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Introduction to First Edition

The opening session of the physics degree course at Imperial College includes an

introduction to vibrations and waves where the stress is laid on the underlying unity of

concepts which are studied separately and in more detail at later stages. The origin of this

short textbook lies in that lecture course which the author has given for a number of years.

Sections on Fourier transforms and non-linear oscillations have been added to extend the

range of interest and application.

At the beginning no more than school-leaving mathematics is assumed and more

advanced techniques are outlined as they arise. This involves explaining the use of

exponential series, the notation of complex numbers and partial differentiation and putting

trial solutions into differential equations. Only plane waves are considered and, with two

exceptions, Cartesian coordinates are used throughout. Vector methods are avoided except

for the scalar product and, on one occasion, the vector product.

Opinion canvassed amongst many undergraduates has argued for a ‘working’ as much as

for a ‘reading’ book; the result is a concise text amplified by many problems over a wide

range of content and sophistication. Hints for solution are freely given on the principle that

an undergraduates gains more from being guided to a result of physical significance than

from carrying out a limited arithmetical exercise.

The main theme of the book is that a medium through which energy is transmitted via

wave propagation behaves essentially as a continuum of coupled oscillators. A simple

oscillator is characterized by three parameters, two of which are capable of storing and

exchanging energy, whilst the third is energy dissipating. This is equally true of any medium.

The product of the energy storing parameters determines the velocity of wave

propagation through the medium and, in the absence of the third parameter, their ratio

governs the impedance which the medium presents to the waves. The energy dissipating

parameter introduces a loss term into the impedance; energy is absorbed from the wave

system and it attenuates.

This viewpoint allows a discussion of simple harmonic, damped, forced and coupled

oscillators which leads naturally to the behaviour of transverse waves on a string,

longitudinal waves in a gas and a solid, voltage and current waves on a transmission line

and electromagnetic waves in a dielectric and a conductor. All are amenable to this

common treatment, and it is the wide validity of relatively few physical principles which

this book seeks to demonstrate.

H. J. PAIN

May 1968
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Introduction to Second Edition

The main theme of the book remains unchanged but an extra chapter on Wave Mechanics

illustrates the application of classical principles to modern physics.

Any revision has been towards a simpler approach especially in the early chapters and

additional problems. Reference to a problem in the course of a chapter indicates its

relevance to the preceding text. Each chapter ends with a summary of its important results.

Constructive criticism of the first edition has come from many quarters, not least from

successive generations of physics and engineering students who have used the book; a

second edition which incorporates so much of this advice is the best acknowledgement of

its value.

H. J. PAIN

June 1976
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Introduction to Third Edition

Since this book was first published the physics of optical systems has been a major area of

growth and this development is reflected in the present edition. Chapter 10 has been

rewritten to form the basis of an introductory course in optics and there are further

applications in Chapters 7 and 8.

The level of this book remains unchanged.

H. J. PAIN

January 1983
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Introduction to Fourth Edition

Interest in non-linear dynamics has grown in recent years through the application of chaos

theory to problems in engineering, economics, physiology, ecology, meteorology and

astronomy as well as in physics, biology and fluid dynamics. The chapter on non-linear

oscillations has been revised to include topics from several of these disciplines at a level

appropriate to this book. This has required an introduction to the concept of phase space

which combines with that of normal modes from earlier chapters to explain how energy is

distributed in statistical physics. The book ends with an appendix on this subject.

H. J. PAIN

September 1992
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Introduction to Fifth Edition

In this edition, three of the longer chapters of earlier versions have been split in two:

Simple Harmonic Motion is now the first chapter and Damped Simple Harmonic Motion

the second. Chapter 10 on waves in optical systems now becomes Chapters 11 and 12,

Waves in Optical Systems, and Interference and Diffraction respectively through a

reordering of topics. A final chapter on non-linear waves, shocks and solitons now follows

that on non-linear oscillations and chaos.

New material includes matrix applications to coupled oscillations, optical systems and

multilayer dielectric films. There are now sections on e.m. waves in the ionosphere and

other plasmas, on the laser cavity and on optical wave guides. An extended treatment of

solitons includes their role in optical transmission lines, in collisionless shocks in space, in

non-periodic lattices and their connection with Schrödinger’s equation.

H. J. PAIN

March 1998
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Introduction to Sixth Edition

This edition includes new material on electron waves in solids using the Kronig – Penney

model to show how their allowed energies are limited to Brillouin zones. The role of

phonons is also discussed. Convolutions are introduced and applied to optical problems via

the Array Theorem in Young’s experiment and the Optical Transfer Function. In the last

two chapters the sections on Chaos and Solutions have been reduced but their essential

contents remain.

I am grateful to my colleague Professor Robin Smith of Imperial College for his advice

on the Optical Transfer Function. I would like to thank my wife for typing the manuscript

of every edition except the first.

H. J. PAIN

January 2005, Oxford
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1

Simple Harmonic Motion

At first sight the eight physical systems in Figure 1.1 appear to have little in common.

1.1(a) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length l.

