrosion. Metallic corrosion has no doubt been a problem since common metals were first put to use. Most metals occur in nature as compounds, such as oxides, sulfides, silicates or carbonates (very few metals occur in native form). The obvious reason is the thermodynamic stability of the compounds as opposed to the metals. The process of extraction of a metal from the ore is reduction.

$$2 \operatorname{Fe_2O_3} + 3 \operatorname{C} \rightarrow 4 \operatorname{Fe} + 3 \operatorname{CO_2}$$

In the extraction of iron, the oxide is reduced to metallic iron. On the other hand, the oxidation of iron to produce the brown iron oxide commonly known as rust is the opposite reaction to the production of the metal from the oxide. The extraction of iron from the oxide, must be conducted with utmost careful control of the conditions, such that the backward reaction is prevented.

During the Gupta Dynasty (320–480 A.D.) the production of iron in India achieved a remarkable degree of sophistication as attested by the Dhar Pillar, a seven-tonne, one-piece iron column made in the fourth century A.D. This implies that the production of metallic iron from the ores was a well-established process, and the people involved at that time were aware of the reverse reaction involving the oxidation of iron to produce the oxide (the familiar rusting of iron).

Other examples involve the use of copper nails coated with lead by the Greeks in the construction of lead-covered decks for ships. They probably realized that metallic couples of common metals are undesirable in seawater. Protection of iron by bitumen, tar, etc., was known and practiced by the Romans.

The earliest published accounts of the causes of corrosion are the two publications by Robert Boyle (1627–1691) entitled 'Of the Mechanical Origin of Corrosiveness' and

'Of the Mechanical Origin of Corrodibility', which appeared in 1675 in London.² It was not until the turn of the 19th century^{3,4} that some of the basic principles were understood, soon after the discovery of the galvanic cell and Davy's theory on the close relationship between electricity and chemical changes.⁵

The impetus for further developments was the recognition of the economic significance of corrosion phenomenon during the 19th century that led the British Association for the Advancement of Science to sponsor corrosion testing projects such as the corrosion of cast and wrought iron in river and seawater atmospheres in 1837. Early academic interest in corrosion phenomenon (up to the First World War) was followed by industrial interest due to the occurrence of equipment failures. An example of this is the corrosion-related failure of condenser tubes as reported by the Institute of Metals and the British Non-ferrous Metals Research Association in 1911. This initiative led to the development of new corrosion-resistant alloys, and the corrosion related failure of condenser tubes in the Second World War was an insignificant problem.

Corrosion and its control mean the corrosion process and the measures taken to control or keep in check the corrosion process. Sometimes it is also referred to as corrosion, prevention and protection. Although the terms 'prevention' and 'protection' appear to be synonymous, prevention means measures taken to control corrosion to a limited extent while protection means extensive or more comprehensive measures taken to control the corrosion process. In more general terms preventive measures are knowledge-based while protection involves both known and unknown factors, such as natural disasters.

The heart of corrosion science has been identified as electrochemical science coupled with the thermodynamic and kinetic values. Other limbs are oxidation and high-temperature oxidation of metals, protective coatings, passivity, inhibitors, microbial-induced corrosion, corrosion fatigue, hydrogen embrittlement and corrosion-resistant alloys. Having identified the limbs of corrosion science, it is instructive to examine how the various aspects came into existence over a period of time.

The French chemist Louis Jacques Thenard first enunciated electrochemical nature of corrosion phenomenon explicitly in 1819. Some research activities that led to the firm electrochemical foundations of corrosion process are summarized below:

Sir Humphry Davy	1824	Principle of cathodic protection
Auguste de la Rive	1830	Established best quality of zinc for galvanic batteries
Michael Faraday	1834–1840	Provided relations between chemical action and generation of electric currents based on Faraday's laws
Svante Arrhenius	1901-	Postulated the formation of microcells
W.R. Whitney	1903	Confirmed the theory of microcells
A.S. Cushman	1907 }	
Walker)	1907)	Established role of oxygen in corrosion as a
Cederholm	į	cathodic stimulator
Bent	}	
William Tilden	1908	

