The Deep-Space Communications and Navigation Systems
Center of Excellence
Jet Propulsion Laboratory
California Institute of Technology

Joseph H. Yuen, Editor-in-Chief

Published Titles in this Series

Radiometric Tracking Techniques for Deep-Space Navigation
C. L. Thornton and J. S. Border

Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation
Theodore D. Moyer

Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications
Marvin K. Simon

Large Antennas of the Deep Space Network
William A. Imbriale

Antenna Arraying Techniques in the Deep Space Network
David H. Rogstad, Alexander Mileant, and Timothy T. Pham

Radio Occultations Using Earth Satellites: A Wave Theory Treatment
William G. Melbourne

Deep Space Optical Communications
Hamid Hemmati
Deep Space
Optical Communications
This Page Intentionally Left Blank
Deep Space Optical Communications

Edited by
Hamid Hemmati
Table of Contents

Foreword .. xvii
Preface .. xix
Acknowledgments .. xxiii
Contributors ... xxv

Chapter 1: Introduction ... 1
 by James R. Lesh

1.1 Motivation for Increased Communications ... 1

1.2 History of JPL Optical Communications Activities 5

1.3 Component/Subsystem Technologies ... 7
 1.3.1 Laser Transmitters ... 8
 1.3.2 Spacecraft Telescopes .. 10
 1.3.3 Acquisition, Tracking, and Pointing .. 10
 1.3.4 Detectors ... 12
 1.3.5 Filters .. 12
 1.3.6 Error Correction Coding ... 14

1.4 Flight Terminal Developments .. 16
 1.4.1 Optical Transceiver Package (OPTRANSPAC) 16
 1.4.2 Optical Communications Demonstrator (OCD) 17
 1.4.3 Lasercom Test and Evaluation Station (LTES) 19
 1.4.4 X2000 Flight Terminal ... 20
 1.4.5 International Space Station Flight Terminal .. 22

1.5 Reception System and Network Studies ... 23
 1.5.1 Ground Telescope Cost Model .. 24
 1.5.2 Deep Space Optical Reception Antenna (DSORA) 25
 1.5.3 Deep Space Relay Satellite System (DSRSS) Studies 26
 1.5.4 Ground-Based Antenna Technology Study (GBATS) 27
 1.5.5 Advanced Communications Benefits Study (ACBS) 28
 1.5.6 Earth Orbit Optical Reception Terminal (EOORT) Study 29
 1.5.7 EOORT Hybrid Study ... 30
 1.5.8 Spherical Primary Ground Telescope ... 30
 1.5.9 Space-Based versus Ground-Based Reception Trades 31

1.6 Atmospheric Transmission ... 34
1.7 Background Studies ... 36
1.8 Analysis Tools .. 37
1.9 System-Level Studies ... 38
 1.9.1 Venus Radar Mapping (VRM) Mission Study 38
 1.9.2 Synthetic Aperture Radar-C (SIR-C) Freeflyer 38
 1.9.3 ER-2 to Ground Study .. 39
 1.9.4 Thousand Astronomical Unit (TAU) Mission and Interstellar Mission Studies ... 40
1.10 System-Level Demonstrations .. 41
 1.10.1 Galileo Optical Experiment (GOPEX) 41
 1.10.2 Compensated Earth–Moon–Earth Retro-Reflector Laser Link (CEMERLL) .. 43
 1.10.3 Ground/Orbiter Lasercomm Demonstration (GOLD) 44
 1.10.4 Ground–Ground Demonstrations .. 47
1.11 Other Telecommunication Functions .. 50
 1.11.1 Opto-Metric Navigation ... 50
 1.11.2 Light Science .. 51
1.12 The Future ... 52
 1.12.1 Optical Communications Telescope Facility (OCTL) 52
 1.12.2 Unmanned Arial Vehicle (UAV)–Ground Demonstration 52
 1.12.3 Adaptive Optics ... 53
 1.12.4 Optical Receiver and Dynamic Detector Array 55
 1.12.5 Alternate Ground-Reception Systems 56
1.13 Mars Laser Communication Demonstration 57
1.14 Summary of Following Chapters ... 58
References .. 60

