HIGH-PERFORMANCE
GRADIENT ELUTION
The Practical Application of the Linear-Solvent-Strength Model

LLOYD R. SNYDER
LC Resources, Inc., Orinda, California

JOHN W. DOLAN
LC Resources, Inc., Amity, Oregon
HIGH-PERFORMANCE
GRADIENT ELUTION
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
HIGH-PERFORMANCE
GRADIENT ELUTION
The Practical Application of
the Linear-Solvent-Strength Model

LLOYD R. SNYDER
LC Resources, Inc., Orinda, California

JOHN W. DOLAN
LC Resources, Inc., Amity, Oregon
... every natural science involves three things: the sequence of phenomena on which the science is based [experimental observation]; the abstract concepts which call these phenomena to mind [a model]; and the words in which the concepts are expressed [the present book].

Antoine Laurent Lavoisier [with parenthetical additions by the authors], *Traité Elémentaire de Chemie* (1789)
CONTENTS

PREFACE xv
GLOSSARY OF SYMBOLS AND TERMS xxi

1 INTRODUCTION 1
1.1 The “General Elution Problem” and the Need for Gradient Elution 1
1.2 Other Reasons for the Use of Gradient Elution 4
1.3 Gradient Shape 7
1.4 Similarity of Isocratic and Gradient Elution 10
1.4.1 Gradient and Isocratic Elution Compared 10
1.4.2 The Linear-Solvent-Strength Model 13
1.5 Computer Simulation 18
1.6 Sample Classification 19
1.6.1 Sample Compounds of Related Structure (“Regular Samples”) 19
1.6.2 Sample Compounds of Unrelated Structure (“Irregular” Samples) 19

2 GRADIENT ELUTION FUNDAMENTALS 23
2.1 Isocratic Separation 23
2.1.1 Retention 23
2.1.2 Peak Width and Plate Number 24
2.1.3 Resolution 25
2.1.4 Role of Separation Conditions 27
2.1.4.1 Optimizing Retention [Term a of Equation (2.7)] 27
2.1.4.2 Optimizing Selectivity a [Term b of Equation (2.7)] 28
2.1.4.3 Optimizing the Column Plate Number N [Term c of Equation (2.7)] 28
2.2 Gradient Separation 31
2.2.1 Retention 32
2.2.1.1 Gradient and Isocratic Separation Compared for “Corresponding” Conditions 34
2.2.2 Peak Width 38
2.2.3 Resolution 39
2.2.3.1 Resolution as a Function of Values of S for Two Adjacent Peaks (“Irregular” Samples) 42
2.2.3.2 Using Gradient Elution to Predict Isocratic Separation 45
2.2.4 Sample Complexity and Peak Capacity 47
2.3 Effect of Gradient Conditions on Separation 49
2.3.1 Gradient Steepness b: Change in Gradient Time 50
2.3.2 Gradient Steepness b: Change in Column Length or Diameter 51
2.3.3 Gradient Steepness b: Change in Flow Rate 55
2.3.4 Gradient Range $\Delta \phi$: Change in Initial Percentage B (ϕ_0) 58
2.3.5 Gradient Range $\Delta \phi$: Change in Final Percentage B (ϕ_f) 60
2.3.6 Effect of a Gradient Delay 63
 2.3.6.1 Equipment Dwell Volume 66
2.3.7 Effect of Gradient Shape (Nonlinear Gradients) 67
2.3.8 Overview of the Effect of Gradient Conditions on the Chromatogram 71

2.4 Related Topics 72
 2.4.1 Nonideal Retention in Gradient Elution 72
 2.4.2 Gradient Elution Misconceptions 72

3 METHOD DEVELOPMENT 74

3.1 A Systematic Approach to Method Development 74
 3.1.1 Separation Goals (Step 1 of Fig. 3.1) 75
 3.1.2 Nature of the Sample (Step 2 of Fig. 3.1) 78
 3.1.3 Initial Experimental Conditions 79
 3.1.4 Repeatable Results 79
 3.1.5 Computer Simulation: Yes or No? 80
 3.1.6 Sample Preparation (Pretreatment) 81

3.2 Initial Experiments 81
 3.2.1 Interpreting the Initial Chromatogram (Step 3 of Fig. 3.1) 85
 3.2.1.1 “Trimming” a Gradient Chromatogram 87
 3.2.1.2 Possible Problems 88

3.3 Developing a Gradient Separation: Resolution versus Conditions 90
 3.3.1 Optimizing Gradient Retention k^* (Step 4 of Fig. 3.1) 92
 3.3.2 Optimizing Gradient Selectivity α^* (Step 5 of Fig. 3.1) 92
 3.3.3 Optimizing the Gradient Range (Step 6 of Fig. 3.1) 95
 3.3.3.1 Changes in Selectivity as a Result of Change in k^* 96
 3.3.4 Segmented (Nonlinear) Gradients (Step 6 of Fig. 3.1 Continued) 100
 3.3.5 Optimizing the Column Plate Number N^* (Step 7 of Fig. 3.1) 102
 3.3.6 Column Equilibration Between Successive Sample Injections 106
 3.3.7 Fast Separations 106

