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Preface

Although there is a moderate amount of data analysis, especially in certain chapters,
the emphasis in this book is on the statistical design of experiments. Such emphasis is
justified by the widely held view that data from a well-designed experiment are easy
to analyze. Certain types of designs are not simple, however, such as those covered in
Chapters 7, 8, and 11, and the problem is compounded by the fact that some popular
statistical software packages have quite limited capability for those designs.

The book would be suitable for an undergraduate one-semester course in design
of experiments. For a course taught to nonstatistics majors, an instructor may wish
to cover Chapters 1–4, part of Chapter 5, and then pick and choose from the other
chapters in accordance with the needs of the students. The selection might include
either or both of Chapters 10 and 12 and then cover sections of interest in Chapter 13.

For statistics majors, the book would be suitable for use in an advanced under-
graduate course, perhaps covering Chapters 1–5, 7, 8, and much of Chapter 13. There
is also enough advanced material for the book to be useful as a reference book in a
graduate course taught to statistics majors, and might also be used in a graduate course
for nonstatistics majors, depending on the needs and backgrounds of the students.

There is also enough material for a two-semester course, with the first course
perhaps covering Chapters 1–6 and the second course covering Chapters 7–12 and
14, and parts of Chapter 13.

There is a considerable amount of material that is not covered to any extent, if at
all, in other books on the subject, and some or all of this material might be used in
special topics courses. These topics include conditional effects, uniform designs, and
designs for restricted operating regions. (I have covered this material in an Internet
course.)

A two-semester course in statistical methods should provide more than enough
background for the book since the emphasis is on designs rather than statistical
concepts. Matrix algebra is used in various places in the book, although it is not used
extensively. Nevertheless, proficiency in the basics of matrix algebra is necessary for
following some of the material.

xv
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xvi preface

One of the special features of the book is the emphasis on conditional effects
in Chapters 4, 5, 6, and 10. This is an important topic that is not covered to any
extent in most books and is addressed in very few journal articles. Another somewhat
unique feature is moderate use of URLs, especially links to published articles that are
available to the general public as well as article preprints and technical reports. There
are other links for articles that are available to certain groups, such as members of the
American Society for Quality. Some of those URLs might of course become outdated
but I decided to list them since many of them, such as links to journal articles, will
probably not become outdated in the near future. They make available to the reader
a considerate amount of important resource material.

It is worth noting that this book does not contain catalogs of designs, as are given
in some other books on the subject. Rather, the emphasis is on understanding design
concepts and properties, the software that is available for generating specific designs
and when to use those designs, and as stated, a moderate amount of analysis of data
from experiments in which the designs are used, with extensive analysis provided
in some case studies. Although there is some hand computation, the emphasis is on
using appropriate software to generate output and interpret the output.

It is also worth noting that whereas there are case studies and a moderate amount
of data analyses, there is not a “full” analysis of any dataset as that would include
checking for outliers and influential observations, testing assumptions, and so on,
which are covered in books on statistical methods. This is important but comes under
the heading of data analysis rather than design and analysis of experiments. Although
this book has more analysis than most books on design of experiments, it is not
intended to be a handbook on data analysis.

I wish to gratefully acknowledge my editor, Steve Quigley, who motivated me to
write this book, in addition to the contributions of associate editor Susanne Steitz,
production editor Rosalyn Farkas, and colleagues who have made helpful comments,
including Dennis Lin and Ivelisse Aviles, plus the helpful comments of three anony-
mous reviewers.

Thomas P. Ryan
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CHAPTER 1

Introduction

The statistical design of experiments plays a prominent role in experimentation. As
George Box has stated, to see how a system functions when you have interfered with
it, you have to interfere with it. That “interference” must be done in a systematic way
so that the data from the experiment produce meaningful information.