Chapter 2: Link and System Design .. 83
 by Chien-Chung Chen

2.1 Overview of Deep-Space Lasercom Link 85
2.2 Communications Link Design .. 87
 2.2.1 Link Equation and Receive Signal Power 89
 2.2.2 Optical-Receiver Sensitivity .. 91
 2.2.2.1 Photon Detection Sensitivity .. 95
 2.2.2.2 Modulation Format ... 95
 2.2.2.3 Background Noise Control .. 96
 2.2.3 Link Design Trades ... 98
 2.2.3.1 Operating Wavelength .. 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3.2</td>
<td>Transmit Power and Size of Transmit and Receive Apertures</td>
<td>99</td>
</tr>
<tr>
<td>2.2.3.3</td>
<td>Receiver Optical Bandwidth and Field of View versus Signal Throughput</td>
<td>99</td>
</tr>
<tr>
<td>2.2.3.4</td>
<td>Modulation and Coding</td>
<td>100</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Communications Link Budget</td>
<td>100</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Link Availability Considerations</td>
<td>100</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Short-Term Data Outages</td>
<td>101</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Weather-Induced Outages</td>
<td>103</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Other Long-Term Outages</td>
<td>104</td>
</tr>
<tr>
<td>2.2.5.4</td>
<td>Critical-Mission-Phase Coverage</td>
<td>106</td>
</tr>
<tr>
<td>2.3</td>
<td>Beam Pointing and Tracking</td>
<td>106</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Downlink Beam Pointing</td>
<td>107</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Jitter Isolation and Rejection</td>
<td>107</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Precision Beam Pointing and Point Ahead</td>
<td>108</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Uplink Beam Pointing</td>
<td>110</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Pointing Acquisition</td>
<td>111</td>
</tr>
<tr>
<td>2.4</td>
<td>Other Design Drivers and Considerations</td>
<td>113</td>
</tr>
<tr>
<td>2.4.1</td>
<td>System Mass and Power</td>
<td>113</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Impact on Spacecraft Design</td>
<td>114</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Laser Safety</td>
<td>115</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>115</td>
</tr>
</tbody>
</table>

References

Chapter 3: The Atmospheric Channel

by Abhijit Biswas and Sabino Piazzolla

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Cloud Coverage Statistics</td>
<td>123</td>
</tr>
<tr>
<td>3.1.1</td>
<td>National Climatic Data Center Data Set</td>
<td>124</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Single-Site and Two-Site Diversity Statistics</td>
<td>126</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Three-Site Diversity</td>
<td>130</td>
</tr>
<tr>
<td>3.1.4</td>
<td>NCDC Analysis Conclusion</td>
<td>135</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Cloud Coverage Statistics by Satellite Data Observation</td>
<td>137</td>
</tr>
<tr>
<td>3.2</td>
<td>Atmospheric Transmittance and Sky Radiance</td>
<td>140</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Atmospheric Transmittance</td>
<td>140</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Molecular Absorption and Scattering</td>
<td>141</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Aerosol Absorption and Scattering</td>
<td>145</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Atmospheric Attenuation Statistics</td>
<td>148</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Sky Radiance</td>
<td>151</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Sky Radiance Statistics</td>
<td>156</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Point Sources of Background Radiation</td>
<td>159</td>
</tr>
</tbody>
</table>
3.3 Atmospheric Issues on Ground Telescope Site Selection for an Optical Deep Space Network