3.4 Computer Simulation 108
 3.4.1 Quantitative Predictions and Resolution Maps 109
 3.4.2 Gradient Optimization 111
 3.4.3 Changes in Column Conditions 112
 3.4.4 Separation of “Regular” Samples 114
 3.4.5 Other Features 115
 3.4.5.1 Isocratic Prediction (5 in Table 3.5) 115
 3.4.5.2 Designated Peak Selection (6 in Table 3.5) 117
 3.4.5.3 Change in Other Conditions (7 in Table 3.5) 117
 3.4.5.4 Computer-Selection of the Best Multisegment Gradient (8 in Table 3.5) 117
 3.4.5.5 “Two-Run” Procedures for the Improvement of Sample Resolution 119
 3.4.6 Accuracy of Computer Simulation 119
 3.4.7 Peak Tracking 119
5.1.4.2 System Cleanliness 159
5.1.4.3 Degassing 159
5.1.4.4 Dedicated Columns 159
5.1.4.5 Equilibration 159
5.1.4.6 Priming Injections 159
5.1.4.7 Ignore the First Injection 160
5.1.4.8 System Suitability 160
5.1.4.9 Standards and Calibrators 160
5.1.5 Method Development 160
5.1.5.1 Use a Clean and Stable Column 160
5.1.5.2 Use Reasonable Mobile Phase Conditions 161
5.1.5.3 Clean Samples 162
5.1.5.4 Reproducible Runs 162
5.1.5.5 Sufficient Equilibration 162
5.1.5.6 Reference Conditions 162
5.1.5.7 Additional Tests 162
5.2 Method Transfer 163
5.2.1 Compensating for Dwell Volume Differences 163
5.2.1.1 Injection Delay 163
5.2.1.2 Adjustment of the Initial Isocratic Hold 164
5.2.1.3 Use of Maximum-Dwell-Volume Methods 165
5.2.1.4 Adjustment of Initial Percentage B 165
5.2.2 Other Sources of Method Transfer Problems 168
5.2.2.1 Gradient Shape 169
5.2.2.2 Gradient Rounding 169
5.2.2.3 Inter-Run Equilibration 169
5.2.2.4 Column Size 169
5.2.2.5 Column Temperature 169
5.2.2.6 Interpretation of Method Instructions 170
5.3 Column Equilibration 170
5.3.1 Primary Effects 171
5.3.2 Slow Equilibration of Column and Mobile Phase 173
5.3.3 Practical Considerations and Recommendations 174
5.4 Separation Artifacts 175
5.4.1 Baseline Drift 176
5.4.2 Baseline Noise 179
5.4.2.1 Baseline Noise: A Case Study 180
5.4.3 Peaks in a Blank Gradient 182
5.4.3.1 Mobile Phase Water or Organic Solvent Impurities 182
5.4.3.2 Other Sources of Background Peaks 185
5.4.4 Extra Peaks for Injected Samples 185
5.4.4.1 \(t_0 \) Peaks 185
5.4.4.2 Air Peaks 186
5.4.4.3 Late Peaks 187
5.4.5 Peak Shape Problems 188
5.4.5.1 Tailing and Fronting 188
5.4.5.2 Excess Peak Broadening 188
5.4.5.3 Split Peaks 190
5.4.5.4 Injection Conditions 191
5.4.5.5 Sample Decomposition 193
5.5 Troubleshooting 195
5.5.1 Problem Isolation 196
5.5.2 Troubleshooting and Maintenance Suggestions 197
 5.5.2.1 Removing Air from the Pump 197
 5.5.2.2 Solvent Siphon Test 197
 5.5.2.3 Premixing to Improve Retention Reproducibility in Shallow Gradients 198
 5.5.2.4 Cleaning and Handling Check-Valves 199
 5.5.2.5 Replacing Pump Seals and Pistons 200
 5.5.2.6 Leak Detection 200
 5.5.2.7 Repairing Fitting Leaks 200
 5.5.2.8 Cleaning Glassware 201
 5.5.2.9 For Best Results with TFA 201
 5.5.2.10 Improved Water Purity 201
 5.5.2.11 Isolating Carryover Problems 203
 5.5.2.12 Troubleshooting Rules of Thumb 204
5.5.3 Gradient Performance Test Failures 206
 5.5.3.1 Linearity (4.3.1.1) 206
 5.5.3.2 Step Test (4.3.1.3) 206
 5.5.3.3 Gradient-Proportioning-Valve Test (4.3.1.4) 209
 5.5.3.4 Flow Rate (4.3.2.1) 211
 5.5.3.5 Pressure Bleed-Down (4.3.2.2) 212
 5.5.3.6 Retention Reproducibility (4.3.2.3) 212
 5.5.3.7 Peak Area Reproducibility (4.3.2.4) 213
5.5.4 Troubleshooting Case Studies 213
 5.5.4.1 Retention Variation – Case Study 1 213
 5.5.4.2 Retention Variation – Case Study 2 218
 5.5.4.3 Contaminated Reagents – Case Study 3 220
 5.5.4.4 Baseline and Retention Problems – Case Study 4 224

