Aeronautical Radio Communication Systems and Networks

Dale Stacey
Aeronautical Radio Communication Systems and Networks
Aeronautical Radio Communication Systems and Networks

Dale Stacey

John Wiley & Sons, Ltd
Contents

Preface xvii

Dedications xviii
About the Author xviii
Revisions, Corrections, Updates, Liability xix
Book Layout and Structure xix

1 Introduction 1
1.1 The Legacy 1
1.2 Today and the Second Generation of Equipment 1
1.3 The Future 3
1.4 Operational and User Changes 3
1.5 Radio Spectrum Used by Aviation 4
1.5.1 Convergence, Spectrum Sharing 6
1.6 Discussion of the Organizational Structure of Aviation 6
1.6.1 International Bodies 7
1.6.2 Example National Bodies 7
1.6.3 Industrial Interests 7
1.6.4 Example Standards Bodies and Professional Engineering Bodies 7
1.6.5 Users/Operators 8

2 Theory Governing Aeronautical Radio Systems 9
2.1 Basic Definitions 10
2.1.1 Notations and Units 10
2.2 Propagation Fundamentals 11
2.2.1 Electromagnetic Vectors 11
2.2.2 Polarization 11
2.2.3 Speed of Propagation and Relationship to Wavelength and Frequency 11
2.3 Power, Amplitudes and the Decibel Scale 14
2.4 The Isotropic Power Source and Free Space Path Loss 15
2.4.1 Definition of Isotropic 15
2.4.2 Derivation of Free Space Path Loss Equation 15
CONTENTS

2.4.3 Power Flux Density 17
2.4.4 Electric Field Strength 17
2.4.5 Relationship Between Field Strength and Transmitted Power 18

2.5 Radio Geometry
2.5.1 Radio Horizon Calculations 19
2.5.2 Earth Bulge Factor – k Factor 22
2.5.3 Nautical Mile 23
2.5.4 Great-circle Distances 24

2.6 Complex Propagation: Refraction, Absorption, Non-LOS Propagation 25
2.6.1 Refraction 26
2.6.1.1 Layer Refraction 26
2.6.1.2 Obstacle Refraction 26
2.6.2 Attenuation from Atmosphere Absorption 28
2.6.2.1 Water Absorption 28
2.6.2.2 Oxygen Absorption and Other Gases 28
2.6.3 Non-LOS Propagation 30
2.6.3.1 Propagation – Ground Wave 30
2.6.3.2 Reflection and Multipath 30
2.6.3.3 Propagation – Sky Wave 32

2.7 Other Propagation Effects 37
2.7.1 The Doppler Effect 37
2.7.1.1 Example 37
2.7.1.2 Answer 38

2.8 Modulation 38
2.8.1 The Modulation Conundrum 40
2.8.2 The Analogue and Digital Domains 40
2.8.3 Amplitude Modulation (AM)
2.8.3.1 DSB-AM 41
2.8.3.2 The VHF Aeronautical Mobile Communications (Route) Service (AM(R)S) 43
2.8.3.3 Single Sideband (SSB) Modulation 46
2.8.3.4 The Aeronautical HF System and Other SSB Systems 48
2.8.3.5 Suppressed Carrier Double Side Band AM 48
2.8.4 Frequency Modulation 49
2.8.4.1 Capture Effect (Hysteresis) 49
2.8.5 Digital Modulation 50
2.8.5.1 Amplitude Shift Keying (ASK) 50
2.8.5.2 Amplitude Modulated Minimum Shift Keying (AM–MSK) 51
2.8.5.3 Baud/Bit Rate and ‘M-ary’ ASK 52
2.8.5.4 Bipolar and Differential 52
2.8.5.5 Frequency Shift Keying 53
2.8.5.6 Phase Shift Keying 53
2.8.5.7 Quadrature Amplitude Modulation (QAM) and Trellis Code Modulation (TCM) 58
2.18 Satellite Theory 93
 2.18.1 Extended Noise Equation 93
 2.18.2 G/T 93
 2.18.3 The Link Budget Equation 94
 2.18.4 Noise Temperatures 95
 2.18.4.1 Receiver Side of the Reference Point 95
 2.18.4.2 Antenna Side of the Reference Point 95
2.19 Availability and Reliability 99
 2.19.1 Definitions 99
 2.19.2 The Reliability Bathtub Curve 99
 2.19.3 Some Reliability Concepts 100
 2.19.4 Overall Availability of a Multicomponent System 101
 2.19.4.1 Serial Chain 101
 2.19.4.2 Parallel Chain 101
 2.19.4.3 The Reliability Block Diagram 102
Further Reading 104