3.3.1 Optical Deep Space Network

3.3.2 Data Rate/BER of a Mission

3.3.3 Telescope Site Location

3.3.4 Network Continuity and Peaks

3.4 Laser Propagation Through the Turbulent Atmosphere

3.4.1 Atmospheric Turbulence

3.4.2 Atmospheric "Seeing" Effects

3.4.3 Optical Scintillation or Irradiance Fluctuations

3.4.4 Atmospheric Turbulence Induced Angle of Arrival

References

Chapter 4: Optical Modulation and Coding

by Samuel J. Dolinar, Jon Hamkins, Bruce E. Moision, and Victor A. Vilnrotter

4.1 Introduction

4.2 Statistical Models for the Detected Optical Field

4.2.1 Quantum Models of the Optical Field

4.2.1.1 Quantization of the Electric Field

4.2.1.2 The Coherent State Representation of a Single Field Mode

4.2.1.3 Quantum Representation of Thermal Noise

4.2.1.4 Quantum Representation of Signal Plus Thermal Noise

4.2.2 Statistical Models for Direct Detection

4.2.2.1 The Poisson Channel Model for Ideal Photodetectors or Ideal PMTs

4.2.2.2 The McIntyre-Conradi Model for APD Detectors

4.2.2.3 The Webb, McIntyre, and Conradi Approximation to the McIntyre–Conradi Model

4.2.2.4 The WMC Plus Gaussian Approximation

4.2.2.5 Additive White Gaussian Noise Approximation

4.2.3 Summary of Statistical Models

4.3 Modulation Formats

4.3.1 On–Off Keying (OOK)

4.3.2 Pulse-Position Modulation (PPM)

4.3.3 Differential PPM (DPPM)

4.3.4 Overlapping PPM (OPPM)
4.3.5 Wavelength Shift Keying (WSK) .. 237
4.3.6 Combined PPM and WSK .. 237

4.4 Rate Limits Imposed by Constraints on Modulation 238
4.4.1 Shannon Capacity .. 239
 4.4.1.1 Characterizing Capacity: Fixed Duration Edges 240
 4.4.1.2 Characterizing Capacity: Variable Duration Edges. 241
 4.4.1.3 Characterizing Capacity: Probabilistic
 Characterization .. 241
 4.4.1.4 Characterizing Capacity: Energy Efficiency 243
4.4.2 Constraints .. 243
 4.4.2.1 Dead Time .. 244
 4.4.2.2 Runlength .. 245
4.4.3 Modulation Codes .. 245
 4.4.3.1 M-ary PPM with Deadtime 246
 4.4.3.2 M-ary DPPM with Deadtime 247
 4.4.3.3 Synchronous Variable-Length Codes 248

4.5 Performance of Uncoded Optical Modulations 250
4.5.1 Direct Detection of OOK on the Poisson Channel 251
4.5.2 Direct Detection of PPM ... 252
 4.5.2.1 Poisson Channel ... 254
 4.5.2.2 AWGN Channel ... 258
4.5.3 Direct Detection of Combined PPM and WSK 260
4.5.4 Performance of Modulations Using Receivers Based on
 Quantum Detection Theory 260
 4.5.4.1 Receivers Based on Quantum Detection Theory 260
 4.5.4.2 Performance of Representative Modulations 264

4.6 Optical Channel Capacity ... 268
4.6.1 Capacity of the PPM Channel: General Formulas 269
4.6.2 Capacity of Soft-Decision PPM: Specific Channel Models ... 270
 4.6.2.1 Poisson Channel ... 270
 4.6.2.2 AWGN Channel ... 271
4.6.3 Hard-Decision Versus Soft-Decision Capacity 272
4.6.4 Losses Due to Using PPM ... 273
4.6.5 Capacity of the Binary Channel with Quantum Detection 275

4.7 Channel Codes for Optical Modulations 277
4.7.1 Reed–Solomon Codes .. 278
4.7.2 Turbo and Turbo-Like Codes for Optical Modulations 279
 4.7.2.1 Parallel Concatenated (Turbo) Codes 279
 4.7.2.2 Serially Concatenated Codes with Iterative
 Decoding .. 280
4.8 Performance of Coded Optical Modulations

4.8.1 Parameter Selection ... 281
4.8.2 Estimating Performance .. 284
 4.8.2.1 Reed–Solomon Codes 284
 4.8.2.2 Iterative Codes ... 286
4.8.3 Achievable Data Rates Versus Average Signal Power 286

References .. 289

Chapter 5: Flight Transceiver ... 301
by Hamid Hemmati, Gerardo G. Ortiz, William T. Roberts, Malcolm W. Wright, and Shinhak Lee