The design of an experiment should be influenced by (1) the objectives of the exper-
iment, (2) the extent to which sequential experimentation will be performed, if at all,
(3) the number of factors under investigation, (4) the possible presence of identifiable
and nonidentifiable extraneous factors, (5) the amount of money available for the ex-
perimentation, and (6) the purported model for modeling the response variable. Inman,
Ledolter, Lenth, and Niemi (1992) stated, “Finally, it is impossible to overemphasize
the importance of using a statistical model that matches the experimental design that
was actually used.” If we turn that statement around, we should use a design that
matches a tentative model, recognizing that we won’t know the model exactly.

In general, the design that is used for an experiment should be guided by these
objectives. In many cases, the conditions and objectives will lead to an easy choice
of a design, but this will not always be the case. Software is almost indispensable
in designing experiments, although commonly used software will sometimes be in-
adequate, such as when there is a very large number of factors. Special-purpose
software, not all of which is commercially available, will be needed in some circum-
stances. Various software programs are discussed throughout the book, with strong
emphasis on Design-Expert r©, which has certain features reminiscent of expert sys-
tems software, JMP r©, and MINITAB r©. (Readers intending to use the latter for de-
signing experiments and analyzing the resultant data may be interested in Mathews
(2004), although the latter is largely an introductory statistics book. Parts of the
book are available online to members of the American Society for Quality (ASQ) at
http://qualitypress.asq.org/chapters/H1233.pdf.) Although it is freeware, GOSSET is
far more powerful than typical freeware. It is especially good for optimal designs (see
Section 13.7) and runs on Unix, Linux, and Mac operating systems. Since GOSSET

Modern Experimental Design By Thomas P. Ryan
Copyright C© 2007 John Wiley & Sons, Inc.
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2 introduction

is not as well known by experimenters, its Web site has been given here, which is
http://www.research.att.com/∼njas/gosset/index.html.

Design-Expert is a registered trademark of Stat-Ease, Inc. JMP is a registered
trademark of SAS Institute, Inc. MINITAB is a registered trademark of MINITAB, Inc.

1.1 EXPERIMENTS ALL AROUND US

People perform experiments all of the time: workers who are new to a city want to find
the shortest and/or fastest route to work, chefs experiment with new recipes, computer
makers try to make better and faster computers, and so on. Improvement in processes
is often the objective, as is optimality, such as finding the shortest route to work.

A pharmaceutical company that invents a new drug it believes is effective in com-
bating a particular disease has to support its belief with the results of clinical trials,
a form of experimentation. A scientist who believes he or she has made an impor-
tant discovery needs to have the result supported by the results of experimentation.
Although books on design of experiments did not begin to appear until well into the
twentieth century, experimentation is certainly about as old as mankind.

Undoubtedly, all kinds of experiments were performed centuries ago that did not
become a part of recorded history. About 100 years ago some rather extreme and
bizarre experiments performed by Duncan MacDougall, MD, did become part of
recorded history, however. He postulated that the human soul has measurable mass
that falls within a specific range of weights. To prove this, he performed experiments on
humans and dogs. In experimentation described at http://www.snopes.com/religion/
soulweight.asp, Dr. MacDougall supposedly used six terminal patients and weighed
them before, during, and after the process of death. The first patient lost three-fourths
of an ounce and Dr. MacDougall, who apparently sought to conduct his experiments
in a manner approximating the scientific method (see, e.g., Beveridge, 1960), ruled
out all possible physiological explanations for the loss of weight. Since 3/4 ounce
equals 21.26 grams, the result of this experimentation is believed to form the basis
for the title of the movie 21 Grams that was released in 2003 and starred Sean Penn
and Naomi Watts.

To help confirm his conclusion, Dr. MacDougall decided to perform the same
experiment on 15 dogs and found that the weight of the dogs did not change. As
he stated, “the ideal test on dogs would be obtained in those dying from some disease
that rendered them much exhausted and incapable of struggle.” Unfortunately, he
found that “it was not my good fortune to find dogs dying from such sickness.” This
prompted author Mary Roach (2003) to write “barring a local outbreak of distemper,
one is forced to conclude that the good doctor calmly poisoned fifteen healthy canines
for his little exercise in biological theology.”