3 VHF Communication 105
 Summary 105
 3.1 History 105
 3.1.1 The Legacy Pre-1947 105
 3.1.2 1947 to Present, Channelization and Band Splitting 106
 3.1.2.1 Channel Splitting 108
 3.1.3 Today and 8.33 kHz Channelization 108
 3.1.4 Into the Future (Circa 2006 Plus) 109
 3.2 DSB-AM Transceiver at a System Level 110
 3.2.1 System Design Features of AM(R)S DSB-AM System 110
 3.2.1.1 Availability and Reliability 113
 3.2.1.2 RF Unbalance 113
 3.2.1.3 System Specification 113
 3.3 Dimensioning a Mobile Communications System–The Three Cs 113
 3.3.1 Coverage 115
 3.3.1.1 Voting Networks and Extended Coverage 117
 3.3.2 Capacity 120
 3.3.3 Quality (Quality) 122
 3.4 Regulatory and Licensing Aspects 123
 3.4.1 The Three As 123
 3.4.1.1 Allocation 123
 3.4.1.2 Allotment 124
 3.4.1.3 Assignment 124
 3.4.1.4 Utilization Profile 124
 3.5 VHF ‘Hardening’ and Intermodulation 125
 3.5.1 Receiver Swamping 125
 3.5.2 Intermodulation 126
 3.6 The VHF Datalink 126
 3.6.1 Limitations with VHF Voice 126
 3.6.2 The History of Datalink 127
CONTENTS

3.6.3 System-Level Technical Description 128
3.6.3.1 ACARS/VDL0/VDLA 128
3.6.3.2 VDL1 129
3.6.3.3 VDL2 130
3.6.3.4 VDL Mode 3 134
3.6.3.5 VDL4 138
3.6.4 Overview of the Modes – A Comparison 140
3.6.5 Services over Datalink 140
3.6.6 Future Data Applications 140
Further Reading 143

4 Military Communication Systems 145
Summary 145
4.1 Military VHF Communications – The Legacy 145
4.2 After the Legacy 146
4.3 The Shortfalls of the Military VHF Communication System 147
4.4 The Requirement for a New Tactical Military System 147
4.5 The Birth of JTIDS/MIDS 147
4.6 Technical Definition of JTIDS and MIDS 148
4.6.1 Channelization 148
4.6.2 Link 4A Air Interface 148
4.6.3 Link-11 Air Interface 148
4.6.4 Link 16 – Air Interface 149
4.6.5 Access Methods 151
4.6.6 Link 16 Data Exchange 152
4.6.7 Jitter 152
4.6.8 Synchronization 152
4.6.9 Synchronization Stack 152
4.6.9.1 Header 153
4.6.9.2 Data Packing 153
4.6.9.3 Standard Double Pulse Format 154
4.6.9.4 Packed 2 Single Pulse Format 154
4.6.9.5 Packed 2 Double Pulse Format 155
4.6.9.6 Packed 4 Single Pulse Format 155
4.6.10 Other Salient Features of JTIDS/MIDS 156
4.6.11 Overlay with DME Band 156

5 Long-Distance Mobile Communications 157
Summary 157
5.1 High-Frequency Radio – The Legacy 157
5.2 Allocation and Allotment 158
5.3 HF System Features 158
5.3.1 Transmitter 159
5.3.2 Receiver 159
5.3.3 System Configuration 159
5.3.4 Selective Calling (SELCAL) 159
5.3.5 Channel Availability 160
5.4 HF Datalink System
 5.4.1 Protocol
 5.4.2 Deployment
5.5 Applications of Aeronautical HF
5.6 Mobile Satellite Communications
 5.6.1 Introduction
 5.6.1.1 Geostationary Satellite Systems
 5.6.1.2 Low-Earth Orbit Satellite Systems
 5.6.1.3 Medium-Earth Orbit Satellite System
 5.6.2 Geostationary Services System Detail
 5.6.2.1 The AMS(R)S Satellite System
 5.6.3 Antenna System Specifications
 5.6.3.1 Satellite Antenna Figure of Merit (G/T)
 5.6.3.2 Antenna Discrimination
 5.6.3.3 Rx Thresholds
 5.6.3.4 Tx EIRP Limits
5.7 Comparison Between VHF, HF, L Band (JTIDS/MIDS) and Satellite Mobile Communications
5.8 Aeronautical Passenger Communications
Further Reading

6 Aeronautical Telemetry Systems
 Summary
 6.1 Introduction – The Legacy
 6.2 Existing Systems
 6.2.1 A Typical Telemetry System Layout
 6.2.1.1 Transmitter Side (On-board Aircraft Components)
 6.2.1.2 Receiver Side (High-performance Ground Station)
 6.2.1.3 On-board System Duplication and Ground Backhaul Infrastructure
 6.2.2 Telecontrol
 6.3 Productivity and Applications
 6.4 Proposed Airbus Future Telemetry System
 6.4.1 Channelization Plan
 6.4.2 System Components
 6.4.3 Telemetry Downlink
 6.4.4 Telecommand Uplink
 6.5 Unmanned Aerial Vehicles

7 Terrestrial Backhaul and the Aeronautical Telecommunications Network
 Summary
 7.1 Introduction
 7.2 Types of Point-to-point Bearers
 7.2.1 Copper Cables
 7.2.2 Frequency Division Multiplex Stacks
 7.2.3 Newer Digital Connections and the Pulse Code Modulation Mode and Internet Protocol
CONTENTS