5.1 Optomechanical Subsystem ... 301
by Hamid Hemmati
5.1.1 Introduction ... 301
5.1.2 Optical Beam Paths .. 302
5.1.3 Optical Design Requirements, Design Drivers, and Challenges ... 304
5.1.4 Optical Design Drivers and Approaches 306
5.1.5 Transmit–Receive–Isolation 307
5.1.6 Stray-Light Control .. 309
 5.1.6.1 Operation at Small Sun Angles 309
 5.1.6.2 Surface Cleanliness Requirements 310
5.1.7 Transmission, Alignment, and Wavefront Quality Budgets 310
5.1.8 Efficient Coupling of Lasers to Obscured Telescopes 311
 5.1.8.1 Axicon Optical Element 311
 5.1.8.2 Sub-Aperture Illumination 311
 5.1.8.3 Prism Beam Slicer 312
 5.1.8.4 Beam Splitter/Combiner 313
5.1.9 Structure, Materials, and Structural Analysis 314
5.1.10 Use of Fiber Optics ... 316
5.1.11 Star-Tracker Optics for Acquisition and Tracking 316
5.1.12 Thermal Management ... 317
5.1.13 Optical System Design Example 317
 5.1.13.1 Afocal Fore-Optics 317
 5.1.13.2 Receiver Channel .. 317
 5.1.13.3 Stellar Reference Channel 322
 5.1.13.4 Align and Transmit Channels 324
 5.1.13.5 Folded Layouts .. 325
 5.1.13.6 Tolerance Sensitivity Analysis 326
 5.1.13.7 Thermal Soak Sensitivity Analysis 328
 5.1.13.8 Solid Model of System 329
5.4.3 Flight Qualification of Electronics and Opto-Electronic Subsystem ... 422
5.4.3.1 MIL-PRF-19500 .. 422
5.4.3.2 MIL STD 750 ... 422
5.4.3.3 MIL STD 883 ... 422
5.4.3.4 Telcordia ... 423
5.4.3.5 NASA Electronics Parts and Packaging (NEPP) ... 423
5.4.4 Number of Test Units ... 423
5.4.5 Space Environments .. 425
5.4.5.1 Environmental Requirements ... 425
5.4.5.2 Ionizing Radiation .. 426
5.4.5.3 Vibration Environment .. 428
5.4.5.4 Mechanical, Thermal, and Pyro Shock Environment ... 429
5.4.5.5 Thermal Gradients Environment ... 429
5.4.5.6 Depressurization Environment ... 430
5.4.5.7 Electric and Magnetic Field Environment .. 430
5.4.5.8 Outgassing .. 431
5.4.6 Flight Qualification of Detectors .. 431
5.4.6.1 Flight Qualification Procedures .. 432
5.4.6.2 Detector Radiation Testing .. 440
5.4.7 Flight Qualification of Laser Systems .. 443
5.4.7.1 Past Laser Systems Flown in Space .. 444
5.4.7.2 Design of Semiconductor Lasers for High Reliability Applications ... 447
5.4.7.3 Degradation Mechanisms .. 448
5.4.7.4 Qualification Process for Lasers .. 449
5.4.8 Flight Qualification of Optics ... 454

References .. 454

Chapter 6: Earth Terminal Architectures
by Keith E. Wilson, Abhijit Biswas, Andrew A. Gray, Victor A. Vilrrotter, Chi-Wung Lau, Mera Srinivasan, and William H. Farr ... 467

6.1 Introduction
by Keith E. Wilson ... 467
6.1.1 Single-Station Downlink Reception and Uplink Transmission .. 469
by Keith E. Wilson
6.1.1.1 Introduction ... 469
6.1.1.2 Deep-Space Optical Ground Receivers ... 470
Table of Contents

6.1.1.3 Mitigating Cloud Cover and Sky Background Effects at the Receiver .. 472
6.1.1.4 Daytime Sky Background Effects .. 475
6.1.1.5 Earth-Orbiting Background Effects and Airborne Receivers .. 476
6.1.1.6 Uplink Beacon and Command .. 476
6.1.1.7 Techniques for Mitigating Atmospheric Effects .. 482
6.1.1.8 Adaptive Optics .. 484
6.1.1.9 Multiple-Beam Propagation .. 486
6.1.1.10 Safe Laser Beam Propagation into Space .. 488
6.1.1.11 Concept Validation Experiments Supporting Future Deep-Space Optical links .. 493
6.1.1.12 Conclusion .. 514

6.1.2 Optical-Array Receivers for Deep-Space Communication .. 516
by Victor A. Vilnrotter, Chi-Wung Lau, and Meera Srinivasan
6.1.2.1 Introduction .. 516
6.1.2.2 The Optical-Array Receiver Concept .. 516
6.1.2.3 Aperture-Plane Expansions .. 519
6.1.2.4 Array Receiver Performance .. 527
6.1.2.5 Conclusions .. 540

6.2 Photodetectors .. 541
6.2.1 Single-Element Detectors .. 541
by Abhijit Biswas and William H. Farr
6.2.1.1 Deep-Space Detector Requirements and Challenges .. 541
6.2.1.2 Detector System Dependencies .. 544
6.2.1.3 Detectors for Deep-Space Communications .. 545
6.2.2 Focal-Plane Detector Arrays for Communication Through Turbulence .. 551
by Victor A. Vilnrotter and Meera Srinivasan
6.2.2.1 Introduction .. 551
6.2.2.2 Optical Direct Detection with Focal-Plane Arrays .. 553
6.2.2.3 Numerical Results .. 562
6.2.2.4 Summary And Conclusions .. 566

