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Preface

When it comes to designed experiments, researchers often end up creating complex

designs without having sufficient analytical expertise to handle. Researchers in plant

breeding, animal science, health sciences and so forth, come to statistical consulting

with data from rather very complex designs from time to time. Unfortunately,

statistical courses taken by these researchers may not have covered these

sophisticated designs. To make matters even more severe, there is an alarming

shortage of textbooks covering complex designs. To help alleviate the analytical

challenges of researchers dealing with complex designs, we have decided to write

this book and we do hope that it will be helpful to a lot of researchers. Understanding

and mastery of the designs covered here, assume a prior exposure to the basic

experimental designs such as: one-way completely randomized design, completely

randomized factorial experiment designs, randomized complete blocks with one or

more factors, incomplete blocks, row-column designs, Latin-square designs and so

forth. These basic designs are easy to analyze since one is dealing with one

experimental error given one has a single level of randomization of the treatment

combinations between the levels of various factors to the experimental units.

Nonetheless, this type of randomization might be rather simplistic and inappropriate

depending on the existing experimental conditions along with the constraints

imposed by limited resources. As a result, the experimenter might be forced to have

different randomizations and therefore experimental units of unequal sizes at

different levels of randomization, to overcome logistical and/or technological

constraints of an experiment. This opens up a class of more complex designs called

split plot designs or split block designs with at least two types of experimental errors.

In either case, several variations can occur with a possibility of a further partitioning

of the experimental units, leading to smaller and smaller experimental units

paralleled with more error terms used to test the significance of various factors’

effects. Furthermore, an experiment design might consist of a combination of these

two types of designs, along with treatments arranged following the basic designs for

some of the factors under investigation. A textbook on variations of split plot and

split block designs points in the right direction by addressing the urgent need of

researchers dealing with complex designs for which no reference is available to the

xiii



best of our knowledge. We have encountered a few researchers in this type of

situation through our statistical consulting activities. We are therefore convinced that

this book will be a valuable resource not only to researchers but also to instructors

teaching experiment designs courses. It is also important to adequately equip

graduate students with the important skills in complex designs for a better readiness

to real life situation challenges as far as designed experiments are concerned.

Another important innovation of this textbook consists of tackling the issue of error

reduction through blocking, analysis of covariance, or both. While blocking

relatively homogeneous experimental units into groups might help reduce sub-

stantially the experimental error, there are situations where it is neither sufficient by

itself nor feasible at all. Thus, use of available auxiliary information on the

experimental units has proven to significantly reduce the experimental error through

analysis of covariance. Analysis of covariance enables one to better control the

experimental error when covariates are judiciously chosen. We have added a chapter

on analysis of covariance to specifically provide researchers with helpful analytical

tools needed when dealing with covariates in complex designs.

WALTER T. FEDERER

FREEDOM KING

May 2006
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C H A P T E R 1

The Standard Split Plot Experiment

Design

1.1. INTRODUCTION

Prior to starting the topic of this book, it was deemed advisable to present some

design concepts, definitions, and principles. Comparative experiments involve a

number, v, treatments (factors) where a treatment is an item of interest to the

experimenter. A treatment could be a medical treatment, a drug application, a level

of a factor (amount of a drug, fertilizer, insecticide, etc.), a genotype, an agricultural

practice, a marketing method, a teaching method, or any other item of interest. The

selection of the v treatments for an experiment is known as the treatment design. The

selection of an appropriate treatment design is a major element for the success of an

experiment. It may include checks (standards, placebos) or other points of reference.

The treatments may be all combinations of two or more factors and this is known as

a factorial arrangement or factorial treatment design. A subset of a factorial is

denoted as a fractional replicate of a factorial.