8 Future Aeronautical Mobile Communication Systems 201
Summary 201
8.1 Introduction 202
8.2 Near-term Certainties 202
8.2.1 Universal Access Transceiver 202
 8.2.1.1 Frame Structure 202
 8.2.1.2 UAT Transceiver Specification 203
 8.2.1.3 UAT Modes of Operation 204
 8.2.1.4 Message Types 204
 8.2.1.5 Application and Limitation of UAT 205
 8.2.1.6 Further Reading 205
8.2.2 Mode S Extended Squitter 205
 8.2.2.1 Mode S Introduction 205
 8.2.2.2 Pulse Interrogations and Replies 206
 8.2.2.3 Further Reading 207
8.2.3 802.xx Family 207
 8.2.3.1 802.16 208
 8.2.3.2 Specification 209
 8.2.3.3 Application and Limitations 210
8.3 Longer Term Options 210
8.3.1 Analysis 210
8.3.2 Answer 210
8.3.3 The Definition Conundrum 211
 8.3.3.1 The Requirements or the Operational Scenario 212
 8.3.3.2 Technology Options and Frequency Band 213
 8.3.3.3 Spectrum Requirements 214
8.3.4 A Proposal for a CDMA-based Communication System 214
8.3.5 Software Defined Radio 217
Further Reading 219