Corey Finnegan Kay Thompson	1939 1940	Investigated attack of iron by oxygen-free water
A. Thiel Luckmann	1928	Investigated attack of iron by dilute alkali with liberation of hydrogen
Heyn and Bauer	1908	Corrosion studies of iron and steel, both alone and in contact with other metals, leading to the concept that iron in contact with nobler metal increased the corrosion rate, while in contact with a base metal resulted in partial or complete protection
Whitman and Russell U. Evans G.V. Akimov	1924 1928 1935	Observed increased corrosion rate when a small anode is connected to a large cathode

Other important and related phenomena in corrosion and their historical development are summarized below:

John Stewart MacArthur P.F. Thompson	1887 1947	Process of cyanide dissolution of gold (gold is not soluble in hot acids) Dissolution of gold in dilute cyanide solutions recognized as electrochemical process
Concept of passivity		
James Keir	1790	Observed that iron in conc. nitric acid altered in its properties
Christian Friedrich Schönbein	1799–1868	Suggested the state of iron in conc. HNO ₃ as passivity
W. Müller (Konopicky and Willi Machu)	1927	Posulated the mathematical basis of the mechanism of anodic passivation
Bengough (Stuart, Lee and Wormweil)	1927	Systematic and carefully controlled experimental work on passivity
Role of oxygen		
	~1900	Hydrogen peroxide was detected during the corrosion of metals
	~1905	The view that acids are required for corrosion to occur was dispelled by the observation of rusting of iron in water

and oxygen

6 Corrosion Prevention and Protection

Marianini	1830	The research work of these scientists
Adie	1845	indicated the electric currents due to
Warburg	1889	the variations in oxygen concentrations
V.A. Kistiakowsky	1908	••
Aston	1916	Role of local differences in oxygen
	5, 50	concentration in the process of rusting of iron
McKay	1922	Currents due to a single metal of varying metal ion concentrations
U.R. Evans	1923	Differential aerations and their role in metallic corrosion
Evans and co-workers	1931–1934	Electric currents due to corrosion of metal in salt solutions were measured and a quantitative electrochemical basis of corrosion was propounded. The oxygen-rich region becomes cathodic and the metal is protected, and the lower oxygen region, being anodic, is attacked
Inhibitors		
Roman civilization		Protection of iron by bitumen, tar, extracts of glue, gelatin and bran to inhibit corrosion of iron in acid
Murangoni Stephanelli	1872	
Chyzewski	1938	Classified inhibitors as cathodic and anodic inhibitors
_	_	Distinction between inhibitive paints and mechanically excluding paints was made based on laboratory, and field tests
_	_	Development of paints containing zinc dust
John Samuel Frost Roetheli and Brown	1930	Protective property of coating varied and depended on the rate of supply of oxygen to the surface
Friend	1920	Colloidal solution of ferric hydroxide acts as an oxygen carrier, passing between ferrous and ferric states
Herzog	1936	Posulated that iron, on long exposure to water, becomes being covered by a magnetite overlaid with ferric hydroxide. Magnetite layer acts as cathode and ferric hydroxide is cathodically converted to hydrated

