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Series Preface

WILEY SERIES IN MATERIALS FOR ELECTRONIC AND
OPTOELECTRONIC APPLICATIONS

This book series is devoted to the rapidly developing class of materials used for electronic
and optoelectronic applications. It is designed to provide much-needed information on the
fundamental scientific principles of these materials, together with how these are employed
in technological applications. The books are aimed at postgraduate students, researchers
and technologists, engaged in research, development and the study of materials in elec-
tronics and photonics, and industrial scientists developing new materials, devices and
circuits for the electronic, optoelectronic and communications industries.

The development of new electronic and optoelectronic materials depends not only on
materials engineering at a practical level, but also on a clear understanding of the proper-
ties of materials, and the fundamental science behind these properties. It is the properties
of a material that eventually determine its usefulness in an application. The series there-
fore also includes such topics as electrical conduction in solids, optical properties, thermal
properties, etc., all with applications and examples of materials in electronics and opto-
electronics. The characterization of materials is also covered within the series in as much
as it is impossible to develop new materials without the proper characterization of their
structure and properties. Structure–property relationships have always been fundamentally
and intrinsically important to materials science and engineering.

Materials science is well known for being one of the most interdisciplinary sciences. It
is the interdisciplinary aspect of materials science that has led to many exciting discover-
ies, new materials and new applications. It is not unusual to find scientists with a chemical
engineering background working on materials projects with applications in electronics. In
selecting titles for the series, we have tried to maintain the interdisciplinary aspect of the
field, and hence its excitement to researchers in this field.

Peter Capper
Safa Kasap

Arthur Willoughby





Preface

Almost all the semiconductors of practical interest are the group-IV, III–V and II–VI
semiconductors and the range of technical applications of such semiconductors is
extremely wide. All such semiconductor devices can be characterized to a greater or
lesser degree. Many scientific papers, review papers, book chapters and specialized books
exist that discuss the various semiconductor properties, but no one has integrated such
topics on the group-IV, III–V and II–VI semiconductors into one volume.

The purpose of this book is twofold: (i) to discuss key properties of the group-IV,
III–V and II–VI semiconductors; and (ii) to systemize these properties from a solid-
state physics aspect. The bulk of the text is devoted to the comprehensive description of
the lattice structural, thermal, elastic, lattice dynamic, electronic energy-band structural,
optical and carrier transport properties of these semiconductors. Some corrective effects
and related properties, such as piezoelectric, elasto-optic and electro-optic properties, have
also been discussed.

The book contains convenient tables summarizing the various material parameters and
the definitions of important semiconductor properties. The book also contains graphs in
order to make the information more quantitative and intuitive. I felt that these have not
been adequately covered in existing books.

The book is intended not only for semiconductor device engineers, but also physicists
and physical chemists, and particularly students specializing in the fields of semiconductor
synthesis, crystal growth, semiconductor device physics and technology.

SADAO ADACHI
Gunma, Japan
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1.1 IONICITY

1.1.1 Definition

All tetrahedrally coordinated ANB8-N semiconductors can be treated within the frame-
work of a simple model. The success of this approach requires a careful choice of
parameters entering in the model. The most important of these is the ionicity of the
bond [1.1].

The ionicity of a bond can be defined as the fraction f α
i of ionic or heteropolar

character in the bond compared with the fraction f α
h of covalent or homopolar character.

By definition, these fractions satisfy the relation

f α
i + f α

h = 1 (1.1)

In an elemental semiconductor such as Si, we must have f α
h = 1 and f α

i = 0. In con-
trast, we shall find that some alkali halides (NaCl, KCl, etc.) are more than 90% ionic.

Properties of Group-IV, III–V and II–VI Semiconductors Sadao Adachi
 2005 John Wiley & Sons, Ltd ISBN: 0-470-09032-4



2 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

(a) Phillips ionicity

Phillips studied the connection between the chemical bonding properties of the ANB8-N

family of crystals and their electronic energy-band structures [1.1]. His concept evolves
from a molecular picture in terms of bonding and antibonding states separated by an
energy gap Eg. His ionicity scale fi is defined in terms of average quantities such as the
homopolar Eh and heteropolar parts C of the complex energy gap Eg associated with the
A–B bond in the crystal

Eg = Eh + iC (1.2)

Ionicity is then introduced via the relation

fi = C2

E2
g

= C2

E2
h + C2

(1.3)

Some numerical examples of Eg (fi) are: Eg = 4.70 + i0 (fi = 0) for Si; Eg = 4.32 +
i2.90 (fi = 0.310) for GaAs; Eg = 4.29 + i5.60 (fi = 0.630) for ZnSe, where Eg are
in eV.