6.3 Receiver Electronics .. 567
by Andrew A. Gray, Victor A. Vilnrotter, and Meera Srinivasan
6.3.1 Introduction .. 567
6.3.2 Introduction to Discrete-Time Demodulator Architectures .. 571
6.3.3 Discrete-Time Synchronization and Post-Detection Filtering Overview .. 572
6.3.3.1 Discrete-Time Post-Detection Filtering .. 573
6.3.3.2 Slot and Symbol Synchronization and Decision Processing.......................... 580
6.3.4 Discrete-Time Demodulator Variations .. 584
6.3.5 Discrete-Time Demodulator with Time-Varying Post-Detection Filter........... 585
6.3.6 Parallel Discrete-Time Demodulator Architectures 589
6.3.7 Asynchronous Discrete-Time Processing .. 592
6.3.8 Parallel Discrete-Time Demodulator Architectures 603
6.3.8.1 Simple Example Architecture .. 603
6.3.8.2 Performance with a Simple Optical Channel Model 606
6.3.8.3 Evolved Parallel Architectures ... 608
6.3.9 Primary System Models and Parameters ... 616
6.3.10 Conclusion and Future Work ... 618

References... 626

Chapter 7: Future Prospects and Applications ... 643
by Hamid Hemmati and Abhijit Biswas

7.1 Current and Upcoming Projects in the United States, Europe, and Japan .. 643
7.1.1 LUCE (Laser Utilizing Communications Experiment) 643
7.1.2 Mars Laser-Communication Demonstrator (MLCD) 644

7.2 Airborne and Spaceborne Receivers ... 646
7.2.1 Advantages of Airborne and Spaceborne Receivers 646
7.2.2 Disadvantages of Airborne and Spaceborne Receivers 647
7.2.3 Airborne Terminals ... 648
7.2.3.1 Balloons ... 648
7.2.3.2 Airships .. 649
7.2.3.3 Airplanes ... 649
7.2.4 Spaceborne Receiver Terminals .. 650
7.2.5 Alternative Receiver Sites ... 650

7.3 Light Science ... 650
7.3.1 Light-Propagation Experiments .. 651
7.3.2 Occultation Experiments to Probe Planetary Atmospheres, Rings, Ionospheres, Magnetic Fields, and the Interplanetary Medium 651
7.3.2.1 Atmospheric Occultations .. 652
7.3.2.2 Ring-Investigation Experiments .. 652
7.3.3 Enhanced Knowledge of Solar-System-Object Masses and Gravitational Fields, Sizes, Shapes, and Surface Features.. 652
Table of Contents

7.3.3.1 Improved Knowledge of Solar-System Body Properties.. 653
7.3.3.2 Optical Reference-Frame Ties. ... 653

7.3.4 Tests of the Fundamental Theories: General Relativity, Gravitational Waves, Unified Field Theories, Astrophysics, and Cosmology .. 653
7.3.4.1 Tests of General Relativity and Unified Field Theories, Astrophysics, and Cosmology........ 654
7.3.4.2 Effects of Charged Particles on Electromagnetic Wave Propagation, Including Test of l/f Hypothesis.. 654

7.3.5 Enhanced Solar-System Ephemerides ... 654
7.3.5.1 Science Benefits of Remote Optical Tracking: Ephemeris Improvement 655

7.3.6 Applications of Coherent Laser Communications Technology.. 656

7.4 Conclusions ... 657

References.. 657
This Page Intentionally Left Blank
Foreword

The Deep Space Communications and Navigation Systems Center of Excellence (DESCANSO) was established in 1998 by the National Aeronautics and Space Administration (NASA) at the California Institute of Technology's Jet Propulsion Laboratory (JPL). DESCANSO is chartered to harness and promote excellence and innovation to meet the communications and navigation needs of future deep-space exploration.

DESCANSO's vision is to achieve continuous communications and precise navigation—any time, anywhere. In support of that vision, DESCANSO aims to seek out and advocate new concepts, systems, and technologies; foster key technical talents; and sponsor seminars, workshops, and symposia to facilitate interaction and idea exchange.