6 SEPARATION OF LARGE MOLECULES 228

6.1 General Considerations 228
 6.1.1 Values of S for Large Molecules 229
 6.1.2 Values of N^* for Large Molecules 235
 6.1.3 Conformational State 236
 6.1.4 Homo-Oligomeric Samples 238
 6.1.4.1 Separation of Large Homopolymers 241
 6.1.5 Proposed Models for the Gradient Separation of Large Molecules 242
 6.1.5.2 “Critical Elution Behavior”: Biopolymers 246
 6.1.5.3 Measurement of LSS Parameters for Large Molecules 247
6.2 Biomolecules 248
 6.2.1 Peptides and Proteins 248
 6.2.1.1 Sample Characteristics 249
 6.2.1.2 Conditions for an Initial Gradient Run 249
 6.2.1.3 Method Development 253
 6.2.1.4 Segmented Gradients 259
 6.2.2 Other Separation Modes and Samples 261
 6.2.2.1 Hydrophobic Interaction Chromatography 262
 6.2.2.2 Ion Exchange Chromatography 264
 6.2.2.3 Hydrophilic Interaction Chromatography 266
 6.2.2.4 Separation of Viruses 267
6.2.3 Separation Problems 271
6.2.4 Fast Separations of Peptides and Proteins 274
6.2.5 Two-Dimensional Separations of Peptides and Proteins 274
6.3 Synthetic Polymers 275
 6.3.1 Determination of Molecular Weight Distribution 277
 6.3.2 Determination of Chemical Composition 278

7 PREPARATIVE SEPARATIONS 283

7.1 Introduction 283
 7.1.1 Equipment for Preparative Separation 285
7.2 Isocratic Separation 286
 7.2.1 Touching-Peak Separation 287
 7.2.1.1 Theory 287
 7.2.1.2 Column Saturation Capacity 289
 7.2.1.3 Sample-Volume Overload 292
 7.2.2 Method Development for Isocratic Touching-Peak Separation 292
 7.2.2.1 Optimizing Separation Conditions 295
 7.2.2.2 Selecting a Sample Weight for Touching-Peak Separation 297
 7.2.2.3 Scale-Up 298
 7.2.2.4 Sample Solubility 300
 7.2.3 Beyond Touching-Peak Separation 301
7.3 Gradient Separation 302
 7.3.1 Touching-Peak Separation 306
 7.3.2 Method Development for Gradient Touching-Peak Separation 306
 7.3.2.1 Step Gradients 311
 7.3.3 Sample-Volume Overload 312
 7.3.4 Possible Complications of Simple Touching-Peak Theory and Their Practical Impact 312
 7.3.4.1 Crossing Isotherms 313
 7.3.4.2 Unequal Values of S 314
7.4 Severely Overloaded Separation 315
 7.4.1 Is Gradient Elution Necessary? 316
 7.4.2 Displacement Effects 317
 7.4.3 Method Development 317
 7.4.4 Separations of Peptides and Small Proteins 318
 7.4.5 Column Efficiency 320
 7.4.6 Production-Scale Separation 320

8 OTHER APPLICATIONS OF GRADIENT ELUTION 323

8.1 Gradient Elution for LC-MS 324
 8.1.1 Application Areas 325
 8.1.2 Requirements for LC-MS 325
 8.1.3 Basic LC-MS Concepts 326
 8.1.3.1 The Interface 326
 8.1.3.2 Column Configurations 328
 8.1.3.3 Quadrupoles and Ion Traps 328
 8.1.4 LC-UV vs LC-MS Gradient Conditions 330
8.1.5 Method Development for LC-MS

8.1.5.1 Define Separation Goals (Step 1, Table 8.2) 332
8.1.5.2 Collect Information on Sample (Step 2, Table 8.2) 334
8.1.5.3 Carry Out Initial Separation (Run 1, Step 3, Table 8.2) 339
8.1.5.4 Optimize Gradient Retention k^* (Step 4, Table 8.2) 339
8.1.5.5 Optimize Selectivity α^* (Step 5, Table 8.2) 339
8.1.5.6 Adjust Gradient Range and Shape (Step 6, Table 8.2) 340
8.1.5.7 Vary Column Conditions (Step 7, Table 8.2) 341
8.1.5.8 Determine Inter-Run Column Equilibration (Step 8, Table 8.2) 341

8.1.6 Special Challenges for LC-MS

8.1.6.1 Dwell Volume 342
8.1.6.2 Gradient Distortion 342
8.1.6.3 Ion Suppression 343
8.1.6.4 Co-Eluting Compounds 345
8.1.6.5 Resolution Requirements 346
8.1.6.6 Use of Computer Simulation Software 347
8.1.6.7 Isocratic Methods 347
8.1.6.8 Throughput Enhancement 347

8.2 Ion-Exchange Chromatography

8.2.1 Theory 349
8.2.2 Dependence of Separation on Gradient Conditions 356
8.2.3 Method Development for Gradient IEC

8.3 Normal-Phase Chromatography

8.3.1 Theory 359
8.3.2 Method Development for Gradient NPC

8.4 Ternary- or Quaternary-Solvent Gradients

9 THEORY AND DERIVATIONS

9.1 The Linear Solvent Strength Model

9.1.1 Retention

9.2 Second-Order Effects

9.2.1 Assumptions About ϕ and k

9.3. Accuracy of Gradient Elution Predictions

9.3.1 Gradient Retention Time
9.3.1.2 Computer Simulation 399
9.3.2 Peak Width Predictions 399
9.3.3 Measurement of Values of S and $\log k_0$ 400
9.4 Values of S 401
9.4.1 Estimating Values of S from Solute Properties and Experimental Conditions 402
9.5 Values of N in Gradient Elution 404

Appendix I \textit{THE CONSTANT-}S \textit{APPROXIMATION IN GRADIENT ELUTION} 414