(b) Pauling ionicity

Pauling based his definition of ionicity scale f P
i not on the total energy of the bond, but on

empirical heats of formation [1.2]. Denote the power of an atom A to attract electrons to
itself by a dimensionless number called its electronegativity XA. The Coulomb interaction
between the ionic charge left behind and the valence charge transferred is proportional
to (XA − XB)2, and this is the origin of the extra ionic energy (i.e., f P

i ). By definition
f P

i never exceeds one, and as XA − XB becomes large f P
i tends to one. Moreover, the

ionicity of an A–B bond should be the same as ionicity of a B–A bond. Pauling then
defined ionicity of a single bond

f P
i = 1 − exp

(
− (XA − XB)2

4

)
(1.4)

(c) Harrison ionicity

In Harrison’s model [1.3], the ionicity parameter f H
i can be given in terms of two of the

parameters of the electronic structure, by

f H
i = V3√

V 2
2 + V 2

3

(1.5)

Here, V2 is half the splitting between bonding and antibonding states; V3 is half the
energy change in transferring an electron from anion to cation. This parameter f H

i can be
defined as the excess number of electrons placed on the anion from each bond, called the
polarity. Thus, each anion in a tetrahedral structure contains a charge of Z∗ = 4f H

i − ∆Z,



STRUCTURAL PROPERTIES 3

Table 1.1 Phillips (fi), Pauling (f P
i ) and Harrison ionicities (f H

i ) for a number of group-IV, III–V
and II–VI semiconductors

System Material fi f P
i f H

i System Material fi f P
i f H

i

IV Diamond 0 0 0 II–VI MgO 0.841 0.88
Si 0 0 0 MgS 0.786
Ge 0 0 0 MgSe 0.790
Sn 0 0 0 MgTe 0.554
SiC 0.177 0.11 0.35 ZnO 0.616 0.80 0.69

ZnS 0.623 0.59 0.69
III–V BN 0.221 0.42 0.43 ZnSe 0.630 0.57 0.70

BP 0.032 ZnTe 0.609 0.53 0.68
BAs 0.044 CdS 0.685 0.59 0.74
AlN 0.449 0.56 0.57 CdSe 0.699 0.58 0.74
AlP 0.307 0.25 0.47 CdTe 0.717 0.52 0.76
AlAs 0.274 0.27 0.44 HgS 0.790
AlSb 0.250 0.26 0.56 HgSe 0.680
GaN 0.500 0.55 0.61 HgTe 0.650 0.78
GaP 0.327 0.27 0.48
GaAs 0.310 0.26 0.47
GaSb 0.261 0.26 0.43
InN 0.578
InP 0.421 0.26 0.55
InAs 0.357 0.26 0.51
InSb 0.321 0.25 0.48

where ∆Z is the difference in valence from 4 (∆Z = 1 for nitrogen, 2 for oxygen, etc.).
Similarly, then, each bond provides an electronic dipole moment of P = γf H

i (−ed ),
where d is vector distance from cation to anion and γ is a scale parameter to take into
account local fields and charge symmetries; a value of

√
2 gave a good fit to experiment.

1.1.2 Ionicity value

Table 1.1 summarizes the values of Phillips (fi) [1.1], Pauling (f P
i ) [1.2] and Harrison

ionicities (f H
i ) [1.3] for a number of group-IV, III–V and II–VI semiconductors. We also

show in Figure 1.1 Phillips ionicity fi versus (a) Pauling (f P
i ) and (b) Harrison ionicities

(f H
i ) for these semiconductors.

1.2 ELEMENTAL ISOTOPIC ABUNDANCE AND MOLECULAR
WEIGHT

1.2.1 Elemental isotopic abundance

There are a great many semiconductor materials. We list in Table 1.2 the elements which
form at least one tetrahedrally coordinated ANB8-N semiconductor, together with their
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Figure 1.1 Phillips ionicity fi versus (a) Pauling (f P
i ) and (b) Harrison ionicities (f H

i ) for some
group-IV, III–V and II–VI semiconductors. The solid lines in (a) and (b) indicate the relations of
fi = f P

i and fi = f H
i , respectively

natural isotopic abundance in percent [1.4]. Table 1.3 also lists the standard atomic weight
for some group IV, III, V, II and VI elements [1.4].