Accounts of Dr. MacDougall’s experiments were published in the journal American
Medicine and in The New York Times: “Soul has weight, physician thinks,” March 11,
1907, p. 5, and “He weighed human soul,” October 16, 1920, p. 13, with the latter
published at the time of his death. MacDougall admitted that his experiments would
have to be repeated many times with similar results before any conclusions could be
drawn. Today his work is viewed as suffering from too small a sample size and an
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1.2 objectives for experimental designs 3

imprecise measuring instrument, and is viewed as nothing more than a curiosity (see,
for example, http://www.theage.com.au/articles/2004/02/20/1077072838871.html.)

Although such experimentation is quite different from most types of experimen-
tation that involve statistically designed experiments, small sample sizes and impre-
cise measuring instruments can undermine any experiment. Accordingly, attention is
devoted in Section 1.4.3 and in other chapters on necessary minimum sample sizes
for detecting significant effects in designed experiments.

More traditional experiments, many of which were performed more than 50 years
ago, are in the 113 case studies of statistically designed experiments given by Bisgaard
(1992).

When we consider all types of experiments that are performed, we find that cer-
tainly most experiments are not guided by statistical principles. Rather, most exper-
imentation is undoubtedly trial-and-error experimentation. Much experimentation
falls in the one-factor-at-a-time (OFAT) category, with each of two or more factors
varied one at a time while the other factors are held fixed. Misleading information
can easily result from such experiments, although OFAT designs can occasionally be
used beneficially. These designs are discussed in Section 13.1.

1.2 OBJECTIVES FOR EXPERIMENTAL DESIGNS

The objectives for each experiment should be clearly delineated, as these objectives
will dictate the construction of the designs, with sequential experimentation generally
preferred. The latter is usually possible, depending upon the field of application.
Bisgaard (1989) described a sequence of experiments and how, after considerable
frustration, a satisfactory end result was finally achieved.

As explained by John (2003), however, sequential experimentation isn’t very prac-
tical in the field of agronomy, as the agronomist must plan his or her experiment in
the spring and harvest all of the data in the fall. Such obstacles to sequential exper-
imentation do not exist in engineering applications, nor do they exist in most other
fields of application. (John (2003) is recommended reading for its autobiographical
content on one of the world’s leading researchers in experimental design over a period
of several decades.)

Following are a few desirable criteria for an experimental design:

(1) The design points should exert equal influence on the determination of the
regression coefficients and effect estimates, as is the case with almost all the
designs discussed in this book.

(2) The design should be able to detect the need for nonlinear terms.
(3) The design should be robust to model misspecification since all models are

wrong.
(4) Designs in the early stage of the use of a sequential set of designs should be

constructed with an eye toward providing appropriate information for follow-
up experiments.

Box and Draper (1975) gave a list of 14 properties that a response surface design (see
Chapter 10) should possess, and most of the properties are sufficiently general as to be
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applicable to virtually all types of designs. That list was published over 30 years ago
and many advancements have occurred since then, although some properties, such as
“provide data that will allow visual analysis,” will stand the test of time.

Assume that a marathon runner would like to identify the training and nutritional
regimens that will allow him or her to perform at an optimal level in a forthcoming
race. Let Y denote the runner’s race time and let μ denote what his or her theoretical
average time would be over all training and nutritional regimens that he or she would
consider and over all possible weather conditions. If no controllable or uncontrollable
factors could be identified that would affect the runner’s time, then the model for the
race time would be

Y = μ + ε

with ε denoting a random error term that represents that the race time should vary in
a random manner from the overall mean.

If this were the true model, then all attempts at discovering the factors that affect
this person’s race time would be unsuccessful. But we know this cannot be the correct
model because, at the very least, weather conditions will have an affect. Weather con-
ditions are, of course, uncontrollable, and so being able to identify weather conditions
as an important factor would not be of great value to our runner. However, he or she
would still be interested in knowing the effect of weather conditions on performance,
just as a company would like to know how its products perform when customers use
the products in some way other than the intended manner.