9 The Economics of Radio 221
Summary 221
9.1 Introduction 221
9.2 Basic Rules of Economics 221
9.3 Analysis and the Break-even Point 222
9.4 The Cost of Money 222
 9.4.1 Some Basic Financial Concepts 223
 9.4.2 Inflation 224
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 The Safety Case</td>
<td>225</td>
</tr>
<tr>
<td>9.6 Reliability Cost</td>
<td>226</td>
</tr>
<tr>
<td>9.7 Macroeconomics</td>
<td>227</td>
</tr>
<tr>
<td>10 Ground Installations and Equipment</td>
<td>229</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>229</td>
</tr>
<tr>
<td>10.1.1 Environment</td>
<td>229</td>
</tr>
<tr>
<td>10.1.1.1 Indoor Environment</td>
<td>229</td>
</tr>
<tr>
<td>10.1.1.2 Outdoor Environment</td>
<td>230</td>
</tr>
<tr>
<td>10.2 Practical Equipment VHF Communication Band (118–137 MHz)</td>
<td>233</td>
</tr>
<tr>
<td>10.2.1 VHF Transmitters</td>
<td>233</td>
</tr>
<tr>
<td>10.2.2 VHF Receivers</td>
<td>233</td>
</tr>
<tr>
<td>10.2.3 VHF Transmitter/Receiver Configurations</td>
<td>235</td>
</tr>
<tr>
<td>10.2.3.1 VHF Single-channel Dual Simplex Station Site Configuration</td>
<td>235</td>
</tr>
<tr>
<td>10.2.3.2 VHF Multichannel, Duplicated Base Station</td>
<td>236</td>
</tr>
<tr>
<td>10.2.4 VHF Cavity Filters</td>
<td>236</td>
</tr>
<tr>
<td>10.2.5 VHF Combiner, Multicouplers, Switches and Splitters</td>
<td>237</td>
</tr>
<tr>
<td>10.2.6 Other Radio Equipment</td>
<td>238</td>
</tr>
<tr>
<td>10.2.6.1 HF</td>
<td>238</td>
</tr>
<tr>
<td>10.2.6.2 Microwave Point-to-point Equipment</td>
<td>240</td>
</tr>
<tr>
<td>10.2.6.3 Satellite Equipment</td>
<td>240</td>
</tr>
<tr>
<td>10.2.6.4 Voice/Data Termination, Multiplex and Other Line-terminating Equipment</td>
<td>241</td>
</tr>
<tr>
<td>10.2.6.5 Future Communication Equipment</td>
<td>241</td>
</tr>
<tr>
<td>10.2.7 Peripheral Equipment</td>
<td>243</td>
</tr>
<tr>
<td>10.2.7.1 Mains/AC Service</td>
<td>243</td>
</tr>
<tr>
<td>10.2.7.2 DC Supplies</td>
<td>244</td>
</tr>
<tr>
<td>10.2.7.3 Heating Ventilation, Air Conditioning</td>
<td>244</td>
</tr>
<tr>
<td>10.2.7.4 Pressurization</td>
<td>244</td>
</tr>
<tr>
<td>10.3 Outdoor</td>
<td>245</td>
</tr>
<tr>
<td>10.3.1 Transmission Lines (VHF, L Band and Microwave)</td>
<td>245</td>
</tr>
<tr>
<td>10.3.2 Antenna Engineering</td>
<td>245</td>
</tr>
<tr>
<td>10.3.2.1 Antenna Location and Application</td>
<td>245</td>
</tr>
<tr>
<td>10.3.2.2 Antenna Selection</td>
<td>247</td>
</tr>
<tr>
<td>10.3.2.3 Alignment and Optimization</td>
<td>248</td>
</tr>
<tr>
<td>10.3.2.4 Practical Antennas</td>
<td>248</td>
</tr>
<tr>
<td>10.3.3 Towers or Masts</td>
<td>254</td>
</tr>
<tr>
<td>10.3.4 Equipment Room</td>
<td>255</td>
</tr>
<tr>
<td>10.3.5 Equipment Racks</td>
<td>257</td>
</tr>
<tr>
<td>11 Avionics</td>
<td>259</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td>11.2 Environment</td>
<td>259</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>11.2.1 Temperature</td>
<td>261</td>
</tr>
<tr>
<td>11.2.1.1 Outside</td>
<td>261</td>
</tr>
<tr>
<td>11.2.1.2 Interior</td>
<td>262</td>
</tr>
<tr>
<td>11.2.2 Pressure</td>
<td>262</td>
</tr>
<tr>
<td>11.2.2.1 External Pressure</td>
<td>262</td>
</tr>
<tr>
<td>11.2.2.2 Internal Pressure</td>
<td>262</td>
</tr>
<tr>
<td>11.2.3 Equipment Testing</td>
<td>262</td>
</tr>
<tr>
<td>11.2.4 Apparent Wind Speed</td>
<td>262</td>
</tr>
<tr>
<td>11.2.5 Humidity: 0–100 %</td>
<td>264</td>
</tr>
<tr>
<td>11.2.5.1 External</td>
<td>264</td>
</tr>
<tr>
<td>11.2.5.2 Internal</td>
<td>264</td>
</tr>
<tr>
<td>11.2.5.3 General</td>
<td>264</td>
</tr>
<tr>
<td>11.2.6 RF Environment, Immunity, EMC</td>
<td>268</td>
</tr>
<tr>
<td>11.2.7 Environmental Classification</td>
<td>268</td>
</tr>
<tr>
<td>11.3 Types of Aircraft</td>
<td>268</td>
</tr>
<tr>
<td>11.3.1 Private Aircraft</td>
<td>269</td>
</tr>
<tr>
<td>11.3.2 General Aviation</td>
<td>269</td>
</tr>
<tr>
<td>11.3.3 Commercial Aviation</td>
<td>270</td>
</tr>
<tr>
<td>11.3.4 Military Aviation</td>
<td>271</td>
</tr>
<tr>
<td>11.4 Simple Avionics for Private Aviation</td>
<td>272</td>
</tr>
<tr>
<td>11.5 The Distributed Avionics Concept</td>
<td>273</td>
</tr>
<tr>
<td>11.5.1 Data Bus Standards</td>
<td>273</td>
</tr>
<tr>
<td>11.5.1.1 ARINC 429 Standard</td>
<td>273</td>
</tr>
<tr>
<td>11.5.1.2 ARINC 629 Standard</td>
<td>277</td>
</tr>
<tr>
<td>11.5.1.3 ARINC 659</td>
<td>278</td>
</tr>
<tr>
<td>11.5.1.4 Fibre-distributed Data Interface (FDDI)</td>
<td>278</td>
</tr>
<tr>
<td>11.5.2 Power Supply System</td>
<td>279</td>
</tr>
<tr>
<td>11.5.2.1 Power Subsystem on an Aircraft</td>
<td>280</td>
</tr>
<tr>
<td>11.5.2.2 Example The Boeing 777</td>
<td>280</td>
</tr>
<tr>
<td>11.5.2.3 28 V DC</td>
<td>281</td>
</tr>
<tr>
<td>11.5.2.4 Flight Management System Monitoring of Circuit Breakers</td>
<td>281</td>
</tr>
<tr>
<td>11.6 Avionic Racking Arrangements</td>
<td>282</td>
</tr>
<tr>
<td>11.6.1 ATR and MCU</td>
<td>282</td>
</tr>
<tr>
<td>11.6.2 Cooling</td>
<td>283</td>
</tr>
<tr>
<td>11.6.3 Back Plane Wiring</td>
<td>283</td>
</tr>
<tr>
<td>11.6.3.1 Index Pin Code</td>
<td>284</td>
</tr>
<tr>
<td>11.6.5 Other Standards</td>
<td>284</td>
</tr>
<tr>
<td>11.7 Avionic Boxes</td>
<td>284</td>
</tr>
<tr>
<td>11.7.1 VHF Transceivers</td>
<td>284</td>
</tr>
<tr>
<td>11.7.1.1 Transmitter Specification</td>
<td>285</td>
</tr>
<tr>
<td>11.7.1.2 Receiver Specification</td>
<td>286</td>
</tr>
<tr>
<td>11.7.1.3 Navigation Communication Control Panel</td>
<td>287</td>
</tr>
<tr>
<td>11.7.2 HF Radios</td>
<td>289</td>
</tr>
<tr>
<td>11.7.2.1 Technical Specification</td>
<td>289</td>
</tr>
<tr>
<td>11.7.2.2 Transmitter</td>
<td>289</td>
</tr>
<tr>
<td>11.7.2.3 HF Physical Specification</td>
<td>290</td>
</tr>
<tr>
<td>11.7.2.4 Power</td>
<td>290</td>
</tr>
</tbody>
</table>
CONTENTS