		magnetite. Hydrated magnetite may
		lose water and reinforce the pre-existing magnetite or absorb
		oxygen from air to give ferric
		hydroxide
V.S. Sastri	1990	Modern classification of inhibitors as
v.s. susti	1,,,0	hard, soft and borderline inhibitors
		(11th International Corrosion
		Congress, V. 3, p. 55)
V.S. Sastri	1988	Classification of corrosion inhibition
visi susur	1,00	mechanisms such as interface
		inhibition, interphase inhibition,
		intraphase inhibition and
		precipitation coating (Corrosion '88,
		Paper 155)
V.S. Sastri,	1994	Novel theoretical method of selection
J.R. Perumareddi	-,,	of inhibitors (<i>Corrosion</i> , 50 , 432,
and M. Elboujdaini		1994)
V.S. Sastri,	2005	Sastri equation relating the percent
J.R. Perumareddi		inhibition to the fractional electronic
and M. Elboujdaini		charge on the inhibitor. (Corrosion
Ţ.		Eng. Sci. & Tech., 40, 270, 2005)
High-temperature oxidation	74	
mgn-temperature oxidation	u	
Gustav Tammann	1920	Enumerated 'Parabolic Law' (i.e., rate of oxidation of metal decreases as oxide layer thickness increases)
	1922	Logarithmic law of oxidation of metals
N.B. Pilling and R.E.	1923	Distinction between porous and non-
Bedworth		porous oxide layer
Leonard B. Pfeil	1929	Concept of movement of metal outward
		rather than oxygen inward into the
		oxide layer
Portevin	1934	Extensive studies on the oxidation of iron
Prétet		and its alloys
Jolivet		
Carl Wagner	~1934	High-temperature oxidation involves
		passage of ions and electrons through
		the growing oxide layer. Postulated an
		equation relating oxidation rate with
		the electrical properties of the oxide
II D'	1020	layer
Hoar, Price	1938	Derivation of Wagner's equation
Mott, Cabrera	1939, 1948	Oxide film growth controlled by ions
		jumping from site to site over
		intervening energy barriers

8 Corrosion Prevention and Protection

Karl Houffe Ilschner	_	Significant work on the oxidation of alloys. Also criticism of Mott's theory
Tammann	1920–1926	Interference method of obtaining thickness of oxide films
Constable	1927	Spectroscopic method to obtain thickness of oxide film
Finch Quarrell	1933	X-ray and electron diffraction methods to study oxide films
Microbiological corrosion		
R.H. Gaines	1910	Sulfate-reducing bacteria in soils produce H ₂ S and cause corrosion
Corrosion fatigue	~1900	Alternating stresses and chemical environment together cause corrosion fatigue
Stress-corrosion cracking	~1900	Applied stress and chemical environment causing stress-corrosion cracking
Hydrogen embrittlement		
Haber–Bosch process for synthesis of ammonia	1916	Microcracks in the steel reactor were observed due to the reaction of hydrogen with carbon in the steel to produce methane. Mo and Cr were found to prevent hydrogen embrittlement
Role of thermodynamics		
_	_	Corrosion of metal obeys the laws of thermodynamics. This was recognized in the early development of corrosion science
Marcel Pourbaix	1940	Pourbaix diagrams involving pH and potential give regions of corrosion, immunity and passivity
Kinetics		
Evans, Hoar	1932	Quantitative correlation of corrosion rates with measured electrochemical reaction rates
F. Habashi	1965	Validity of a single kinetic law irrespective of the metal, composition of aqueous phase, and evolution of hydrogen when no insoluble products, scales or films are formed

The number of published scientific papers through 1907–2003 illustrates development of the corrosion science in the form of published scientific literature as shown below:

Title	1907	1950	2000	2003
Corrosion	35	922	10985	10655
Corrosion and protection	3	122	1162	1050
Corrosion and prevention	3	320	1639	1358

The journals that came into existence are given below:

Title	Year
Corrosion	1945
Corrosion Science	1961
British Corrosion Journal	1965
Werkstoffe und Korrosion	1950
Corrosion Prevention and Control	1954
Anti-corrosion Methods and Materials	1962
Materials Performance	1962

Some of the leading organizations championing corrosion science, which were founded, are detailed below. This list does not include academic institutions.

American Society for Testing Materials (ASTM)	1898
American Society of Metals (ASM)	1913
Corrosion Division of the Electrochemical Society	1942
National Association of Corrosion Engineers	1943
Comité International de Thermodynamique et	1949
Cinétique Électrochimique (CITCE)	
International Society of Electrochemistry (ISE)	1971
International Corrosion Council	1961
The Corrosion Group of the Society of Chemical Industry	1951
Belgium Center for Corrosion Study (CEBELCOR)	1951
Commission of Electrochemistry	1952
National Corrosion Centre (Australia)	
Australian Corrosion Association	$\sim \! 1980$
Chinese Society of Corrosion and Protection	~ 1980
National Association of Corrosion Engineers (in Canada)	_

Research groups, which became active in the field of corrosion in the early stages, are shown below. It is prudent to state that the list is by no means exhaustive.