The runner would naturally prefer not to be greatly affected by weather conditions
nor by the difficulty of the course, just as a toy manufacturer would not want its toys
to fall apart if children are somewhat rough on them.

In experimental design applications we want to be able to identify both controllable
and uncontrollable factors that affect our response variable (Y ). We must face the
fact, however, that we cannot expect to identify all of the relevant factors and the
true model that is a function of them. As G. E. P. Box stated (e.g., Box, 1976), “All
models are wrong, but some are useful.” Our objective, then, is to identify a useful
model, Y = f (X1, X2, . . . , Xk) + ε, with X1, X2, . . . , Xk having been identified as
significant factors. Each factor is either quantitative or qualitative, and a useful model
might contain a mixture of the two. For example, the type of breakfast that a runner
eats would be a qualitative factor.

Since we will never have the correct model, we cannot expect to run a single
experiment and learn all that we need to learn from that experiment. Indeed, Box
(1993) quoted R. A. Fisher: “The best time to design an experiment is after you
have done it.” Thus, experimentation should (ideally) be sequential, with subsequent
experiments designed using knowledge gained from prior experiments, and budgets
should be constructed with this in mind. Opinions do vary on how much of the
budget should be spent on the first experiment. Daniel (1976) recommends using
50–67 percent of the resources on the first experiment, whereas Box, Hunter, and
Hunter (1978) more stringently recommend that at most 25 percent of the resources
be used for the first experiment. Since sequential experimentation could easily involve
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more than two experiments, depending upon the overall objective(s), the latter seems
preferable.

1.3 PLANNED EXPERIMENTATION VERSUS USE OF
OBSERVATIONAL DATA

Many universities model college grade point average (GPA) as a function of variables
such as high school GPA and aptitude test scores. As a simple example, assume that the
model contains high school GPA and SAT total as the two variables. Clearly these two
variables should be positively correlated. That is, if one is high the other will probably
also be high. When we have two factors (i.e., variables) in an experimental design,
we want to isolate the effect of each factor and also to determine if the interaction
of the two factors is important (interaction is discussed and illustrated in detail in
Section 4.2).

A factor can be either quantitative or qualitative. For a quantitative factor, in-
ferences can be drawn regarding the expected change in the response variable per
unit change in the factor, within the range of the experimentation, whereas, say, the
“midpoint” between two levels of a qualitative factor, such as two cities, generally
won’t have any meaning. Quantitative and qualitative factors are discussed further in
Section 1.6.2.2.

For the scenario just depicted, we do not have an experimental design, however.
Rather, we have observational data, as we would “observe” the data that we would
obtain in our sample of records from the Registrar’s office. We can model observational
data, but we cannot easily determine the separate effects of the factors since they will
almost certainly be correlated, at least to some degree.

However, assume that we went to the Registrar’s office and listed 25 combinations
of the two variables that we wanted, and the student’s college GPA was recorded
for each combination. Since the values of the two variables are thus fixed, could we
call this planned experimentation? No, it is still observational data. Furthermore, it
would be nonrandom data if we wanted our “design” to have good properties, as we
would, for example, be trying to make the two variables appear to be uncorrelated
(i.e., an orthogonal design), which are actually highly correlated. So the results that
were produced would probably be extremely misleading.

Returning to the runner example, let’s say that our runner uses two nutritional
supplement approaches (heavy and moderate), and two training regimes (intense and
less intense). He wants to isolate the effects of these two factors, and he will use
a prescribed course and record his running time. Assume that he is to make four
runs and for two of these runs he uses a heavy supplement approach and an intense
training regime, and for the other two he uses a moderate supplement approach and
a less intense training regime.