Appendix II \textit{ESTIMATION OF CONDITIONS FOR ISOCRATIC ELUTION, BASED ON AN INITIAL GRADIENT RUN} 416

Appendix III \textit{CHARACTERIZATION OF REVERSED-PHASE COLUMNS FOR SELECTIVITY AND PEAK TAILING} 418

Appendix IV \textit{SOLVENT PROPERTIES RELEVANT TO THE USE OF GRADIENT ELUTION} 434

Appendix V \textit{THEORY OF PREPARATIVE SEPARATION} 436

Appendix VI \textit{FURTHER INFORMATION ON VIRUS CHROMATOGRAPHY} 445

Index 450
High-performance liquid chromatography (HPLC) is today widely used for separation and analysis [1, 2]. Many samples cannot be successfully separated by the use of fixed (isocratic) conditions, but instead require gradient elution (also called solvent programming): a change in mobile phase composition during the separation, so as to progressively reduce sample retention. To take full advantage of such gradient-HPLC separations, the user needs an understanding of gradient elution comparable to that required for isocratic separation. Our reference in the present book to high-performance gradient elution implies such an understanding, accompanied by the use of state-of-the-art equipment, columns and experimental technique. Because of the major importance of separations by reversed-phase liquid chromatography (RP-LC), this separation mode will be assumed unless otherwise stated (Sections 6.2.2, 8.2, and 8.3 discuss gradient elution with ion-exchange and normal-phase chromatography).

Several previous reviews or books ([3–8] and Chapter 8 of [2]) discuss the principles and practice of gradient elution, as these were understood at the time these accounts were written. However, these past reviews now appear dated, incomplete, and/or unnecessarily complicated for practical application. Hence the present book has been written with three different goals in mind: (a) a practical summary of what the reader needs to know in order to carry out any gradient separation; (b) a conceptual understanding of how gradient elution works; and (c) a detailed examination of the underlying theoretical framework of gradient elution, for application to special situations and to satisfy any lingering doubts of the reader. Because many readers will be interested in simply using gradient elution or developing a gradient procedure, this application is emphasized in the present book.

Of the various ways in which chromatography is applied today, few have been as misunderstood as the technique of gradient elution, which for some continues as “a riddle wrapped in a mystery inside an enigma” [9]. “Simple” isocratic separation can itself be a challenge, while gradient elution involves added complexity in terms of equipment, procedures, the interpretation of results, and a preferred method development strategy. Compared with isocratic separation, gradient elution is also regarded as (a) subject to more experimental problems and (b) inherently slower and less robust, as well as (c) presenting special difficulty for method transfer from one laboratory to another. Because of these potentially unfavorable characteristics of gradient elution, many workers in the past have avoided its use where possible. It is a premise of the present book that gradient elution can be much less hard to understand and much more easy to use than has been assumed previously.

Gradient elution sometimes appears to contradict our prior experience based on isocratic separation. In isocratic elution, for example, a reduction in flow rate by a factor of 2, or a 2-fold increase in column length, leads to a doubling of
retention times and a 1.5- to 2-fold increase in peak widths. Similar changes in flow rate or column length when using gradient elution usually result in much smaller variations in peak retention or width. In isocratic elution, a change in flow rate or column length also has no effect on the relative spacing of peaks within the chromatogram. However, this is often not the case for gradient elution; indeed, such “surprises” are inherent in its nature. Changes in retention times and sample resolution, when flow rate, column length, or gradient time is varied in gradient elution, also depend on the nature of the sample being separated. In the latter connection, it is important to recognize four different sample groupings or classifications: “regular”/low-molecular-weight, “regular”/high-molecular-weight, “irregular”/low-molecular-weight, and “irregular”/high-molecular-weight samples. The significance for gradient elution of each of these four sample types is examined in this book. Except in Chapter 6, however, we will assume “low-molecular-weight” samples with molecular weights <1000 Da.

The essential similarity of isocratic and gradient elution is often overlooked, but once recognized it allows a much easier understanding of gradient separation, as well as an “intuitive” feeling for what will happen when some change in gradient conditions is made. In this book, we will use the linear-solvent-strength (LSS) model of gradient elution [3, 5, 7] as a bridge between separations by isocratic and gradient elution. This model also leads to near-exact equations for retention time, peak width, and resolution as a function of gradient conditions, as well as the widespread implementation of computer simulation as an aid to HPLC method development. For any sample, data from two or more experimental gradient runs can be used by the computer to predict either isocratic or gradient separation as a function of conditions, thereby facilitating the systematic improvement of the separation. Computer simulation is especially useful for developing gradient methods, and it has been used extensively in the present book as a means of more effectively illustrating the effects of different experimental conditions on gradient separation. It is also our hope that this book can prove useful “in reverse,” whereby a better understanding of gradient elution may even improve our application of isocratic separation.