1.1(b) is a flat disc supported by a rigid wire through its centre and oscillating through

small angles in the plane of its circumference.

1.1(c) is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x

direction on a frictionless plane.

1.1(d) is a mass m at the centre of a light string of length 2l fixed at both ends under a

constant tension T. The mass vibrates in the plane of the paper.

1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length l of

liquid, density �, oscillating about its equilibrium position of equal levels in each

limb.

1.1(f ) is an open flask of volume V and a neck of length l and constant cross-sectional

area A in which the air of density � vibrates as sound passes across the neck.

1.1(g) is a hydrometer, a body of mass m floating in a liquid of density � with a neck of

constant cross-sectional area cutting the liquid surface. When depressed slightly

from its equilibrium position it performs small vertical oscillations.

1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying

a charge q.

All of these systems are simple harmonic oscillators which, when slightly disturbed from

their equilibrium or rest postion, will oscillate with simple harmonic motion. This is the

most fundamental vibration of a single particle or one-dimensional system. A small

displacement x from its equilibrium position sets up a restoring force which is proportional

to x acting in a direction towards the equilibrium position.

Thus, this restoring force F may be written

F ¼ �sx

where s, the constant of proportionality, is called the stiffness and the negative sign shows

that the force is acting against the direction of increasing displacement and back towards

The Physics of Vibrations and Waves, 6th Edition H. J. Pain
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the equilibrium position. A constant value of the stiffness restricts the displacement x to

small values (this is Hooke’s Law of Elasticity). The stiffness s is obviously the restoring

force per unit distance (or displacement) and has the dimensions

force

distance
� MLT �2

L

The equation of motion of such a disturbed system is given by the dynamic balance

between the forces acting on the system, which by Newton’s Law is

mass times acceleration ¼ restoring force

or

m€xx ¼ �sx

where the acceleration

€xx ¼ d2x

dt 2

This gives

m€xxþ sx ¼ 0

c

q

L

x

A

m

p

(h)(g)

mx + Apgx = 0
..

ω2 = A pg/m

Lq +
q
c = 0

..

ω2 = 
1
Lc

Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequencies ! of
oscillation. (a) A simple pendulum. (b) A torsional pendulum. (c) A mass on a frictionless plane
connected by a spring to a wall. (d) A mass at the centre of a string under constant tension T. (e) A
fixed length of non-viscous liquid in a U-tube of constant cross-section. (f ) An acoustic Helmholtz
resonator. (g) A hydrometer mass m in a liquid of density �. (h) An electrical L C resonant circuit
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or

€xxþ s

m
x ¼ 0

where the dimensions of

s

m
are

MLT �2

ML
¼ T �2 ¼ � 2

Here T is a time, or period of oscillation, the reciprocal of � which is the frequency with

which the system oscillates.

However, when we solve the equation of motion we shall find that the behaviour of x

with time has a sinusoidal or cosinusoidal dependence, and it will prove more appropriate

to consider, not �, but the angular frequency ! ¼ 2�� so that the period

T ¼ 1

�
¼ 2�

ffiffiffiffi
m

s

r

where s=m is now written as !2. Thus the equation of simple harmonic motion

€xxþ s

m
x ¼ 0

becomes

€xxþ !2x ¼ 0 ð1:1Þ

(Problem 1.1)

Displacement in Simple Harmonic Motion

The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x

from equilibrium, its velocity _xx, and its acceleration €xx at any given time. If we try the solution

x ¼ A cos!t

where A is a constant with the same dimensions as x, we shall find that it satisfies the

equation of motion

€xxþ !2x ¼ 0

for

_xx ¼ �A! sin!t

and

€xx ¼ �A!2 cos!t ¼ �!2x

4 Simple Harmonic Motion



Another solution

x ¼ B sin!t

is equally valid, where B has the same dimensions as A, for then

_xx ¼ B! cos!t

and

€xx ¼ �B!2 sin!t ¼ �!2x

The complete or general solution of equation (1.1) is given by the addition or

superposition of both values for x so we have

x ¼ A cos!t þ B sin!t ð1:2Þ

with

€xx ¼ �!2ðA cos!t þ B sin!tÞ ¼ �!2x

where A and B are determined by the values of x and _xx at a specified time. If we rewrite the

constants as

A ¼ a sin� and B ¼ a cos�

where � is a constant angle, then

A2 þ B2 ¼ a2ðsin2�þ cos2�Þ ¼ a2

so that

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and

x ¼ a sin� cos!t þ a cos� sin!t

¼ a sin ð!t þ �Þ

The maximum value of sin (!t þ �) is unity so the constant a is the maximum value of x,

known as the amplitude of displacement. The limiting values of sin ð!t þ �Þ are �1 so the

system will oscillate between the values of x ¼ �a and we shall see that the magnitude of a

is determined by the total energy of the oscillator.