Would the data obtained from this experiment be useful? No, this would be a clas-
sic example of how not to design an experiment. If the running time decreased when
the intensity of the training regimen increased, was the decrease in running time due
to the training regimen change or was it due to the increase in supplementation? In
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statistical parlance, these two effects are completely confounded and cannot be sepa-
rated. (The terms confounding and partial confounding are discussed and illustrated
in Section 5.1.)

Obviously the correct way to design the experiment if four runs are to be used
is to use all four combinations of the two factors. Then we could identify the ef-
fects of each factor separately, as will be seen in Section 4.1 when we return to this
example.

1.4 BASIC DESIGN CONCEPTS

Assume that a math teacher in an elementary school has too many students in her
class one particular semester, so her class will be split and she will teach each of
the two classes. She has been considering a new approach to teaching certain math
concepts, and this unexpected turn of events gives her an opportunity to test the new
approach against the standard approach. She will split the 40 students (20 boys and
20 girls) into two classes, and she wonders how she should perform the split so that
the results of her experiment will be valid.

One obvious possibility would be to have the boys in one class and the girls in
the other class. In addition to being rather unorthodox, this could create a lurking
variable (i.e., an extraneous factor) that could undermine the results since it has been
conjectured for decades that boys may take to math better than do girls. What if the
split were performed alphabetically? Some people believe that there is a correlation
between intelligence and the closeness to the beginning of the alphabet of the first
letter in the person’s last name. Although this is probably more folklore than fact,
why take a chance? The safest approach would obviously be to use some random
number device to assign the students to the two classes. That is, randomization is
used. (Although this would likely create different numbers of boys and girls in each
class if the 40 students were randomly divided between the two classes, the imbalance
would probably be slight and not of any real concern.)

1.4.1 Randomization

IMPORTANT POINT

Randomization should be used whenever possible and practical so as to elimi-
nate or at least reduce the possibility of confounding effects that could render an
experiment practically useless.

Randomization is, loosely speaking, the random assignment of factor levels to exper-
imental units. Ideally, the randomization method described by Atkinson and Bailey
(2001) should be used whenever possible, although it is doubtful that hardly any exper-
imenters actually use it. Specifically, they state, “In a completely randomised design
the treatments, with their given replications, are first assigned to the experimental units
systematically, and then a permutation is chosen at random from the n! permutations
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of the experimental units (p. 57).” This is preferable to assigning the treatments (i.e.,
factor levels) at random to the experimental units, because a random assignment if
performed sequentially will result, for example, in the last factor level being assigned
to the last available experimental unit, which is clearly not a random assignment. The
randomization method espoused by Atkinson and Bailey (2001) avoids these types of
problems. Of course we could accomplish the same thing by, assuming t treatments,
randomly selecting one of the t! orderings, and then randomly selecting one of the n!
permutations of the experimental units and elementwise combining the juxtaposed
lists.

Randomization is an important part of design of experiments because it reduces the
chances of extraneous factors undermining the results, as illustrated in the preceding
section. Czitrom (2003, p. 25) stated, “The results of many semiconductor experiments
have been compromised by lack of randomization in the assignment of the wafers in
a lot (experimental units) to experimental conditions.”

Notice the words “whenever possible and practical” in italics in the Important
Point, however, as randomization should not automatically be used.

In particular, randomization is not always possible, and this is especially true in
regard to a randomized run order, as it will often not be possible to change factor
levels at will and use certain combinations of factor levels. If randomization is not
performed, however, and the results are unexpected, it may be almost impossible to
quantitatively assess the effect of any distortion caused by the failure to randomize.
This is an important consideration.

There are various detailed discussions of randomization in the literature, perhaps
the best of which is Box (1990). The position taken by the author, which is entirely
reasonable, is that randomization should be used if it only slightly complicates the
experiment; it should not be used if it more than slightly complicates the experiment,
but there is a strong belief that process stability has been achieved and is likely to
continue during the experiment; and the experiment should not be run at all if the
process is so unstable that the results would be unreliable without randomization but
randomization is not practical.