Massachusetts Institute of Technology National Bureau of Standards Ohio State University University of Texas University of California, Los Angeles National Research Council, Ottawa Cambridge University Technical University, Vienna

Industrial laboratories such as U.S. Steel, International Nickel company and Aluminum Company of America, DuPont have also initiated their own corrosion research.

The progress made in the scientific approach and the degree of sophistication attained over the years becomes evident from the following title papers:

1. A.S. Cushman, Corrosion of Iron as an Electrolytic Phenomenon, *U.S. Bur. Agr.*, *Electrochemical Metallurgy Industry*, Vol. 5, No. 256, C.A., 1907, p. 2360.

Hydrogen ions are the primary cause of rusting and oxygen the secondary cause. Iron passes into solution in the form of ferrous ions as the result of galvanic action; the ferrous ions are then oxidized by the oxygen of the air to ferric ions. Alkaline solutions prevent rusting because they contain no hydrogen ions. Chromic acid and its salts prevent rusting because an oxygen film is formed, and the iron becomes polarized in the sense of becoming an oxygen electrode.

2. R.H. Brown, G.C. English and R.D. Williams, The Role of Polarization in Electrochemical Corrosion, *NACE Conference*, St. Louis, Missiouri, USA, 4–7 April 1950.

In its most practical aspects as well as in its fundamental mechanisms electrochemical corrosion is almost always associated with irreversible electrode phenomena. The multitude of factors involved in these phenomena may be defined as electrochemical polarization. Idealized schematic as well as actual polarization diagrams are discussed. Methods of correlating polarization with corrosion data such as weight loss are shown. A method for obtaining the contribution made by the polarization of each electrode reaction to the total polarization observed at an electrode is described along with the implications, thereof in the evaluation of the true over-voltage values. In addition, other factors, which may fall within a broad definition of polarization, are treated. The relationship of the so-called IR drop or true ohmic resistance at metal liquid interfaces to polarization diagrams, and to over voltage concept is discussed.

3. R. Balasubramanium, A.V. Ramesh Kumar, Corrosion Resistance of the Dhar Iron Pillar, *Corrosion Science*, *45*, 2451–2465, 2003.

The corrosion resistance of the 950 year old Dhar iron pillar has been addressed. The microstructure of a Dhar pillar iron sample exhibited characteristics typical of ancient Indian iron. Intergranular cracking indicated P segregation to the grain boundaries. The potentio-dynamic polarization behaviour of the Dhar pillar iron and mild steel, evaluated in solutions of pH 1 and 7.6, indicate that the pillar iron is inferior to mild steel under complete immersion conditions. However, the excellent atmospheric corrosion resistance of the phosphoric Dhar pillar iron is due to the formation of a protective passive film on the surface. Rust analysis revealed the presence of crystalline magnetite (Fe₃-xO₄), α -Fe₂O₃ (hematite), goethite (α -FeOOH), lepidocrocite (γ -FeOOH), akaganeite (β -FeOOH) and phosphates, and amorphous δ -FeOOH phases. The rust cross-section revealed a layered structure at some locations.

The experimental techniques used are optical and scanning electron microscopes, electron microprobe, potentiodynamic polarization, X-ray diffraction, Fourier transform infrared spectroscopy and transmission Mössbauer spectroscopy.