The beginning of the book (Chapter 1, Section 2.1, and Chapter 3) describes the application of isocratic and gradient elution for typical samples (those with molecular weights <1000 Da), with minimal digression into the derivations of important equations and little attention to less important aspects of gradient elution. Sections 2.2–2.4 provide a conceptual basis for the better interpretation and use of gradient elution, which some (but probably not all) readers will want to read prior to Chapter 3. In Chapter 4, the equipment required for gradient elution is discussed. Chapter 5 deals with experimental problems that can be encountered in gradient elution as well as related troubleshooting information. Chapter 6 recognizes important differences in gradient elution when this technique is used for macromolecular samples, for example, large peptides, proteins, nucleic acids, viruses, and other natural or synthetic polymers. Chapter 7 expands the discussion of earlier chapters to the use of gradient elution for preparative separations, that is, the injection of larger samples for recovery of purified material. Chapter 8 examines (a) separations which feature the combination of gradient elution with mass spectrometric detection.
(LC-MS), (b) the application of gradient elution to normal-phase and ion-exchange separations, and (c) the use of complex gradients formed from three or more solvents. Chapter 9 concludes with a more detailed treatment of the fundamental equations of gradient elution, including attention to so-called “nonideal” contributions to gradient separation.

The present book assumes some familiarity with the principles and practice of HPLC [2]. For a quick and practical summary of the essentials of gradient elution separation, it is suggested that the reader read Chapter 1, Section 2.1, Chapter 3, and Chapter 4, in this order, then consult Chapter 5 (Troubleshooting) as needed. If greater insight into how gradient elution works is desired, Sections 2.2–2.4 provide additional background, with further detail available in Chapter 9. Biochemists may want to start with Chapters 1 and 3, plus Section 6.2, while workers engaged in the isolation of purified sample components will benefit especially from Chapter 7 (Preparative Separations). A “reading plan” for the book is suggested by Figure P.1, with the bold topics comprising a minimal introduction to gradient elution.

No profit grows, where is no pleasure taken; In brief, sir, study what you most affect.

—William Shakespeare, The Rape of Lucrece

The present book is heavily cross-referenced to other sections of the book, so as to allow the reader to follow up on topics of special interest, or to clarify questions that may arise during reading. Because extensive cross-referencing represents a potential distraction, in most cases it is recommended that the reader simply ignore these invitations to jump to other parts of the book. Some chapters include parts that are of greater academic than practical interest; these sections are in each case clearly identified (introduced with an advisory in italics), so that they can be bypassed at the option of the reader. We have also taken pains to provide definitions for all symbols used in this book (Glossary section), as well as a comprehensive and detailed index.

For the past 30 years, gradient elution has been a major research focus for us. During this time, we have worked together to better understand and apply this powerful experimental procedure, and we have also created commercial software (DryLab®) for the more efficient use of gradient elution by numerous workers throughout the world (“computer simulation”). For one of us (LRS), an interest in this topic extends back another 15 years into the early 1960s. The present book therefore represents the culmination of an interest of long standing, as well as an attempt at a complete and detailed account of the subject. We hope that the book will find use by practical workers throughout the world. During the past 35 years, another scientist, Pavel Jandera from the University of Pardubice, has similarly devoted much of his career to the study and elucidation of the principles and practice of gradient elution. The present book owes much to his many contributions in this area, which did not stop with the publication of his book on gradient elution in 1985 [6] or his recent review of the subject [8].

We very much appreciate the assistance of four co-authors, who were responsible for the preparation of Sections 6.2.2.4 [Carl Scandella (Carl Scandella
Consulting, Bellevue WA), Paul Shabram (Ventana Biosciences, San Diego, California), and Gary Vellekamp (Schering Plough Research Institute, Union, New Jersey) and 7.4 [Geoff Cox (Chiral Technologies, Inc., West Chester, Pennsylvania)]. We are likewise grateful to a number of past collaborators who have greatly assisted our own research on gradient elution: Geoff Cox, Pete Carr, Julie Eble, Russel Gant, Barbara Ghrist, Jack Kirkland, Tom Jupille, Dana Lommen, Dan Marchand, Imre Molnar, Thomas Mourey, Hans Poppe, Mary Ann Quarry, Bill Raddatz, Dennis Saunders, Marilyn Stadalius, Laurie Van Heukelem, Tom Waeghe, and Peng-Ling Zhu. Finally, we very much appreciate the dedicated efforts of several reviewers of this book prior to its publication: Geoff Cox, John Ford, Pavel Jandera, Tom Jupille, John Kern, James Little, Dan Marchand, Jim Merdink, Tom Mourey, Uwe Neue, Carl Scandella, Peter Schoenmakers, Mark Stone, Tim Wehr, Loren Wrisley, Patrick Lukulay, and Jianhong (Jane) Zhao. Several of the latter reviewers have provided further assistance by supplying preprints or reprints of their own work.
REFERENCES

LLOYD R. SNYDER
JOHN W. DOLAN

Orinda, California
Amity, Oregon
September 2006
Glossary of Symbols and Terms

This section is divided into “Major symbols” and “Minor symbols.” “Minor symbols” refer to symbols that are used only once or twice. Most symbols of interest will be included in “Major symbols.” Equations which define a particular symbol are listed with that symbol; for example, “Equation (2.18)” refers to Equation (2.18) in Chapter 2. The units for all symbols used in this book are indicated. Where IUPAC definitions or symbols differ from those used in this book, we have indicated the corresponding IUPAC term (from ASLDID 009921), for example, t_M instead of t_0.