The issue of process stability and its importance is discussed further in Section 1.7.
Undoubtedly there are instances, although probably rare, when the use of random-

ization in the form of randomly ordering the runs can cause problems. John (2003)
gave an example of the random ordering of runs for an experiment with a 24 design
(covered in Chapter 4) that created a problem. Specifically, the machinery broke down
after the first week so that only 8 of the 16 runs could be made. Quoting John (2003),
“It would have been so much better if we had not randomized the order. If only we had
made the first eight points be one of the two resolution IV half replicates. We could
have also chosen the next four points to make a twelve-point fraction of resolution
V, and, then, if all was going well, complete the full factorial.” (These designs are
covered in Chapters 4 and 5.)

1.4.2 Replication versus Repeated Measurements

Another important concept is replication, and the importance of this (and the impor-
tance of doing it properly) can be illustrated as follows.
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IMPORTANT POINT

Replication should be used whenever possible so as to provide an estimate of the
standard deviation of the experimental error. It is important to distinguish between
replicates and multiple readings. To replicate an experiment is to start from scratch
and repeat an entire experiment, not to simply take more readings at each factor-
level condition without resetting factor levels and doing the other things necessary
to have a true replicated experiment.

The distinction between replication and multiple readings is an important one, as
values of the response variable Y that result from replication can be used to estimate
σ 2

ε , the variance of the error term for the model that is used. (Multiple readings,
however, may lead to underestimation of σ 2

ε because the multiple readings might be
misleadingly similar.) Values of Y that result from experiments that do not meet all
the requirements of a replicated experiment may have variation due to extraneous
factors, which would cause σ 2

ε to be overestimated, with the consequence that sig-
nificant factors may be erroneously declared not significant. For the moment we will
simply note that many experiments are performed that are really not true replicated
experiments, and indeed the fraction of such experiments that are presumed to be
replicated experiments is undoubtedly quite high. One example of such an experi-
ment is the lead extraction from paint experiment described in Ryan (2004), which
although being “close” to a replicated experiment (and assumed to be such) wasn’t
quite that because the specimens could not be ground down to an exact particle size,
with the size of the specimen expected to influence the difficulty in grinding to the
exact desired particle size. Thus, the experimental material was not quite identical
between replicates, or even within replicates. Undoubtedly, occurrences of this type
are very common in experimentation.

One decision that must be made when an experiment is replicated is whether or
not “replications” should be isolated as a factor. If replications are to extend over a
period of time and the replicated observations can be expected to differ over time,
then replications should be treated as a factor.

1.4.3 Example

Let’s think back a century or more when there were many rural areas, and schools in
such areas might have some very small classes. Consider the extreme case where the
teacher has only two students; so one student receives one method of instruction and
the other student receives the other method of instruction. Then there will be two test
scores, one for each method.

We could see which score is larger, but could we draw any meaningful conclusion
from this? Obviously we cannot do so. We would have no estimate of the variability
of the test scores for each method, and without a measure of variability we cannot
make a meaningful comparison.
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Now consider the other extreme and assume that we start with 600 students so that
300 will be in each class (of course many college classes are indeed of this size, and
larger).

What do we gain by having such a large sample size? Quite frankly, we may gain
something that we don’t want. We are in essence testing the hypothesis that the average
score will be the same for the two methods, if the process of selecting a set of students
and splitting the group into two equal groups were continued a very large number of
times. The larger the sample sizes, the more likely we are to conclude that there is
a difference in the true means (say, μ1 for the standard method and μ2 for the new
method), although the actual difference might be quite small and not of any practical
significance. (The determination of an appropriate sample size has been described by
some as a way of equating statistical significance with practical significance.)

From a practical standpoint we know that the true means are almost certainly
different. If we record the means to the nearest hundredth of a point (e.g., 87.45), is
there much chance the means could be the same? Of course not. If we rounded the
means to the nearest integer, there would be a reasonable chance of equality, but then
we would not be using the actual means.