12.4 Spectrum Management Process 318
 12.4.1 Co-channel Sharing and Adjacent Channel and Adjacent Band Compatibility 319
 12.4.2 Intrasystem and Intersystem Compatibility 319
 12.4.3 Intrasystem Criteria 320
 12.4.4 Intersystem Criteria 320
 12.4.4.1 Two Aviation Systems 320
 12.4.4.2 Two Systems: One of Them Not Aviation Safety of Life 320
 12.4.5 WRC Process and the Review and Amend Cycles 321

12.5 Frequency Management Process 322
 12.5.1 Example 322
 12.5.2 Emergency Frequency (Three-channel Guard Band Either Side) 322
 12.5.3 SAFIRE (Spectrum frequency information repository) 324

Further Reading 324

Appendix 1 Summary of All Equations (Constants, Variables and Conversions) 325
Appendix 2 List of Symbols and Variables from Equations 333
Appendix 3 List of Constants 335
Appendix 4 Unit Conversions 337
Appendix 5 List of Abbreviations 339

Index 345
You may ask why I wrote this book. There are many, many personal reasons as with any author I suppose. The first two reasons and probably the most important are my love of flying and my love of radio engineering. This may sound rather dull but I love flying in any machine be it balloon, glider, propeller aircraft, microlight through to airline jets and the experience of it. The more I do it the more I feel I understand it.

A relative once asked me, ‘how does an aircraft fly?’ I thought for a while, of how to try and explain the fundamentals of physics and aerodynamics which I feel privileged to have had a fundamental education in. After further thought I realized how I take it all for granted like the vast majority of the people, and despite this education and the sound engineering principles, I still find that flying defies all our instinct and it truly is difficult to explain.

I also find the whole topic of radio propagation equally magical. Again, how can it work when we cannot see it? How can signals travel through apparent nothingness. How can we predict it? The physical equations are all there to describe it in great detail, however it too defies a layman’s logic.

If we now marry these two topics together we get Aeronautical Radio Communications—the discipline. This concept is maybe also hard to grasp for most of us and I include myself in this. Writing this book has been a journey of self-discovery and actually showed to myself how much I do not know about the subject rather than how much I know, but hopefully going through this motion has enabled me to know where to look for information when I do not have it to hand.

On the engineering level, some of the system building blocks described may seem very primitive and out of date, especially the legacy aspects, but on another level they are proven to be effective and reliable and this prerequisite knowledge is a fundamental requirement when moving to the design and implementation of the next generation of equipment. There is also the added dimension of thinking about the users of the systems who have a vital role in defining the architecture.

Over the years I have set about collecting the information basis for how the separate aeronautical and radio systems work and I kept them in a file with all the equations I ever used. With time this has grown and initially I have built courses for radio engineers and aviators alike; however, I always planned to put all this information in one tidy place. This is an attempt to do exactly this. It was always my intention to clean up the notes I had and formalize them somehow—hence this book.

I do not pretend that this book has everything on mobile radio communications in it or everything to do with aeronautical mobile radio; however, hopefully it provides the basis for much of
it and some explanation, guidance and direction to where further reading material may be available. It is also not intended to be the end of the subject. This topic is continually growing, adapting and getting updated and I have attempted to capture this in the most up-to-date snapshot.

If you do find discrepancies or changes, I would appreciate any comments or information you equally can share with me. In the interim, I hope it provides you with good background in the knowledge you seek.

You can contact me on dale.stacey@consultacom.com

Happy reading!

Dedications

To my wife Mary and two little angels Caitlin and Isla, thank you for your sacrifices of my family time and your support to write this book.

Thanks also and in not any particular order of gratitude to Barbara d’Amato, Alan Jamieson, Kors van der Boogard, John Mettrop for your initial enthusiastic comments and reviews when commencing this journey. Thanks additionally to those who contributed to the book either directly or indirectly: Liviu Popiescu, Roger Kippenberger, Carol Szabo and Stan Jenkins.

Thanks to all my other aviation and radio colleagues, peers and bosses for sharing your experiences, visions and information and making this possible, notably Norman Rabone, John Franklin, Geoffrey Bailey, Christian Pelmoine and Howard Morris.

Thanks to my University and School Teachers who provided me with the basic education and training for this career path. Particularly Mr Sparrow, Dr Wills, Mr Crawford, Dr Aggarwal, Dr Redfern.

Thanks to my Mother Elizabeth and Father Derek for their help at the start and throughout my life and my brothers Paul and Glen who have been indirectly involved in this project.

About the Author

Since graduating from the University of Bath in the United Kingdom in 1988 with a BSc (Hons) degree in Electrical and Electronic Engineering and becoming a Chartered Engineer in the United Kingdom in 1991 and Australia in 1993, Dale Stacey has worked extensively as a Radio Systems Engineer and Project Manager in many arenas all over the world. For the last 15 plus years of which he has been consulting.