Some significant titles, which are worth noting are shown below:

Gustav Tammann	Lehrbuch der Metallkunde Die Aggregatzüstande	1914 1922
	Lehrbuch der heterogenen Gleichgewichte	1922
Ulick R. Evans	The Corrosion of Metals	1924
Office R. Evalis	Metallic Corrosion, Passivity and Protection	1924
	An Introduction to Metallic Corrosion	1937
	The Corrosion and Oxidation of Metals	1960
	(first supplementary volume)	1968
	(second supplementary volume)	1906
Marcel Pourbaix	Thermodynamics of Dilute Aqueous Solutions	1970
	Atlas of Electrochemical Equilibria in	
	Aqueous solutions	
	Atlas of Chemical and Electrochemical	
	Equilibria in the presence of Gaseous Phase	
	Lectures on Electrochemical Corrosion	
Herbert H. Uhlig	Lectures on Electrochemical Corrosion	1948
Herbert II. Omig	Uhlig's Corrosion Handbook (2nd edn)	2000
	Corrosion and Corrosion Control	1963
H.H. Uhlig, R.W. Revie	Corrosion and Corrosion Control (revised)	1905
Mars Guy Fontana	Corrosion Control (Tevised)	1957
N.D. Greene	Corrosion Engineering	1967
N.D. Greene	Corrosion Engineering	1986
J.I. Bregman	Corrosion Inhibitors	1963
V.S. Sastri	Corrosion Inhibitors	1998
v.s. sustr	Principles and Applications	1,,,0
I.L. Rozenfeld	Corrosion Inhibitors	1982
H. Van Droffelar	Corrosion and its Control	1995
J.T.N. Atkinson	An introduction to the subject	1,,,,
Kenneth R. Trethewey	Corrosion	1988, 1995
John Chamberlain	for Science and Engineering	-, -, -, -, -,
G. Wranglen	An introduction to Corrosion and Protection of Metals	1972
D.A. Jones	Principles and Prevention of Corrosion	1992
P.R. Roberge	Handbook of Corrosion Engineering	1999
P.R. Roberge	Corrosion Doctor website on Internet	1999
K. Seymour Coburn	Corrosion	1984
L.S. Van Delinder	Corrosion Basics – an introduction	1984
A.R. Troiano	Hydrogen Embrittlement and Stress	1984
THE TIOMES	Corrosion Cracking	1701
	Corresion Cracking	

G. Charles Munger	Corrosion Prevention by Protective Coatings	1984, 1999
W.H. Ailor	Atmospheric Corrosion	1982
J. Yahalom	Stress Corrosion Cracking	1980
J.M. West	Basic Corrosion and Oxidation	1980
E. Mattsson	Basic Corrosion Technology for	1989
	Scientists and Engineers	
F. Hine	Localized Corrosion	1988
J. Toucek	Theoretical Aspects of the Localized	1985
	Corrosion of Metals	
P.A. Schweitzer	Encyclopedia of Corrosion Technology	1998
G. Welsch	Oxidation and Corrosion of Intermetallic	1996
	Alloys	
J.B. Little	Microbiologically Influenced Corrosion	1997
Y.I. Kuznetsov	Organic Inhibitors for Corrosion	1996
	of Metals	
P.A. Schweitzer	Encyclopedia of Corrosion Technology	1998
L.L. Shreir	Corrosion	1994
R.S. Munn	Computer Modeling in Corrosion	1992
R.H. Jones	Stress-Corrosion Cracking	1992
A.J. McEvily	Atlas of Stress-Corrosion and	1990
	Corrosion Fatigue Curves	
G. Prentice	Perspectives on Corrosion	1990
A.S. Bradford	Corrosion Control	2001
R. Baboian	NACE Corrosion Engineer's Reference	2002
	Book	

1.1 Impact of Corrosion

There are three areas of concern when corrosion and its prevention are considered. The three major factors are economics, safety and environmental damage.

Metallic corrosion, although seemingly innocuous, indeed affects many sectors of a nation's economy. The National Bureau of Standards (NBS) in collaboration with Battelle Columbus Laboratory (BCL) studied the costs of corrosion in USA using the input/output model. Some elements of the costs of corrosion used in the model are shown below:

Capital costs

- Replacement of equipment and buildings
- Excess capacity
- Redundant equipment

Control costs

- Maintenance and repair
- Corrosion control