Major Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>column hydrogen-bond acidity; Appendix III</td>
</tr>
<tr>
<td>A solvent</td>
<td>mobile phase at the start of the gradient</td>
</tr>
<tr>
<td>ACN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>b</td>
<td>intrinsic gradient steepness; Equation (2.11) (see discussion in Section 1.3.3)</td>
</tr>
<tr>
<td>B, B solvent</td>
<td>mobile phase at the end of the gradient; percentage B refers to the volume-percent of B in the mobile phase</td>
</tr>
<tr>
<td>B</td>
<td>column hydrogen bond basicity; Appendix III</td>
</tr>
<tr>
<td>C</td>
<td>column cation exchange capacity; Appendix III</td>
</tr>
<tr>
<td>C</td>
<td>concentration of the salt counter-ion in IEC (assuming a univalent counter-ion)</td>
</tr>
<tr>
<td>C^*o, $(C)_{o}$</td>
<td>value of C in gradient elution (for band at column midpoint)</td>
</tr>
<tr>
<td>$(C){f}$, $(C){f}$</td>
<td>values of C at beginning (o) and end (f) of gradient</td>
</tr>
<tr>
<td>d_p</td>
<td>particle size (μm)</td>
</tr>
<tr>
<td>F</td>
<td>flow rate (mL/min)</td>
</tr>
<tr>
<td>G</td>
<td>gradient compression factor; Equation (9.36)</td>
</tr>
<tr>
<td>G_{12}</td>
<td>ratio of peak widths before and after passage of a step-gradient through a band within the column; $= W_2/W_1$ in Figure 9.4</td>
</tr>
<tr>
<td>GLP</td>
<td>good laboratory practice</td>
</tr>
<tr>
<td>H</td>
<td>plate height (mm); Equation (9.58)</td>
</tr>
</tbody>
</table>
GLOSSARY OF SYMBOLS AND TERMS

H
column hydrophobicity; Appendix III
HIC
hydrophobic interaction chromatography
HILIC
hydrophilic interaction chromatography
HPLC
if you need to look up the meaning of HPLC, this is the wrong book for you
i.d.
column internal diameter (mm)
IEC
ion-exchange chromatography
IQ
installation qualification; Section 5.1.1.1
k
isocratic retention factor; Equation (2.4) (formerly called capacity factor, k')
k^*
gradient retention factor; equal to value of k for a band when it reaches the column mid-point; Equation (2.13), Figure 1.7 (previously, a different symbol was used, \tilde{k})
$k^*(a), k^*(b), \ldots$ value of k^* for peak a, b, and so on
k_c
value of k at elution; Figure 1.7
k_i, k_j, \ldots value of k for peaks i, j, etc. Also, k_i is the instantaneous value of k for a band at any time during its migration through the column; Equation (9.1)
k_0
the value of k in gradient elution at the start of the gradient [Equation (2.10)]; also (Chapter 7 and Appendix V only), the value of k in isocratic elution for a small weight of injected sample (in distinction to the value of k for a large sample)
k_w
value of k for water or 0 percent B as mobile phase (ϕ_0) (extrapolated value)
k_1, k_2, \ldots value of k for solute 1, 2, and so on; also, value of k for two different values of ϕ (ϕ_1 and ϕ_2)
L
column length (mm)
LC
liquid chromatography
LCCC
liquid chromatography under critical conditions
LC-MS
liquid chromatography–mass spectrometry (Section 8.1)
LC-MS/MS
LC-MS with triple quadrupole mass spectrometer (Section 8.1)
LSS
linear-solvent-strength (model) (Sections 1.4.2, 9.1)
m
stoichiometry factor in NPC [Equation (8.8)]; also, $|z|$ in IEC
M
solute molecular weight; also counter-ion molarity in IEC
MeOH
methanol
MS
mass spectrometric
n
number of peaks in a chromatogram or sample; also the designation of the nth oligomer in an oligomeric sample
N
column plate number (isocratic); Equation (2.5); also native protein in Figure 6.4
GLOSSARY OF SYMBOLS AND TERMS