The arrangement of the treatments in an experiment is known as the experiment

design or the design of the experiment. The term experimental design is of fre-

quent use in statistical literature but is not used here. There are many types of

experiment designs including: unblocked designs, blocked designs (complete blocks

and incomplete blocks), row-column experiment designs, row-column designs

within complete blocks, and others. Tables of designs are available in several

statistical publications. However, many more experiment designs are available from

a software package such as GENDEX (2005). This package obtains a randomized

form of an experiment design and the design in variance optimal or near optimal.

There are three types of units to be considered when conducting an experiment.

These are the observational unit, the sample or sampling unit, and the experimental

Variations on Split Plot and Split Block Experiment Designs, by Walter T. Federer
and Freedom King
Copyright # 2007 John Wiley & Sons, Inc.
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unit (Federer, 1991, Chapter 7). The observational unit is the smallest unit for which

a response or measurement is obtained. A population or distribution is composed of

sample units or sampling units. The experimental unit is the smallest amount of

experimental material to which one treatment is applied. In many experiments, these

three types of units are one and the same. In other cases, they may all be different.

For example, suppose a treatment is a teaching method taught to a group of thirty

students. The experimental unit is the group of thirty students for the period of

time used to evaluate a teaching method. The sampling unit is the student, from

a population of all students, for which inferences are to be made about this teaching

method. Suppose that several examinations are given during the period of time

the method is applied, the result from each examination is an observation or

response and the observational unit is one examination from one student. In some

investigations like sampling for water quality, obtaining a measurement on produce

for a genotype from a plot of land measuring 1 m by 10 m (an experimental unit),

etc., the sampling units are undefined.

Fisher (1966) presented three principles of experiment design. These are local

control (blocking, stratification), replication, and randomization. Owing to random

fluctuations of responses in any experiment or investigation, there is variation. The

variation controlled should not be associated or interacting with treatment responses.

For example, if an animal dies during the course of conducting an experiment and

the death is not caused by the treatment, it should be considered as a missing

observation and not as a zero response. Blocking (stratification) or local control is

used to exclude extraneous variation in an experiment not associated with treatment

effects. The blocking should be such as to have maximum variation among blocks

and minimum variation within blocks. This makes for efficient experimentation and

reduces the number of replicates (replications) needed for a specified degree of

precision for treatment effects.

To reduce the effect of the variation in an experiment on measuring a treatment

effect, the sample size or the number of replicates needs to be increased. Replication

allows for an estimate of the random variation. Replication refers to the number

of experimental units allocated to a particular treatment. The variation among the

experimental units, eliminating treatment and blocking effects, is a measure of

experimental variation or error. The number of replications should not be confused

with the number of observations. For example, in a nutrition study of several regimes

with an experimental unit consisting of one animal, weekly measurements

(observations) may be taken on the weight of the animal over a 6-month period.

These week-by-week measurements do not constitute replications. The number of

replications is determined by the number of experimental units allocated to one

treatment and not by the number of observations obtained.

Randomization is necessary in order to have a valid estimate of an error variance

for comparing differences among treatments in an experiment. Fisher (1966)

has defined a valid estimate of an error variance or mean square as one which

contains all sources of variation affecting treatment effects except those due to the

treatments themselves. This means that the estimated variance should be among

experimental units treated alike and not necessarily among observations.

2 the standard split plot experiment design



An appropriate response model needs to be determined for each experiment. It is

essential to determine the pattern of variation in an experiment or investigation and

not assume that one response model fits all experiments for a given design. With the

availability of computers, exploratory model selection may be utilized to determine

variation patterns in an experiment (Federer, 2003). The nature of the experiment

design selected and the variation imposed during the conduct of an experiment

determine the variation pattern. The conduct of an experiment or investigation is a

part of the design of the experiment or investigation. This fact may be overlooked

when selecting a response model equation for an experiment. For example, a

randomized complete block design may be selected as the design of the experiment.