The point to be made is that in some ways hypothesis testing is somewhat of a
mindless exercise that has been criticized by many, although certain types of hypoth-
esis tests, such as testing for a normal distribution and hoping that we don’t see a
great departure from normality, do make sense and are necessary. See, for example,
Nester (1996) and the references cited therein regarding hypothesis testing.

A decision must be reached in some manner, however, so the teacher would have to
decide the smallest value of μ2 − μ1 that he or she would consider to be of practical
significance. Let � denote this difference, so that the alternative hypothesis is Ha :
μ2 − μ1 > �. If the standard method has been used for many semesters, a reasonably
good estimate of σ1, the standard deviation of scores for that method, is presumably
available. If we assume σ1

.= σ2 (probably not an unrealistic assumption for this
scenario), then following Wheeler (1974), using a significance level of α = .05 and
a probability of .90 of detecting a difference of at least �, we might determine the
total sample size, n, as

n =
(

4rσ

�

)2

(1.1)

with r denoting the number of levels, 2 in this case, of the factor “teaching method.”
Thus, for example, if σ1 = σ2 = σ = 15/8 = 1.875 and the teacher selects � = 3,
then n = 25 students so use 26 in order to have 13 in each of the two classes.

Equation (1.1), although appealing because of its simplicity and for that reason
has probably been used considerably and has been mentioned in various literature
articles (e.g., Lucas, 1994), is an omnibus formula that does not reduce to the exact
expression when r = 2. Furthermore, Bowman and Kastenbaum (1974) pointed out
that Eq. (1.1) resulted from incorrectly applying the charts of Pearson and Hartley
(1972). More specifically, Bowman and Kastenbaum (1974) stated that Eq. (1.1) is
based on the false assumption that values of ϕ are constant, with ϕ = [δ2/(ν1 + 1)]1/2,
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with δ2 denoting the noncentrality parameter and ν1 + 1 denoting the number of levels
of a factor.

An important general point made by Wheeler (1974) is that when an effect is not
significant, the experimenter should state that if the factor has an effect, it is less than
approximately �. Clearly this is preferable to stating that the factor has no effect,
which is the same as saying that � = 0, a statement that would not be warranted.

The appropriate expression for the number of observations to be used in each of
r = 2 groups is given in many introductory statistics books and is

n

2
= (zα + zβ)2

(
σ 2

1 + σ 2
2

)
�2

(1.2)

Using this formula produces

n

2
= (1.645 + 1.28)2(1.8752 + 1.8752)

32

= 6.68

with 1.645 = z.05 and 1.28 = z.10 being the standard normal variates corresponding
to α = .05 and the power of the test of .90, respectively. Thus, 7 students would be
used in each class rather than 13, which is the result from the use of Eq. (1.1).

There are various other methods available for determining sample sizes in designed
experiments, such as the more complicated iterative procedure given by Dean and
Voss (1999, p. 50). The utility of Eq. (1.1) of course lies in its simplicity, although
its approximate nature should be kept in mind and variations of it will be needed for
certain types of designs, with some variations given by Wheeler (1974). If the test
averages for the two classes, denoted by y1 and y2, respectively, are 79.2 and 75.8, then

z = y1 − y2√
2σ 2/n

= 75.8 − 79.2√
2(15/8)2/13

= −4.62

Since, assuming (approximate) normality for the statistic z, P(z < −4.62 | μ1 =
μ2) = 1.9 × 10−6, we would conclude that there is a significant difference between
the two teaching methods.

Notice that this computation is based on the assumption that σ1 and σ2 were known
and that σ1 = σ2. Generally we want to test assumptions, so it would be advisable
to use the data to test the assumption that the two variances are equal. (Of course
the standard deviations will be equal if the variances are equal but the proposed tests
are for testing the equality of the variances.) Preferably, we should use a test that is
not sensitive to the assumption of normality, and tests such as those given by Layard
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(1973) and Levene (1960) are therefore recommended, in addition to the Brown and
Forsythe (1974) modification of Levene’s test. (The latter is used in Section 2.1.2.1.1.)