1.2.2 Molecular weight

The molecular weight M for an ANB8-N semiconductor (N �= 4) can be simply given
by the sum of the atomic weights of atoms A and B. For an elemental semiconductor
(N = 4), it is given by the atomic weight of the element atom A = B. Tables 1.4 and 1.5
list the values of M for a number of group-IV, III–V and II–VI semiconductors with
cubic and hexagonal (rhombohedral) structures, respectively.

1.3 CRYSTAL STRUCTURE AND SPACE GROUP

1.3.1 Crystal structure

(a) Diamond, zinc-blende and wurtzite structures

The atoms of certain elements are held together in the solid by strongly covalent bonds
at tetrahedral angles of 109.5◦. Each atom has four nearest neighbors and twelve next
nearest neighbors, which is a consequence of each atom sharing one of its outer electrons
with each of four neighbors. The typical structure so formed is that of diamond, as shown
in Figure 1.2(a). The space lattice is face-centered cubic with pairs of atoms at (0, 0, 0)
and (1/4, 1/4, 1/4) forming a pattern unit.

The atomic orbitals that are used to form hybridized bonding orbitals are usually not
the same ones that are occupied in the ground state of the atom. For example, in silicon the
ground valence configuration of the atom is 3s23p2, whereas the hybridized configuration
appropriate for the diamond-type crystal structure is 3s13p3 (tetrahedral coordination).
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Table 1.2 Natural isotopic abundance in percent for some group IV, III, V, II and VI elements

Group Isotope Natural
abundance (%)

Group Isotope Natural
abundance (%)

IV 12C 98.90 IV 112Sn 0.97
13C 1.10 114Sn 0.65
28Si 92.23 115Sn 0.34
29Si 4.67 116Sn 14.53
30Si 3.10 117Sn 7.68
70Ge 21.23 118Sn 24.23
72Ge 27.66 119Sn 8.59
73Ge 7.73 120Sn 32.59
74Ge 35.94 122Sn 4.63
76Ge 7.44 124Sn 5.79

III 10B 19.9 V 14N 99.634
11B 80.1 15N 0.366
27Al 100 31P 100
69Ga 60.108 75As 100
71Ga 39.892 121Sb 57.36

113In 4.3 123Sb 42.64
115In 95.7

II 24Mg 78.99 VI 16O 99.762
25Mg 10.00 17O 0.038
26Mg 11.01 32S 95.02
64Zn 48.6 33S 0.75
66Zn 27.9 34S 4.21
67Zn 4.1 36S 0.02
68Zn 18.8 74Se 0.89
70Zn 0.6 76Se 9.36

106Cd 1.25 77Se 7.63
108Cd 0.89 78Se 23.78
110Cd 12.49 80Se 49.61
111Cd 12.80 82Se 8.73
112Cd 24.13 120Te 0.096
113Cd 12.22 122Te 2.603
114Cd 28.73 123Te 0.908
116Cd 7.49 124Te 4.816
196Hg 0.15 125Te 7.139
198Hg 9.97 126Te 18.95
199Hg 16.87 128Te 31.69
200Hg 23.10 130Te 33.80
201Hg 13.18
202Hg 29.86
204Hg 6.87
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Table 1.3 Standard atomic weight for some group IV, III, V, II and VI elements. Numbers in
parentheses give the uncertainty in the last digit of the stated values

Group Symbol Atomic weight Group Symbol Atomic weight

IV C 12.0107(8)
Si 28.0855(3)
Ge 72.61(2)
Sn 118.710(7)

III B 10.811(7) V N 14.00674(7)
Al 26.981538(2) P 30.973761(2)
Ga 69.723(1) As 74.921560(2)
In 114.818(3) Sb 121.760(1)

II Mg 24.3050(6) VI O 15.9994(3)
Zn 65.39(2) S 32.066(6)
Cd 112.411(8) Se 78.96(3)
Hg 200.59(2) Te 127.60(3)

The diamond cubic lattice is a consequence of the carbon valency of four. We can
expect to find the same structure in compounds where one atom has more than four
electrons and the other the same number less than four, so that a total of four valency
electrons to each atom is maintained. If the compound is of the form of AB, this structure
can be produced in two ways. The first is the cubic, zinc-blende structure as shown in
Figure 1.2(b), with four A (Ga) and four B (As) atoms per conventional unit cell.