Then, during the course of conducting the experiment, a part of the replicate of the

experiment is flooded with water. This needs to be considered as a part of the design

of the experiment and may be handled by setting up another block, using a covariate,

or missing experimental units. This would not be the response model envisioned

when the experiment design was selected. Or, it may be that the experimenter

observed an unanticipated gradient in some or all of the blocks. A response model

taking the gradients within blocks into consideration should be used in place of the

model presumed to hold when the experiment was started. More detail on

exploratory model selection may be found in Federer (2003).

For further discussion of the above, the reader is referred to Fisher (1966) and

Federer (1984). The latter reference discusses a number of other principles and

axioms to consider when conducting experiments.

An analysis of variance is considered to be a partitioning of the total variation into

the variation for each of the sources of variation listed in a response model. An F-test

is not considered to be a part of the analysis of variance as originally developed

by Sir Ronald A. Fisher. Statistical publications often consider an F-test as part of

the analysis of variance. We do not, as variance component estimation, multiple

range tests, or other analyses may be used in connection with an analysis of variance.

Some experimenters do consider the term analysis of variance to be a misnomer. A

better term may be a partitioning of the total variation into its component parts or

simply variation or variance partitioning.

1.2. STATISTICAL DESIGN

The standard split plot experiment design (SPED) discussed in several statistics

textbooks has a two-factor factorial arrangement as the treatment design. One

factor, say A with a levels, is designed as a randomized complete block design

with r complete blocks or replicates. The experimental unit, the smallest unit to

which one treatment is applied, for the levels of factor A treatments is called a

whole plot experimental unit (wpeu). Then each wpeu is divided into b split plot

experimental units (speus) for the b levels of the second factor, say B. Note that

either or both factors A and B could be in a factorial arrangement or other

treatment design rather than a single factor. A schematic layout of the standard

SPED is shown below.

statistical design 3



Standard split plot design with r replicates, a levels of factor A, and b levels of

factor B

Replicate 1 2 3 . . . r

Whole plot factor A 1 2 . . . a 1 2 . . . a 1 2 . . . a . . . 1 2 . . . a

Split plot factor B 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1

2 2 . . . 2 2 2 . . . 2 2 2 . . . 2 2 2 . . . 2

. . . . . . . . . . . . . . . . . . . . . . . .
b b . . . b b b . . . b b b . . . b b b . . . b

The a levels of factor A are randomly and independently allocated to the a wpeus

within each of the r complete blocks or replicates. Then within each wpeu, the b levels

of factor B are independently randomized. There are r independent randomizations for

the a levels of factor A and ra independently assigned randomizations for b levels of

factor B. The fact that the number of randomizations and the experimental units are

different for the two factors implies that each factor will have a separate error term for

comparing effects of factor A and effects of factor B.

Even though the standard SPED has the whole plot factor A treatments in a

randomized complete block design, any experiment design may be used for the factor A.

For example, a completely randomized experiment design, a Latin square experiment

design, an incomplete block experiment design, or any other experiment design may be

used for the whole plot treatments. These variations are illustrated in Chapter 3.

The three steps in randomizing a plan for a standard or basic split plot experiment

design consisting of r ¼ 5 blocks (replicates), a ¼ 4 levels of whole plot factor A,

and b ¼ 8 levels of split plot factor B are shown below:

Step 1: Divison of the experimental area or material into five blocks

        B
LO

C
K

1 

     

        B
LO

C
K

2 

     

        B
LO

C
K

3 

     

        B
LO

C
K

4 

     

        B
LO

C
K

5 
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Step 2: Randomizaton of four levels of whole plot factor A to each of five blocks