We should also test the assumption of normality of each of the two populations.
This can be done graphically by using normal probability plots (see, e.g., Section 4.9)
and/or by using numerical tests. Preferably, the two types of tests should be used
together.

1.4.4 Size of an Effect That Can Be Detected

It is useful to turn Eq. (1.2) and similar formulas around and solve for �. Doing so
produces

� = (zα + zβ)2σ√
n

(1.3)

assuming σ1 = σ2 = σ . For the example in Section 1.4.3, we thus have

� = 2.925(2σ )√
n

= 5.850σ√
n

With n = 14, the smallest difference that can be detected with a probability of .90
and a significance level of α = .05 is 1.56σ = 1.56(1.875) = 2.925, which is slightly
less than 3 because the sample size was rounded up to the next integer. (We should
keep in mind that Eq. (1.3) is for a one-sided test.)

We will return to Eq. (1.3) and related formulas in subsequent chapters when
we consider the magnitude of effects that can be detected with factorial designs
(covered in Chapter 4) and other designs, especially small factorial designs, because
it is important to know the magnitude of effect sizes that can be detected. This is
something that is often overlooked. Indeed, Wheeler (1974, p. 200) stated, “The
omission of such statements (crude though the numbers in them may be) is a major
shortcoming of many statistical analyses.”

There are various Java applets that can determine n, or � for a given value of n;
perhaps the best known of these is the one that is due to Russ Lenth, which is found
at http://www.stat.uiowa.edu/∼rlenth/Power/index.html. Entering n = 9, σ = 1.87,
and � = 3, results in a power of .8896. There will not be exact agreement between the
results obtained using this applet and the results using the previously stated equations,
however, because the latter are based on the use of z, whereas that is not one of the
options when the applet is used. Instead, these numbers result when the use of a t-test
is assumed.

Software can of course also be used to compute power, and Design-Expert can be
used for this purpose for any specific design.

In addition to these applets and software, Lynch (1993) gave tables for use in
determining the minimum detectable effects in two-level fractional factorial designs
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(i.e., 2k−p designs), which are covered in Chapter 5. These tables were computed
using the noncentrality parameter of the t-distribution, which was given as

λ =
(

�

σ

) √
n

2

with n denoting the total number of runs in the experiment and the test statistic given
by

t = Effect estimate

2(sp/
√

n)

with sp denoting the square root of the pooled estimate of σ 2, and s2
p given by

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

with s2
1 and s2

2 denoting the sample variances for the first and second levels of the
factor, respectively, and n1 and n2 denoting the corresponding sample sizes, with
n1 + n2 = n.

The results essentially show that 2k−p designs with 2k−p < 16 (i.e., 8-point de-
signs) have poor detection properties. This is discussed in more detail in Section 5.1.

A general method for computing power for a variety of designs, including many
that are given in this book, was given by Oehlert and Whitcomb (2001).

1.5 TERMINOLOGY

The terms randomization and replication were used in Sections 1.4.1 and 1.4.2,
respectively. There are other terms that will be used frequently in subsequent chapters.
In the example involving the math teacher, which was given in Section 1.4.3, the
students are the experimental units to whom the two treatments (i.e., the two methods
of teaching the class) are applied.

In that experiment the possibility of having all the girls in one class and all the
boys in the other class was mentioned—and quickly dismissed. If the experiment
had been conducted in this manner, this would be an example of an experiment in
which factors are confounded. That is, we would estimate the gender effect—if we
were interested in doing so—by taking the difference of the average of the girls’
scores on the first test and the average of the boys’ scores on that test. But this is
exactly the same way that we would estimate the teaching method effect. Thus, one
number would estimate two effects; so we would say that the effects are confounded.
Obviously we would want to avoid confounding the two effects if we believe that they
both may be statistically significant. Therefore, confounding, which is essentially
unavoidable in most experiments, due to cost considerations when more than a few