The second method by which a structure is formed where each atom of one kind is
surrounded by four of another is shown in Figure 1.2(c). This is the hexagonal CdS (w-
CdS or β-CdS) or wurtzite lattice, which differs only from the zinc-blende structure in
the stacking sequence of the sulfur layers. Ideally, the wurtzite structure has the axial
ratio c/a = (8/3)1/2 = 1.633 (hexagonal close-packed structure). Most III–V semicon-
ductors crystallize in the zinc-blende structure, however, many II–VI and some III–V
semiconductors crystallize in the wurtzite structure.

In III–V compounds, group III atoms have three electrons with an s2p1-configuration
outside a core of closed shells and group V atoms five electrons in a s2p3-configuration.
The III and V atoms have, therefore, an average of four valence electrons per atom
available for bonding. We might then expect that the covalent bonds are formed between
tetrahedral s1p3-hybrid orbitals, e.g., for GaAs:

Ga(4s24p1) + As(4s24p3) → Ga(4s14p3)− + As(4s14p3)+ (1.6)

For such a covalent bonding each V atom donates an electron to a III atom, so that V+
and III− ions are formed, each with four valence electrons.

An ionic bond is due to Coulomb attraction between the excess positive and negative
charges on ions formed by transfer of electrons from the metallic to the nonmetallic atom
in the scheme:

Ga(4s24p1) + As(4s24p3) → Ga(4s04p0)+3 + As(4s24p6)−3 (1.7)
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Table 1.4 Molecular weight M , lattice constant a and crystal density
g for a number of cubic group-IV, III–V and II–VI semiconductors at
300 K

System Material M (amu) a (Å) g (g/cm3)

IV Diamond 12.0107 3.5670 3.5156
Si 28.0855 5.4310 2.3291
Ge 72.61 5.6579 5.3256
α-Sn 118.710 6.4892 5.7710
3C-SiC 40.0962 4.3596 3.2142

III–V c-BN 24.818 3.6155 3.4880
BP 41.785 4.5383 2.9693
BAs 85.733 4.777 5.224
c-AlN 40.98828 4.38 3.24
AlP 57.955299 5.4635 2.3604
AlAs 101.903098 5.66139 3.73016
AlSb 148.742 6.1355 4.2775
β-GaN 83.730 4.52 6.02
GaP 100.696 5.4508 4.1299
GaAs 144.645 5.65330 5.31749
GaSb 191.483 6.09593 5.61461
InP 145.792 5.8690 4.7902
InAs 189.740 6.0583 5.6678
InSb 236.578 6.47937 5.77677

II–VI MgO 40.3044 4.203 3.606
β-MgS 56.371 5.62 2.11
β-MgSe 103.27 5.91 3.32
β-MgTe 151.91 6.42 3.81
β-ZnS 97.46 5.4102 4.0879
ZnSe 144.35 5.6692 5.2621
ZnTe 192.99 6.009 5.908
c-CdS 144.477 5.825 4.855
c-CdSe 191.37 6.077 5.664
CdTe 240.01 6.481 5.856
β-HgS 232.66 5.8514 7.7135
HgSe 279.55 6.084 8.245
HgTe 328.19 6.4603 8.0849

The bonds in most III–V or II–VI semiconductors are not adequately described by any
of these extreme types, but have characteristics intermediate to those usually associated
with the terms covalent (Equation (1.6)) and ionic (Equation (1.7)).

(b) Hexagonal and rhombohedral structures

It is well known that silicon carbide (SiC) is a semiconductor crystallizing in a large
number of polytypes [1.5]. The various types of SiC differ one from another only by the
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Table 1.5 Molecular weight M , lattice constants a and c and crystal density g

for a number of hexagonal and rhombohedral group-IV, III–V and II–VI semicon-
ductors at 300 K

System Material M (amu) Lattice constant (Å) g (g/cm3)

a c

IV 6H-SiC 40.0962 3.0806 15.1173 3.2153
15R-SiC 40.0962 3.079 37.78

(α = 13◦54.5′)

III–V h-BN 24.818 2.5040 6.6612 2.2787
w-AlN 40.98828 3.112 4.982 3.258
α-GaN 83.730 3.1896 5.1855 6.0865
InN 128.825 3.548 5.760 6.813