        B
LO

C
K

1 

A3 A2 A1 A4  

        B
LO

C
K

2 

A4 A1 A3 A2  

        B
LO

C
K

3 

A2 A3 A4 A1  

        B
LO

C
K

4 

A4 A2 A3 A1  

        B
LO

C
K

5 

A3 A4 A1 A2 

Step 3: Randomization of eight levels of split plot factor B within each level of

whole plot factor A

B1 B2 B7 B2   
B4 B3 B8 B4   
B5 B4 B4 B7   

B3 B5 B2 B5   

B6 B1 B5 B8   

B8 B6 B3 B1   

B7 B8 B6 B6   

B2 B7 B1 B3 BLOCK1 
A3 A2 A1 A4   

B7 B6 B2 B5   

B2 B1 B3 B4   

B4 B4 B5 B2   

B6 B3 B7 B8   

B3 B7 B8 B3   

B8 B2 B1 B6   

B1 B5 B6 B7   

B5 B8 B4 B1 BLOCK2 
A4 A1 A3 A2   
B4 B7 B1 B6   

B6 B8 B2 B1   

B1 B2 B4 B3   

B8 B6 B3 B5   

B5 B3 B7 B4   

B7 B1 B8 B8   

B3 B5 B6 B7   

B2 B4 B5 B2 BLOCK3 
A2 A3 A4 A1
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B3 B7 B5 B8   

B8 B6 B2 B5   

B5 B2 B3 B4   

B6 B8 B4 B1   
B1 B4 B7 B3   
B7 B5 B6 B6   
B4 B1 B8 B7   

B2 B3 B1 B2 BLOCK4 
A4 A2 A3 A1   
B3 B1 B7 B1   

B1 B6 B2 B7   

B5 B2 B3 B4   

B6 B7 B4 B8   

B8 B4 B5 B3   

B7 B5 B6 B6   

B4 B8 B1 B5   

B2 B3 B8 B2 BLOCK5 
A3 A4 A1 A2   

If an experiment design involving blocking is used for the b split plot treatments,

factor B, should be within each whole-plot-treatment wpeu, as this facilitates the

statistical analysis for an experiment as orthogonality of effects is maintained. If the

experiment design for the split plot factor B treatments is over levels of the whole

plot treatments within one complete block, confounding of effects is introduced and

the statistical analysis becomes more complex (Federer, 1975). This may not be a

computational problem as available statistical software packages can be written to

handle this situation. However, the confounding of effects reduces the precision of

contrasts and estimates of effects.

1.3. EXAMPLES OF SPLIT-PLOT-DESIGNED EXPERIMENTS

Example 1—A seed germination test was conducted in a greenhouse on a ¼ 49

genotypes of guayule, the whole plots (factor A), with four seed treatments (factor B)

applied to each genotype as split plot treatments (Federer, 1946). The wpeu was a

greenhouse flat for one genotype and 100 seeds of each of the four seed treatments

(factor B) were planted in a flat, as more information on seed treatment than on

genotype was desired and this fitted into the layout more easily than any other

arrangement. The speu consisted of 1/4 of a greenhouse flat in which 100 seeds were

planted. The 49 genotypes were arranged in a triple lattice incomplete block

experiment design with r ¼ 6 complete blocks and with an incomplete block size of

k ¼ 7 wpeus. The four seed treatments were randomly allocated to the four speus in

a flat, that is, within each genotype wpeu. The data for eight of the 49 genotypes in

three of the six replicates are given as Example X-1 of Federer (1955) and as

Example 1.2. The whole plot treatments, 49 genotypes, are considered to be a

random sample of genotypes from a population of genotypes, that is, they are

6 the standard split plot experiment design



considered to be random effects whereas the seed treatments are fixed effects as

these are the only ones of interest.

Example 2—Example X-2 of Federer (1955) contains the yield data for b ¼ 6

genotypes which are corn double crosses. The data are from two of the twelve

districts set up for testing corn hybrids in Iowa. The a ¼ 2 districts are the whole

plots, and the six corn double crosses, the split plot treatments, are arranged in a

randomized complete block design within each district. The yield data (pounds of

ear corn) arranged systematically are given below:

District 1, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 34.6 33.4 36.5 33.0 137.5