Projects have included feasibility studies, planning and design work, installation and commissioning, project management, operation/maintenance and network management of systems. Technologies have included microwave radio links, VHF/UHF mobile systems, GSM 3G, WiMAX and private mobile systems, VSAT satellite systems.

Assignments have included work with oil companies, utility and PTT companies, mining companies, mobile operators, banks, equipment manufacturers and computer network providers, Internet service providers (ISPs) and federal and local government departments in mainly Australia, Asia, North America and Europe.

More recently projects have concentrated on radio systems used in the aviation industry. The author has consulted and worked with Eurocontrol, ICAO, IATA, various government administrations, air navigation service providers (ANSPs) and aeronautical organizations and companies internationally.

The author has dual Australian/British citizenship and spends his time flying around these continents playing with radios as one would expect.
The author derives a living from his consultancy services and teaching in radio engineering, particularly aeronautical mobile radio. More information on training and consultancy services can be found at www.consultacom.com, or you can send an email to dale.stacey@consultacom.com.

Revisions, Corrections, Updates, Liability

I would strongly appreciate feedback as to the content, correctness and ongoing relevance to each of the sections in this book, topics that need deeper elaboration or new topics that should be incorporated. I promise to read all comments and include them as necessary in any future updates. I do believe that this is the best process for improvement. Substantial contributions on your part will be rewarded with a current or future copy of the book and acknowledgement.

Whilst trying to uphold the greatest professionalism obliged by the professional institutions I believe in and belong to, I have endeavoured to provide accurate and unambiguous information. It is hoped that with review and subsequent editions the material can be continually improved. Your help is appreciated in this process.

Book Layout and Structure

The following chapters are generally laid out in a chronological order so the reader can skip parts depending on their subject knowledge or interest. In addition to this there is a matrix layout separating theory (Section A) and practice (Section C) with an intermediate layer called system level (Section B) which bridges the gap between theory and practice describing the various building blocks. Thus to a degree the topics are repeated three times with the emphasis changing from theory, system building blocks to practical realizations, so the reader can go back to first principles at any time or concentrate on the system level or physical realizations.

Where content does not sit logically with any of these main sections, special appendices have been compiled, in particular for a summation of all the formulae, list of variables, list of acronyms, constant and unit conversions, etc.
1 Introduction

1.1 The Legacy

The start of the new millennium marks two special centenaries: 100 years of manned flights since the Wright brothers flew the first ever manned heavier than air flight (a total distance of a few hundred feet in December 1903) and also 100 years since the first successful long-distance radio transmissions by Marconi at the end of the Nineteenth century and for the first time across the Atlantic in 1902.

Both of these inventions have revolutionized the world. In many ways the revolutions have only just begun. In the field of aviation, we have seen Concorde and travel to space in the last 50 years. Flying for leisure, the start of Space Tourism and even proposed intercontinental rocket services are perceivable in the not too distant future. Star Wars is the reality!

Likewise, in radio there are revolutions going on in the field of personal communications, in much more recent times with individual mobile phones being the norm and usually incorporating new advanced data services, TV media and video all in one small unit that slips into the back pocket. This as such has replaced what a whole office typing pool, mainframe computer and broadcasting house once did and the threat is even more progress: evolution and even revolution with the next generation of intelligent, cognitive and software radio. This is perceived and technically feasible but still really waiting to happen.

The changes in the aviation industry are arguably more conservative and have been slower than the personal communications revolution. The first radio communications were pioneered in the 1920s with tangible on-board transceivers emerging between the war years and with the main standards and practices in aeronautical VHF communications emerging in the late 1940s. These have, arguably, not significantly changed since then. This has been mainly due to very robust and proven systems (for example, the mainstay VHF communication system is testimony to this) that have served us well and is also due to the airlines’ reluctance to undergo the time- and cost-intensive process of re-equipping and change (Figure 1.1).

1.2 Today and the Second Generation of Equipment

Today, there is a requirement to enhance the legacy of mobile communication services to provide the users with more functionality, flexibility, immunity to interference (both RF and
Figure 1.1 Evolution of aeronautical mobile radio systems.
malicious) and reliability. To an extent, this is already well underway by introducing datalink services such as ACARS and VHF datalink and aeronautical satellite services as a second generation stop gap. The ‘stop gap’ should be emphasized. As with many of these systems, the engineering has been ‘shoe-horned’ into existing spectrum allocations or using proprietary technologies almost in experimental conditions. Whilst this has bought time, the solutions are not optimized for technology, application and spectrum efficiency and are all the time aging and becoming less relevant.

1.3 The Future

The technology is already ripe for the next (third) generation of communication systems in aviation and the unit cost of this equipment is ever decreasing. The next years will see some decisive changes in aeronautical communications being driven by the availability of this technology and also by the congestion and shortfalls in the legacy systems which are becoming more exaggerated and exasperating every day. Also it is clear that a rationalization of all the systems is required to simplify long term equipage. In contrast, we should not forget our terrestrial mobile communications counterparts (public mobile services) which have already realized much of their third-generation systems and are already planning for fourth- and even fifth-generation systems. Aeronautical communications lag in this deployment but have the advantage to be able to benefit from their experience and even plagiarizing their technology lessons and development work by effectively purchasing plain off-the-shelf modular radio equipment based on these standards. Of course, aviation also has analogous requirements to these other industry sectors transposed to fractionally different scenarios.