II–VI ZnO 81.39 3.2495 5.2069 5.6768
α-ZnS 97.46 3.8226 6.2605 4.0855
w-CdS 144.477 4.1367 6.7161 4.8208
w-CdSe 191.37 4.2999 7.0109 5.6615

(a)

(b) (d)

(c)

a

Si

a

Cd

S

c

As

Ga

Mg

O

Figure 1.2 Some important crystal lattice structures. (a) diamond lattice (Si); (b) zinc-blende
lattice (GaAs); (c) wurtzite lattice (w-CdS); and (d) rocksalt lattice (MgO)
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order in which successive planes of Si (or C) atoms are stacked along the c axis; one
polytype is cubic (3C-SiC) while the remainder, including two of the more frequently
occurring forms, 6H and 15R, possess uniaxial symmetry. Note that in the polytype
name, the integer refers to the number of Si (C) layers in the unit cell, and C, H and
R indicate cubic, hexagonal and rhombohedral (trigonal) symmetry, respectively. Of all
the polytypes, 6H is by far the most commonly occurring modification in commercial
SiC. The next most common types are 15R and 4H, respectively. Silicon carbide can also
crystallize in the wurtzite structure (2H-SiC).

Figure 1.3 shows the stacking sequences in 3C-SiC, 2H-SiC and 6H-SiC [1.6]. In
the zinc-blende (3C) structure, the sequence involves three layers which are repeated
periodically (ABC ABC . . .). All the Si–C bond lengths are the same, and the angles are
exactly tetrahedral (109.5◦). In the wurtzite (2H) structure, only two layers are repeated
(AB AB . . .). The Si–C bond length along the stacking direction is not equal to that which
is approximately perpendicular to it, and the angles are not exactly tetrahedral. In the 6H
polytype, the basic sequence involves six layers (ABCACB ABCACB . . .). Similarly,
in the 15R polytype the basic sequence involves fifteen layers (ABCACBCABACABCB
. . .). The II–VI semiconductor, α-HgS, can also crystallize in the rhombohedral (red
cinnabar) structure.

(c) Rocksalt structure

The II–VI compound MgO crystallizes in the rocksalt (NaCl) structure. The rocksalt struc-
ture shown in Figure 1.2(d) is typical of ionic bonding. The Bravais lattice is face-centered

A

B

2H

A A A

B

C

A

C

B

6H

B

C

B

4H

B

C

3C

Figure 1.3 Three-dimensional perspective view of the 2H-SiC, 3C-SiC, 4H-SiC and 6H-SiC poly-
types. The characteristic chain structures are represented by the heavy solid lines in the (1120) plane.
The stacking sequences AB (2H), ABC (3C), ABCB (4H) and ABCACB (6H) are also indicated.
[From P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B 50, 17037 (1994), reproduced by
permission from the American Physical Society]



10 PROPERTIES OF GROUP-IV, III–V AND II–VI SEMICONDUCTORS

cubic with the unit cell of atomic pattern consisting of one Mg and one O ion separated
by one-half the body diagonal of the cube. Since each ion has six nearest neighbors of
the opposite kind, the coordination number is six.

We summarize in Table 1.6 the crystal classes for easily or normally grown: (a) group-
IV, (b) III–V and (c) II–VI binaries. Table 1.7 also lists the crystal structure for a number
of group-IV, III–V and II–VI semiconductors.

1.3.2 Space group

A self-consistent arrangement of symmetry elements in a crystal lattice is known as a
space group. The operation of any element of the group must have the pattern of symmetry
elements unaltered. By inspection of the 230 space groups, or from first principles, there
are just 32 different point groups. Crystals are, therefore, divided into 32 crystal classes
according to the point-group symmetry they possess. In Table 1.7, we list the space (point)
group for a number of group-IV, III–V and II–VI semiconductors.

Table 1.6 Summary of easily or normally grown crystal
structure for: (a) group-IV; (b) III–V and; (c) II–VI semi-
conductors. d = diamond; zb = zinc-blende; h = hexagonal
(wurtzite); rh = rhombohedral (trigonal); rs = rocksalt;
or = orthorhombic

(a)

IV/IV Si C

Si d zb, h, rh
C zb, h, rh d

(b)

III/V N P As Sb

B zb, h zb zb
Al h zb zb zb
Ga h zb zb zb
In h zb zb zb

(c)

II/VI O S Se Te

Mg rs rs zb h
Zn h zb, h zb zb
Cd rs h h zb
Hg rh, or rh, zb zb zb