N_0 column plate number for a small weight of sample; Equation (7.3)
N^* column plate number (gradient); Equation (2.20)
NPC normal-phase chromatography
ODS octdecylsilyl; C_{18}
OQ operational qualification; Section 5.1.1.1
p quantity used to calculate gradient compression factor G; Equation (9.35)
P column pressure-drop (psi); MegaPascals (MPa $= 145$ psi) is also commonly used, but not in the present book (the IUPAC symbol is Δp)
PC peak capacity; the number of peaks with $R_s = 1$ that can be fit into a given chromatogram; see Figure 2.11(a) and related text.
PC_{req} required peak capacity for the separation of a sample containing n components; see Figure 2.11(c) and related text (previously defined as “PC^*”)
prep-LC preparative liquid chromatography; Chapter 7
psi pounds per square inch; see P
PQ performance qualification; Section 5.1.1.1
QC quality control
r fractional migration of a band through the column during gradient elution; Equation (9.12)
R equal to $1/(1 + k)$ (the IUPAC symbol is κ)
R_1, R_2 equal to R for peaks 1 and 2
RP-LC reversed-phase liquid chromatography
R_F fractional migration of a peak through the column after the passage of one column-volume V_m of mobile phase through the column; $R_F = 1/(1 + k)$
R_s resolution of two adjacent peaks; Equation (2.6), Figure 2.1; also see Equations (2.8) (isocratic) and (2.21) (gradient); “critical” resolution refers to the value of R_s for the least well separated pair of peaks in a chromatogram
S constant in Equation (1.2) for a given solute and experimental conditions; equal to $d(\log k)/d\phi$
S column steric resistance to penetration; Appendix III
SA surface area (m^2); Equation (7.5)
time after the beginning of a gradient run (min); Equation (9.2); also, time after the end of a gradient run (Fig. 9.5a)
T-P “touching-peak”; preparative separation in which a large enough sample is injected to allow the desired product peak to touch an adjacent peak in the chromatogram (Section 7.1)
TFA trifluoroacetic acid
THF tetrahydrofuran
$ t_D $ system dwell time (min); equal to $ V_D/F $
$ t_{delay} $ gradient delay time (min), corresponding to initial isocratic elution before the start of the gradient
$ t_{eq} $ equilibration time for inter-run column equilibration in gradient elution (min); equal to $ V_{eq}/F $
$ t_G $ gradient time (min)
$ t_0 $ column dead time (min); retention time of an unretained peak such as thiourea (the IUPAC symbol is $ t_M $)
$ t_R $ retention time (min); see Figure 2.1 and related text
$ t_{R,a}, t_{R,b}, $ etc. values of $ t_R $ for peaks $ a, b, $ etc.
$ (t_R)_{avg} $ average value of $ t_R $; Figure 3.2
$ t'_R $ corrected retention time, equal to $ t_R - t_0 $
ULOQ upper limit of quantification
USP $ United States Pharmacopeia $
UV ultraviolet
$ V $ volume of mobile phase that has entered the column by a given time (mL); Equation (9.1)
$ V_D $ equipment dwell volume (mL); volume of system flowpath between inlet to gradient mixer and column inlet
$ V_{eq} $ equilibration volume (mL) of A solvent used for inter-run column equilibration in gradient elution
$ V_m $ column dead volume (mL); $ V_m = t_0F $; unless noted otherwise, a column internal diameter of $ d_c = 4.6 $ mm is assumed, in which case $ V_m \approx 0.01L $, where $ L $ is column length in mm. Otherwise, $ V_m \approx 0.0005(\text{column i.d.)}^2 L $, where column i.d. and $ L $ are in mm (the IUPAC symbol is $ V_M $)
$ V_M $ the “mixing volume” of the gradient system (mL); Table 9.2
$ V_R $ retention volume (mL); $ V_R = t_R F = V_m(1 + k) $
$ V'_R $ corrected retention volume (mL), equal to $ V_R - V_m $
$ V_s $ sample volume (mL)
$ W $ baseline peak width (min); Figure 2.1 (IUPAC symbol is $ W_b $)
$ W_i, W_j, $ etc. value of $ W $ for peaks $ i, j, $ etc.
$ W_0 $ value of $ W $ for a small sample; Equation (7.2)
$ w_s $ column saturation capacity (mg)
$ W_{th} $ contribution to $ W $ from a sufficiently large sample weight (min); Equation (7.2)
\(w_x \) injected weight of compound \(x \) (mg)

\(W_{1/2} \) peak width at half height; Figure 2.1 (the IUPAC symbol is \(W_h \))

\(x \) fractional migration of a solute band through the column (Figure 1.7); also, band width in Figure 9.3

\(x_i, x_j \) values of \(x \) for solutes \(i \) and \(j \)

\(z \) effective charge on a sample compound in IEC

\(\alpha \) selectivity factor (isocratic); Equation (2.8)

\(\alpha^* \) selectivity factor (gradient) when the band-pair is at the column midpoint

\(\alpha_0 \) the value of isocratic \(\alpha \) or gradient \(\alpha^* \) for a small sample

\(\beta \) equal \(t_{G1}/t_{G2} \); Equation (9.48)

\(\delta t_R \) a change in retention time \(t_R \) due either to incomplete column equilibration or solvent demixing; also, an error in a calculated value of \(t_R \); Equation (9.43)

\(\delta\delta t_R \) difference in \(\delta t_R \) for two adjacent peaks

\(\Delta t_R \) difference in retention times for two peaks (min), for example, Equation (2.24a), Figure 3.2

\(\delta\phi \) error in calculated value of \(\phi \) at elution; Equation (9.43)

\(\delta\phi_m \) distortion of the gradient as a result of gradient rounding; Figure 9.7(a)

\(\Delta\phi \) gradient range, equal to the final value of \(\phi \) in the gradient (\(\phi_f \)) minus the initial value (\(\phi_0 \))

\(\phi \) volume fraction of B solvent in the mobile phase; equal to 0.01 times percentage B

\(\phi_c \) value of \(\phi \) for “critical elution behavior”

\(\phi_e \) value of \(\phi \) for mobile phase at the time a band elutes from the column

\(\phi_t \) value of \(\phi \) for mobile phase at end of gradient; for example, for 10–80 percent B gradient, \(\phi_t = 0.80 \)

\(\phi_0 \) value of \(\phi \) for mobile phase at start of gradient; for example, for 10–80 percent B gradient, \(\phi_0 = 0.10 \)

\(\phi^* \) value of \(\phi \) for mobile phase when a band is at the column mid-point