The Deep Space Communications and Navigation Series, authored by scientists and engineers with many years of experience in their respective fields, lays a foundation for innovation by communicating state-of-the-art knowledge in key technologies. The series also captures fundamental principles and practices developed during decades of deep-space exploration at JPL. In addition, it celebrates successes and imparts lessons learned. Finally, the series will serve to guide a new generation of scientists and engineers.

Joseph H. Yuen
DESCANSO Leader
Preface

The ever-increasing demand for data from planetary probe spacecraft is pushing the frequency of telecommunications from radio frequency (RF) bands to the optical and near-infrared regime. Such a transition offers the potential to increase data rates by one to two orders of magnitude over conventional RF links. Early NASA spacecraft telecom systems relied on the S-band frequency. Nearly twenty years later, X-band frequencies were implemented. Over twenty years later, the Ka-band systems are beginning to be implemented in deep space. For the optical band, we are now in the technology maturation and demonstration phase. It is expected that after a number of successful and convincing technology validation demonstrations, the optical band will also move into the implementation phase.

This reference text is intended to summarize and document the optical work performed at the Jet Propulsion Laboratory (JPL) since inception of the Free-Space Optical Communication Group in late 1970s. This text provides an overview of nearly a quarter of century of research and development, performed by JPL’s Optical Communication Group, its associated researchers, and other optical-communications researchers throughout the world. The focus of the research effort has been deep space telecommunications. In recent years, the near-Earth communication technologies have been addressed also. The flight transceiver, the ground receiver, and uplink transmitter technologies were addressed.

During the past 25 years, the focus of the component and subsystem technology efforts had to be adjusted frequently to keep pace with the rapid developments in laser, detector, detector array, and fiber-optic technologies. Therefore, a significant portion of the group’s effort was concentrated on addressing this challenge. This book is intended to bring a novice in the field up to date, and be informative to those interested in learning about the status of
optical communications technology. As a reference book it should help the people in the field to build upon the prior knowledge and become aware of the important design variations and critical differences between them. Also, this book is intended to provide information on the state-of-the-art in component and subsystem technologies, fundamental limitations, and approaches to reach and fully exploit new technologies.

The text is organized into seven chapters in which Chapter 1 provides an overview of deep-space optical communications technology and a historical perspective of deep-space optical communications technology developments by JPL. Chapter 2 discusses the link and the system design drivers. Parameters that influence the design of an optical communications systems and the link control table that takes into all relevant link parameters are discussed here. The atmospheric channel is discussed in Chapter 3. Cloud statistics, atmospheric transmission, background light and sky radiance, laser beam propagation through the turbulent atmosphere and atmospheric issues driving the selection of a ground receiver site are discussed in this chapter. Chapter 4 deals with modulation and coding, including the statistical models for the detected optical fields, modulation formats, rate limits imposed by constraints of modulation, performance of uncoded optical modulation schemes, optical channel capacity, channel codes for optical modulations, and performance of optical modulations. Chapter 5 deals with the subsystems that constitute the flight terminal. Subchapter 5.1 is on acquisition, tracking and pointing. The most challenging aspect of deep-space Optical Communication technology has been and remains as the tracking and pointing function. This subchapter deals with precise beam pointing throughout the Solar System, options, design drivers and requirements, and examples of system implementation. Subchapter 5.2 deals with the laser transmitter. Flight laser transmitters continue to be a major risk item due to current less-than desired lifetime. Requirements, wavelength effects, candidate sources, modulators, laser efficiency, timing jitter, and thermal management are discussed in this subchapter. The opto-mechanical subassembly including a description of general requirements, the optical channels, design approaches, transmit/receive isolation, stray light control, structure materials, and optical design examples are described in Subchapter 5.3. Flight qualification of lasers and detectors, including environmental requirements, flight qualification approaches and procedures are described in Subchapter 5.4. Chapter 6 discusses the Earth-based terminal architecture. Single-station downlink reception and uplink transmission are discussed in Section 6.1.1. Options and approaches, site diversity, receiver stations located above clouds (e.g., balloons, airplanes, or spacecraft) uplink beacon, safe laser beam propagation, and atmospheric effect mitigation are among the topics discussed in this section. Section 6.1.2 discusses arraying of telescope receivers, including trades, implementation schemes, and performance analysis. Subchapter 6.2 discusses photodetectors, including both single element (6.2.1) and array of photodetectors (6.2.2).
Requirements and challenges, a description of photon-counting detectors, implementation options and performance are discussed here. Subchapter 6.3 discusses receiver electronics, including demodulator architectures, synchronization and post-detection filtering, demodulator variations, and system models and architectures. Chapter 7 discusses future prospects and applications, including certain technology developments to date, navigational tracking, and light science.