1.4 Operational and User Changes

It should never be forgotten that the operational aspects are ever changing, with an emphasis on increased safety statistics, reduced delays for aircraft in all phases from ground turn around, en route and approach stacking, and for greater automation, i.e. less work load on individual air traffic controllers. The user requirements are fast changing from the legacy of system we have from postwar times to fully computerized systems with redundancy provisions.

The customer market profile has totally changed. From the middle of the Nineteenth century and arguably still till the 1980s and 1990s, aircraft transport was historically only available to the upper class and business elite. Today, it very much competes with cars and trains and in some cases has become cheaper than the cost of leaving your car at or getting to the airport. The consequential change in demand has been exponential. In addition, this has changed the airline market profile and drastically the aircraft density; in given air volumes and airports this in turn impacts on operational changes.

The civilian fleets are constantly changing and getting bigger with an emphasis on capacity throughput in high-density sectors – hence, for example, the new Airbus A380. The economic model looks to increase fuel-burn efficiency with litres per passenger mile being the benchmark to improve upon.

There is a growing requirement and commitment to using unmanned aerial vehicles (UAVs) in civilian as well as military airspaces, which place a whole new operating concept and requirement on the aeronautical communications systems.

There is a greater need for data interactions between aircraft and ground and for other aircraft to bring in some new navigational and surveillance concepts such as free routes flying (where aircraft adopt a trajectory of least distance akin to great circle routes, instead of the traditional air corridors still used today).
Also, in automatic dependent surveillance (ADS) pilots will attain greater local traffic awareness and responsibility from regularly up-linking adjacent aircraft positions. There is also a strategy to move to greater automated air traffic control, fully computerized with intervention by exception or under conflict only. A new communication system will enable the move to these more efficient operations. This will become critical in the immediate future as fuel prices continue to rise and impact the very fragile economic business cases of the airlines.

1.5 Radio Spectrum Used by Aviation

Figures 1.2 and 1.3 in their broadest senses depict the radio spectrum used by aeronautical communications today.

The subject matter of most interest is probably the VHF communication band, HF band and satellite bands, but the future communications bands should also be stressed, which could likely be VHF (108–137 MHz), L band (960–1215 MHz), S band (2.7–3.1 GHz) and C band (5.000–5.250 GHz) or a hybrid of these. Today, these are only partly defined but will be ratified in the aeronautical agendas planned for the next World Radio Conferences in 2007 and 2011.

Also shown in the figures are adjacent allocations to navigation and surveillance functions and some of the lesser known obscure allocations to specialist services. This figure is generic and applied on a worldwide basis as per the aviation requirement; however, it should be noted that there are some slight regional and individual sovereign state allocation variations that are not discussed here (for a fuller discussion see ITU Radio Regulations, http://www.itu.org).

Figure 1.2 Communications radionavigation and surveillance bands.
Frequency vs. Wavelength

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hz</td>
<td>ELF</td>
</tr>
<tr>
<td>30 Hz</td>
<td>SLF</td>
</tr>
<tr>
<td>300 Hz</td>
<td>ULF</td>
</tr>
<tr>
<td>3 kHz</td>
<td>VLF</td>
</tr>
<tr>
<td>30 kHz</td>
<td>LF</td>
</tr>
<tr>
<td>300 kHz</td>
<td>MF</td>
</tr>
<tr>
<td>3 MHz</td>
<td>HF</td>
</tr>
<tr>
<td>30 MHz</td>
<td>VHF</td>
</tr>
<tr>
<td>300 MHz</td>
<td>UHF</td>
</tr>
<tr>
<td>3 GHz</td>
<td>SHF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 000 km</td>
</tr>
<tr>
<td>10 000 km</td>
</tr>
<tr>
<td>1000 km</td>
</tr>
<tr>
<td>100 m</td>
</tr>
<tr>
<td>10 m</td>
</tr>
<tr>
<td>1 m</td>
</tr>
<tr>
<td>10 cm</td>
</tr>
<tr>
<td>1 cm</td>
</tr>
</tbody>
</table>

Communications (conventional civil)

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Mobile</td>
<td>2.85–23.35 MHz</td>
</tr>
<tr>
<td>SINCGARS</td>
<td>225–400 MHz</td>
</tr>
<tr>
<td>JTIDS/MIDS</td>
<td>960–1215 MHz</td>
</tr>
<tr>
<td>AMS(R)S Satellite comms</td>
<td>1544–1555 MHz</td>
</tr>
</tbody>
</table>

Radio Navigation

<table>
<thead>
<tr>
<th>System</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>LORAN-C</td>
<td>90–10 kHz</td>
</tr>
<tr>
<td>LOHAVA</td>
<td>1.8–2 kHz</td>
</tr>
<tr>
<td>VOR ILS Localiser Beacon</td>
<td>108–117.975 MHz</td>
</tr>
<tr>
<td>ILS Glide Beacon</td>
<td>328.6–335.4 MHz</td>
</tr>
<tr>
<td>DME</td>
<td>90–1215 MHz</td>
</tr>
<tr>
<td>MLS</td>
<td>3–15.25 GHz</td>
</tr>
</tbody>
</table>