2-2 34.5 39.1 35.4 35.6 144.6

4-3 30.1 30.8 35.0 33.3 129.2

15-45 31.3 29.3 29.7 33.2 123.5

8-38 32.8 35.7 36.0 34.0 138.5

7-39 30.7 35.5 35.3 30.6 132.1

Total 194.0 203.8 207.9 199.7 805.4

District 2, A

Double-cross,

factor B Replicate 1 Replicate 2 Replicate 3 Replicate 4 Total

1-1 33.1 24.6 33.8 34.6 126.1

2-2 46.4 36.9 36.3 45.3 164.9

4-3 32.3 38.7 37.5 37.6 146.1

15-43 37.5 39.2 39.1 34.1 149.9

8-38 31.2 40.8 46.1 44.1 162.2

7-39 35.8 38.2 38.8 39.6 152.4

Total 216.3 218.4 231.6 235.3 901.6

Example 3—Cochran and Cox (1957), page 300, present the data for an SPED with

a ¼ 3 recipes, the whole plots (factor A), for chocolate cakes baked at b ¼ 6

temperatures, the split plots (factor B). The response was the breaking angle of the

cake. Enough batter for one recipe was prepared for the six cakes to be baked at the

six temperatures. That is, the wpeu was one batter for six cakes. The three recipes

were arranged in a randomized complete block design with r ¼ 15 replicates.

Example 4—Federer (1955), page 26 of the Problem Section, presents the data

for an SPED with a ¼ 2 whole plot treatments (factor A) of alfalfa or no alfalfa

and b ¼ 5 split plot treatments of bromegrass strains. The bromegrass strains

were intercropped (mixed together) with the alfalfa and no alfalfa (See Federer,

examples of split-plot-designed experiments 7



1993, 1999). The whole plot treatments were arranged in a randomized complete

block design with r ¼ 4 replicates. The dry weights (grams) of hay arranged

systematically are:

Replicate 1 Replicate 2 Replicate 3 Replicate 4

Bromegrass Factor A Factor A Factor A Factor A

strain, factor B alfalfa alone alfalfa alone alfalfa alone alfalfa alone

a 730 786 1004 838 871 1033 844 867

b 601 1038 978 1111 1059 1380 1053 1229

c 840 1047 1099 1393 938 1208 1170 1433

d 844 993 990 970 965 1.308 1111 1311

e 768 883 1029 1130 909 1247 1124 1289

Example 5—Das and Giri (1979), page 150, present an example of three varieties

forming the whole plots and b ¼ 4 manurial treatments forming the split plots in an

SPED with r ¼ 4 replications.

Example 6—Gomez and Gomez (1984), page 102, give a numerical example of six

levels of nitrogen applications forming the whole plots and b ¼ 4 rice varieties

forming the split plots in an SPED with r ¼ 3 replications.

Example 7—Raghavarao (1983), page 255, presents a numerical example where the

whole plots were a ¼ 3 nitrogen levels and the b ¼ 4 split plot treatments were

insecticides in an SPED with r ¼ 4 replications.

Example 8—Leonard and Clark (1938), Chapter 21, give a numerical example of a

split plot experiment design with a ¼ 10 maize hybrids as the whole plots of 36 hills

(3 plants per hill). The wpeus were divided into thirds with 12 hills making up the

speu. The b ¼ 3 split plot treatments were seeds from the three generations F1, F2,

and F3. Two replicates were used and the response was the yield of ear corn.

Example 9—In a setting other than agriculture, three types of schools (public,

religious, and private) were the whole plots. Four types of teaching methods formed

the split plots. This arrangement was replicated over r school districts. The response

was the average score on standardized tests.

Example 10—Two types of shelters (barn and outdoor) were the whole plot factor A

treatments and two types of shoes for horses were used as the factor B split plot

treatments. There were to be r ¼ 5 sets (replicates) of four horses used. Two horses,

wpeu, of each set would be kept in a barn and two would be kept outdoors. One

horse, speu, had one type of shoe and the second horse received the other type of

shoe. The response was length of time required before reshoeing a horse was

required.