Hamid Hemmati,
Pasadena, California
October 2005
Acknowledgments

Numerous individuals have contributed to the work summarized in this book. The Optical Communications Group at JPL was the brainchild of James Lesh who diligently and tirelessly worked on formulating meaningful technology development activities and promotion of this technology within NASA, industry, and other government organizations. Joseph Yuen had the vision for producing this book and relentlessly reminded the authors of its importance and the need for quick publication.

Many individuals have contributed significantly to the technical accomplishments reported here. Among them are Joseph Katz, Don Sipes, William Marshall, Marc Rayman, Deborah Robinson, David Erickson, Kelley Cowles, Edward Kerr, Bonny Schumaker, Joseph Kovalik, Janet Wu, John Sundusky, Norman Page, Stephen Monacos, Homayoon Ansari, Juan Ceniceros, Jeffrey Charles, Vachik Garkanian, Carlos Esproles, and Jerry Neal. Very effective technical leadership of Richard Matheson, William Weber, William Rafferty, Alaudin Bhanji, Kent Kellogg, Leslie Deutsch, Joseph Yuen, Stephen Townes, Fabrizio Pollara, Stephen Lichten, Ben Parvin, MiMi Aung, Samuel Zingales, and many others who have been crucial to the successful accomplishment of the tasks described here.

The work reported here could not have come about without the significant level of NASA funding over the years through such visionary scientists at NASA Headquarters as Ramon DePaula and Barry Geldzahler.

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).

October 2005
Contributors

All contributors are with the Jet Propulsion Laboratory, California Institute of Technology (Caltech), Pasadena, California, USA.

Abhijit Biswas received his PhD from Southern Illinois University (Carbondale, Illinois) in molecular science in 1986. He has participated in optical communications technology development at JPL since 1992. Most recently Dr. Biswas served as the ground network systems engineer for the Mars Laser Communication Demonstration Project.

Chien-Chung Chen received his PhD from University of Illinois at Urbana-Champaign in 1987, where his dissertation was on free space optical communications. He joined JPL in 1987, and he has worked on both optical communications and deep space radio frequency (RF) systems development. He has extensive experience in both the development and operations of the deep space communications links. Dr. Chen is the principal investigator for the JPL Mars Laser Communications Demonstration Project.

Samuel J. Dolinar received his PhD in electrical engineering from the Massachusetts Institute of Technology (Cambridge, Massachusetts) in 1976, where his master's and doctoral theses were on optical communications. He worked at MIT Lincoln Laboratory, before joining JPL in 1980. Dr. Dolinar has focused his research on channel coding and source coding for the deep-space channel, especially turbo codes and low-density parity-check (LDPC) codes during the past decade. He teaches data compression at Caltech.

William H. Farr attended Caltech from 1976 through 1980, and has traversed a variety of fields including chemistry, neurobiology, electrical
engineering, and computer science, resulting in publications in seven fields. Prior to joining JPL in 2001, he worked for several engineering and high tech firms, including the Nucleonics Development Corporation, where he was head of the research and development department developing radioisotope and optical instrumentation for industrial monitoring applications, and had two patents. Mr. Farr is now the manager of JPL's Optical Communications Technology Program of the Interplanetary Network Directorate.

Andrew A. Gray received his PhD in electrical engineering in 2000, and his master of business administration (MBA) in 2004, both from the University of Southern California (Los Angeles). Prior to joining JPL in 1998, he worked at the NASA Goddard Space Flight Center for three years. He is a group supervisor in the Communications Architecture and Research Section. The primary focus of the group is development of first-to-the-world prototypes for communications and radar systems. He holds three patents. Dr. Gray is also an affiliate faculty member at the University of Washington (Seattle, Washington).

Jon Hamkins received his BS from Caltech in 1990, and PhD from the University of Illinois at Urbana-Champaign in 1996, both in electrical engineering. Dr. Hamkins has been at JPL since 1996, where he is the supervisor of the Information Processing Group, which performs research in optical communications, information theory, channel coding, data compression, and synchronization.