Surveillance

<table>
<thead>
<tr>
<th>System</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR/ACAS</td>
<td>1030 and 1090 MHz</td>
</tr>
<tr>
<td>Primary Radar</td>
<td>2.7–3.1 GHz</td>
</tr>
<tr>
<td>Airborne weather Radar</td>
<td>3.35–5.47 GHz</td>
</tr>
<tr>
<td>Airborne Doppler radar</td>
<td>8.75–8.85 GHz and 13.25–13.4 GHz</td>
</tr>
<tr>
<td>ASDR</td>
<td>15.4–15.7 GHz, 24.25–24.65 GHz, and 31.8–33.4 GHz</td>
</tr>
<tr>
<td>Precision approach/ASDR radar</td>
<td>9–9.5 GHz</td>
</tr>
</tbody>
</table>

Figure 1.3 Aeronautical radio spectrum.
1.5.1 Convergence, Spectrum Sharing

The concept of convergence is worth mentioning at this stage as well. Historically, separate allocations have been made for the communication, navigation and surveillance functions (sometimes denoted as CNS) for aviation services as defined in ITU. With the spectrum resource being a limited commodity, there has been a growing tendency and impetus towards sharing radio spectra between radio services. This trend is set to continue but also with seeing a merging of these traditional CNS applications to share the same band. These trends somewhat complicate the business of spectrum allocation, sharing and protection from harmful interference. This will be discussed later.

1.6 Discussion of the Organizational Structure of Aviation Communications Disciplines

Finally, by way of an introduction, it is important to mention some of the important stakeholders in the aviation arena (Figure 1.4). Apologies are made in advance if this list is incomplete and it is in no particular order. It is an attempt to capture the relationships.

Figure 1.4 Aviation-related organizations.
1.6.1 International Bodies

The International Civil Aviation Organization (ICAO) (see www.icao.int) was formed in December 1944 to provide guidance for setting up standards and recommended practices for the civil airline industry, to promote safety, to help facilitate international air navigation and to harmonize the international regulatory scene.

The International Air Transport Association (IATA) (see www.iata.org) in its own words ‘represents, leads and serves the airline industry’; its membership consists of the majority of world airlines. Complete listing of airline membership is on their web page.

The North Atlantic Treaty Organization (NATO), (see www.nato.int) is an international body among other things responsible for harmonizing and organizing the military aspects of aviation in the north Atlantic Europe and America and coordinating with its civilian counterpart (ICAO).

Eurocontrol (see www.eurocontrol.int) is a European wide body responsible for the harmonization and safety of European skies in its ‘one sky for Europe’ policy.

1.6.2 Example National Bodies

In each country, there are regulatory bodies governing the legal and regulatory aspects of flight within that state. For example, in the United States there is the Federal Aviation Administration (FAA) (see www.faa.gov), in France there is the Direction Générale de l’Aviation Civile (DGAC) (see www.dgac.fr), in the United Kingdom there is the UK Civil Aviation Authority (CAA) (see www.caa.co.uk), and these organizations are generally reflected in each state. The Joint Aviation Authority (JAA) (see www.jaa.org) is partially a European and North American wide representation of the CAA, concentrating on airworthiness, safety aspects and harmonizing of CAA goals.

Also in each sovereign state there is generally an Air Navigation Service Provider; in the United Kingdom, for example, this is National Air Traffic Services (NATS) (see www.nats.co.uk), in Switzerland it is Skyguide (see www.skyguide.ch), in Germany Deutsche Flugsicherung (DFS) (see www.dfs.de).

1.6.3 Industrial Interests

Examples include manufacturers such as Airbus (see www.airbus.com), Boeing (see www.boeing.com), Bombardier (see www.bombardier.com), etc. (Their suppliers and associated aerospace industries are not listed here.)

1.6.4 Example Standards Bodies and Professional Engineering Bodies

There are also a handful of standardizations bodies; some of them of relevance to this book include the following:

- Aeronautical Radio Incorporated (ARINC) (see www.arinc.com);
- European Organisation for Civil Aviation Equipment (EUROCAE) (see www.eurocae.org);
- Radio Technical Commission for Aeronautics (RTCA) (www.rtca.org);
- Airlines Electronic Engineering Committee (AEEC);
- European Telecommunications Standards Institute (ETSI) (www.etsi.org);
1.6.5 Users/Operators

As well as IATA already mentioned, some of the other user groups include the following:

- International Federation of Air Traffic Controllers Associations (IFATCA) (see www.ifatca.org);
- Aircraft Owners and Pilots Association (AOPA) (see www.aopa.org), sometimes called General Aviation;
- Airline Pilots Association (ALPA) (see www.alpa.org).

Again, this is only the start of a list and some of the major players.