The angle � is called the ‘phase constant’ for the following reason. Simple harmonic

motion is often introduced by reference to ‘circular motion’ because each possible value of

the displacement x can be represented by the projection of a radius vector of constant

length a on the diameter of the circle traced by the tip of the vector as it rotates in a positive

Displacement in Simple Harmonic Motion 5



anticlockwise direction with a constant angular velocity !. Each rotation, as the radius

vector sweeps through a phase angle of 2� rad, therefore corresponds to a complete

vibration of the oscillator. In the solution

x ¼ a sin ð!t þ �Þ

the phase constant �, measured in radians, defines the position in the cycle of oscillation at

the time t ¼ 0, so that the position in the cycle from which the oscillator started to move is

x ¼ a sin�

The solution

x ¼ a sin!t

defines the displacement only of that system which starts from the origin x ¼ 0 at time

t ¼ 0 but the inclusion of � in the solution

x ¼ a sin ð!t þ �Þ

where � may take all values between zero and 2� allows the motion to be defined from any

starting point in the cycle. This is illustrated in Figure 1.2 for various values of �.

(Problems 1.2, 1.3, 1.4, 1.5)

Velocity and Acceleration in Simple Harmonic Motion

The values of the velocity and acceleration in simple harmonic motion for

x ¼ a sin ð!t þ �Þ
are given by

dx

dt
¼ _xx ¼ a! cos ð!t þ �Þ

φ4

φ3 φ2

φ1

φ1

φ2

φ3

φ4
φ5

φ6

φ0

φ6

φ5 = 270°

= 90°

= 0

a

a

ωt

φx = a Sin(ωt +   )

Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of
starting point in cycle in terms of phase angle �
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and

d2x

dt 2
¼ €xx ¼ �a!2 sin ð!t þ �Þ

The maximum value of the velocity a! is called the velocity amplitude and the

acceleration amplitude is given by a!2.

From Figure 1.2 we see that a positive phase angle of �=2 rad converts a sine into a

cosine curve. Thus the velocity

_xx ¼ a! cos ð!t þ �Þ

leads the displacement

x ¼ a sinð!t þ �Þ

by a phase angle of �=2 rad and its maxima and minima are always a quarter of a cycle

ahead of those of the displacement; the velocity is a maximum when the displacement is

zero and is zero at maximum displacement. The acceleration is ‘anti-phase’ (� rad) with

respect to the displacement, being maximum positive when the displacement is maximum

negative and vice versa. These features are shown in Figure 1.3.

Often, the relative displacement or motion between two oscillators having the same

frequency and amplitude may be considered in terms of their phase difference �1 � �2

which can have any value because one system may have started several cycles before the

other and each complete cycle of vibration represents a change in the phase angle of

� ¼ 2�. When the motions of the two systems are diametrically opposed; that is, one has

x = a sin(ωt +  )

x = aω cos(ωt +  )

ωt

ωt

ωt

x = −aω2 sin(ωt +  )
aω2

aω

a

A
cc
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V
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ity

 x
D
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φ

φ

Figure 1.3 Variation with time of displacement, velocity and acceleration in simple harmonic
motion. Displacement lags velocity by �=2 rad and is � rad out of phase with the acceleration. The
initial phase constant � is taken as zero
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x ¼ þa whilst the other is at x ¼ �a, the systems are ‘anti-phase’ and the total phase

difference

�1 � �2 ¼ n� rad

where n is an odd integer. Identical systems ‘in phase’ have

�1 � �2 ¼ 2n� rad

where n is any integer. They have exactly equal values of displacement, velocity and

acceleration at any instant.

(Problems 1.6, 1.7, 1.8, 1.9)

Non-linearity

If the stiffness s is constant, then the restoring force F ¼ �sx, when plotted versus x, will

produce a straight line and the system is said to be linear. The displacement of a linear

simple harmonic motion system follows a sine or cosine behaviour. Non-linearity results

when the stiffness s is not constant but varies with displacement x (see the beginning of

Chapter 14).

Energy of a Simple Harmonic Oscillator

The fact that the velocity is zero at maximum displacement in simple harmonic motion and

is a maximum at zero displacement illustrates the important concept of an exchange

between kinetic and potential energy. In an ideal case the total energy remains constant but

this is never realized in practice. If no energy is dissipated then all the potential energy

becomes kinetic energy and vice versa, so that the values of (a) the total energy at any time,

(b) the maximum potential energy and (c) the maximum kinetic energy will all be equal;

that is

E total ¼ KEþ PE ¼ KEmax ¼ PEmax

The solution x ¼ a sin (!t þ �) implies that the total energy remains constant because the

amplitude of displacement x ¼ �a is regained every half cycle at the position of maximum

potential energy; when energy is lost the amplitude gradually decays as we shall see later in

Chapter 2. The potential energy is found by summing all the small elements of work sx. dx

(force sx times distance dx) done by the system against the restoring force over the range

zero to x where x ¼ 0 gives zero potential energy.

Thus the potential energy¼ ð x
0

sx � dx ¼ 1
2
sx2

The kinetic energy is given by 1
2
m _xx2 so that the total energy

E ¼ 1
2
m _xx2 þ 1

2
sx2
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