Hamid Hemmati received his MS in physics from the University of Southern California, and his PhD in physics from Colorado State University (Fort Collins, Colorado) in 1981. Prior to joining JPL in 1986, he worked at the NASA Goddard Space Flight Center and at the National Institute of Science and Technology (NIST, Boulder, Colorado) as a researcher. He is now the supervisor of the JPL Optical Communications Group, which is developing laser-communications technologies and systems for deep space and satellite communications. Dr. Hemmati holds seven patents. He has taught optical communications courses at the University of California at Los Angeles (UCLA) Extension.

Chi-Wung Lau received his BS in physics from the University of California at Berkeley in 1996 and his MS in electrical engineering from the University of Southern California in 2001. He has been with JPL since 1996 involved with such projects as Deep Impact, the optical array receiver, and the telecom forecaster predictor tool. Mr. Lau is currently working on applying quantum theory to communications.
Shinhak Lee received his PhD from the University of Washington in electrical engineering in 1997, and he has been with JPL since then. He has made contributions to the acquisition, tracking, and pointing technology. Dr. Lee is a member of technical staff of the Optical Communications Group in the Communications Research Section.

James R. Lesh received his PhD from the University of California at Los Angeles in electrical engineering in 1976, and he has been with JPL since 1971. He has held numerous technical and managerial positions, including head of the Optical Communications Program, and currently he is the chief technologist and manager of the Technology Program of the Interplanetary Network Directorate. He holds three patents, and he has taught classes in communications theory, information theory, channel coding, and signal processing at Caltech. Dr. Lesh is a fellow of the Institute of Electrical and Electronics Engineers (IEEE) and of the International Society for Optical Engineering (SPIE).

Bruce E. Moision received his PhD from the University of California at San Diego in electrical engineering in 1999, and has been with JPL since 2000. He has worked primarily on the design and implementation of error correction codes and modulation schemes for optical communications links. Dr. Moision is a member of the Information Processing Group of the Communications Research Section.

Gerardo G. Ortiz received his PhD from the University of New Mexico in opto-electronic engineering in 1997, and he has been with JPL since 1987. He has made contributions to the development of high electron mobility transistor (HEMT) ultra low noise amplifiers for deep space radio frequency communications, multiple wavelength vertical cavity surface-emitting laser arrays for backbone networks, and acquisition, tracking, and pointing (ATP) technologies for free-space optical communications. Dr. Ortiz is a senior member of the staff in the Optical Communications Group.

Sabino Piazzolla received his PhD in electrical engineering from the University of Southern California in 1997. He has been at JPL since 2004, focusing on optical communications. Dr. Piazzolla is also a part-time faculty member at the University of California at Los Angeles, and at the University of Southern California.

William T. Roberts received his PhD in optical sciences from the University of Arizona in 2001. He has been with JPL since 2001. Dr. Roberts has focused his effort on development of deep-space communication lasers, flight qualification of communication terminal parts, and the conversion of
large astronomical telescopes to perform as deep-space optical communication receivers.

Meera Srinivasan received her BS from Caltech in 1990, and her PhD from the University of Illinois at Urbana-Champaign in 1996, in electrical engineering. Dr. Srinivasan has been with JPL since 1996. Her research interests lie in the areas of optical communications, wireless and spread-spectrum communications systems, array signal processing, and detection and estimation theory.

Victor A. Vilnrotter received his PhD from the University of Southern California in electrical engineering in 1978, specializing in optical communications. Dr. Vilnrotter has been at JPL since 1979, and has conducted research in the application of optical and quantum communications to the deep space optical channel, electronic compensation for deep-space RF antennas via focal-plane signal processing, optical focal-plane detector arrays to mitigate atmospheric turbulence effects, and development and demonstration of fundamental optical array receiver concepts.

Keith E. Wilson received his PhD from the University of Southern California in 1980. Before joining JPL in 1988, he worked in laser research at Hughes Research Laboratories, Allied Corporation, and Litton Guidance and Control. He was a faculty member in physics at California State Polytechnic University at Pomona. Dr. Wilson has managed JPL's successful optical communications demonstrations with spacecraft. He is a principal engineer in the Communications Architectures and Research Section at JPL.

Malcolm W. Wright received his PhD in physics from the University of New Mexico (Albuquerque, New Mexico) in 1992, and was with the Air Force Research Laboratory researching high power lasers before coming to JPL in 1998. Dr. Wright's current work has focused on developing high power fiber lasers for downlink and uplink, space qualification of semiconductor and fiber based lasers and communication performance of various free space optical link demonstrations in the lab and the field.