\(\eta \) solvent viscosity (cPoise); Table IV.1 of Appendix IV

2-D two-dimensional

The Jandera and Schoenmakers groups (and some other workers) have used different symbols than those employed in this book and by the authors in previous publications. Equivalent terms for these different groups are as follows.
MINOR SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>A_{HIC}</td>
<td>d(log (k))/d(C_{AS}); Equation (6.7)</td>
</tr>
<tr>
<td>API</td>
<td>atmospheric pressure ionization (includes APCI and ESI)</td>
</tr>
<tr>
<td>amu</td>
<td>atomic mass unit; equal to 1 Da</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionization interface</td>
</tr>
<tr>
<td>ASF</td>
<td>peak asymmetry factor</td>
</tr>
<tr>
<td>AU</td>
<td>absorbance units</td>
</tr>
<tr>
<td>(b_A, b_Z)</td>
<td>value of (b) for first peak (A) and last peak (Z) in the chromatogram [Equations (2.23) and (2.23a)]</td>
</tr>
<tr>
<td>BA</td>
<td>benzyl alcohol; Figure 7.13</td>
</tr>
<tr>
<td>(b^*)</td>
<td>designation of a compound in Figure 7.12</td>
</tr>
<tr>
<td>C</td>
<td>(p)-cresol; Figure 7.13</td>
</tr>
<tr>
<td>C_{AS}</td>
<td>concentration of ammonium sulfate in HIC; Equation (6.7)</td>
</tr>
<tr>
<td>D</td>
<td>fully denatured protein native protein; Figure 6.4</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton; equal to 1 amu</td>
</tr>
<tr>
<td>(d_c)</td>
<td>column internal diameter (mm)</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization interface (for MS)</td>
</tr>
<tr>
<td>(E_{T(30)})</td>
<td>measure of mobile phase polarity derived from spectroscopic measurements; Equation (9.51)</td>
</tr>
<tr>
<td>(F_s)</td>
<td>column-matching function; Equation III.1 of Appendix III</td>
</tr>
<tr>
<td>(h)</td>
<td>peak height (relative units); Figure 2.1; also, reduced plate height; Equation (9.56)</td>
</tr>
<tr>
<td>(h_{1/2})</td>
<td>one half of peak height; Figure 2.1</td>
</tr>
<tr>
<td>(H_0)</td>
<td>value of (H) for a small sample; Equation (V.4) of Appendix V</td>
</tr>
<tr>
<td>(H_{th})</td>
<td>contribution to (H) of a large sample; Equation (V.2) of Appendix V</td>
</tr>
<tr>
<td>(K)</td>
<td>equilibrium constant for solute retention</td>
</tr>
<tr>
<td>(k_{ACN})</td>
<td>value of (k) for pure ACN as mobile phase; Equation (6.17)</td>
</tr>
</tbody>
</table>
k_{H2O} value of k for water as mobile phase in HILIC; Equation (6.14)

k_i, k_j value of k for peaks i and j, respectively

$k_{o,A}, k_{o,Z}$ value of k_o for first peak A and last peak Z in the chromatogram [Equations (2.23) and (2.23a)]

k_{wi}, k_{wj} value of k_w for peaks i and j

k_0 value of k for $C_{\text{AS}} = 0$ in HIC [Equation (6.7)]

$k_{2.5}$ the value of k for 2.5 M ammonium sulfate in HIC; Equation (6.8)

LLE liquid–liquid extraction

m_{HILIC} $d(\log k)/d(\log \phi_{\text{H2O}})$ in HILIC; Equation (6.14)

MRM multiple reaction monitoring (MS/MS; Section 8.1)

MSD mass selective detector; single-quadrupole mass spectrometer

MTBE methyl-t-butylether

m/z mass-to-charge ratio

P phenol; Figure 7.13

PD partially denatured protein; Figure 6.4

PE 2-phenylethanol; Figure 7.13

PEEK poly-ether-ether-ketone; plastic tubing used for HPLC connections

p, q constants in Equation (6.19)

rhGH recombinant human growth hormone

SC standard calibrator

S_{HIC} equal to $-2.5 A_{\text{HIC}}$ in HIC; Equation (6.8)

S_i, S_j value of S for peaks i and j

SIM selective ion monitoring; also single ion monitoring (MS)

SPE solid-phase extraction

t_{G1}, t_{G2}, \text{etc.} values of t_G for runs 1, 2, and so on

t_{R(1)}, t_{R(2)} retention times of peaks 1 and 2, respectively (min)

t_{R,A}, t_{R,Z}$ values of t_R for first peak A and last peak Z in the chromatogram (min)

W_b value of W for peak b

W_i, W_j baseline peak widths of peaks i and j, respectively (min)

w_{ion} “loading function” in prep-LC; Equation (V.3)

δk error in calculated value of k at elution; Equation (9.46)

Δx fraction of a column length; Equation (9.19), Figure 9.2

$\phi_{A}, \phi_{B}, \phi_{AB}$ values of ϕ for the mobile phase in reservoir A, B and a mixture of A and B where the volume fraction of A is ϕ_{AB} (Section 1.3)

ϕ_{HIC} defined as $-(C_{\text{AS}} - 2.5)/2.5$; Equation (6.8)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_{\text{H2O},f}$, $\phi_{\text{H2O},o}$</td>
<td>value of ϕ_{H2O} at beginning (o) and end (f) of a HILIC gradient</td>
</tr>
<tr>
<td>σ_g</td>
<td>surface area per unit weight of column packing (m^2/g); Equation (7.5)</td>
</tr>
<tr>
<td>v</td>
<td>reduced velocity; Equation (9.57)</td>
</tr>
<tr>
<td>ψ</td>
<td>phase ratio (the IUPAC symbol is β)</td>
</tr>
</tbody>
</table>