Example 11—In a micro-array experiment, the two whole plot treatments were

methods one and two. The two split plot treatments were red color-label 1 and green
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color-label 2 for method 1 and were green color-label 1 and red color-label 2 for

method 2. There were r ¼ 10 sets of whole plots. The color by label interaction is

completely confounded with method in the SPED experiment performed.

Example 12—Three types of managements (factor A) constituted the whole plots

that consisted of a litter of six male rats. The b ¼ 6 medical treatments (factor B)

were the split plot treatments with one rat constituting the speu. Three litters, wpeus,

were obtained from each of r ¼ 6 laboratories.

Example 13—A randomized complete block experiment design with a ¼ 5

treatments (factor A) and r¼ 5 replicates was conducted to determine the effect

of the treatments on the yield and the quality of strawberries. The experiment was

laid out in the field in five columns, the blocks or replicates, and five rows. Hence,

this is a row-column design as far as spatial variation is concerned. A 5� 5 Latin

square experiment design should have been used but was not. The strawberries in

each of the 25 wpeus were graded into b ¼ 4 quality grades (factor B) that were the

split plot treatments. Responses were the weight and the number of strawberries in

each of the grades within a wpeu.

Example 14—Jarmasz et al. (2005) used several forms of a split plot experiment

design to study human subject perceptions to various stimuli. The factor sex was not

taken into account when analyzing the data presented in the paper. Taking the factor

sex into account adds to the splitting of units and the complexity of the analysis.

Several variations of the SPED were used. The split-plot-designed experiment is of

frequent occurrence in this type of research investigation.

Numerous literature citations of split plot designs are given by Federer (1955) in

the Problem Section at the end of the book. This type of design appears in many

fields of inquiry and is of frequent occurrence. Kirk (1968) lists ten references as

representative applications of split plot designs in literature involving learning and

other psychological research. The Annual Reports of the Rothamsted Experiment

Station, the International Rice Research Institute (IRRI), and other research

organizations give data sets for split-plot-designed experiments.

1.4. ANALYSIS OF VARIANCE

A partitioning of the degrees of freedom in an analysis of variance table for the

various sources of variation is one method for writing a linear model for a set of

experimental data. Alternatively, writing a linear model in equation form is another

way of presenting the sources of variation for an experiment. A linear response

model for the SPED for fixed effects factors A and B is usually given as

Yhij ¼ mþ rh þ ai þ dhi þ bj þ abij þ ehij, ð1:1Þ

where Yhij is the response of the hijth speu,

m is a general mean effect,

analysis of variance 9



rh is the hth replicate effect which is identically and independently distributed

with mean zero and variance s2
r,

ai is the effect of the ith whole plot factor A treatment,

dhi is a whole plot random error term which is identically and independently

distributed with mean zero and variance s2
d,

bj is the effect of the jth split plot factor B treatment,

abij is the interaction effect of the ith whole plot treatment with the jth split plot

treatment, and

ehij is a split plot random error effect identically and independently distributed

with mean zero and variance s2
e .

The rh, ehi, and dhij in Equation (1.1) are considered to be mutually independent

variables.

Prior to calculating an analysis of variance, ANOVA table for the above response

model, it is often instructive and enlightening to construct an ANOVA table for each

whole plot as follows:

Whole plot level A1 A2 . . . Aa

Source of variation DF SS DF SS . . . DF SS

Total rb T1 rb T2 . . . rb Ta

Correction for mean 1 C1 1 C2 . . . 1 Ca

Replicate r � 1 R1 r � 1 R2 . . . r � 1 Ra

Split plot factor B b� 1 B1 b� 1 B2 . . . b� 1 Ba

R� B ¼ Error ðr � 1Þðb� 1Þ E1 ðr � 1Þðb� 1Þ E2 . . . ðr � 1Þðb� 1Þ Ea

DF is degrees of freedom and SS is sum of squares. The dot notation is used

which indicates that this is a sum over the subscripts replaced by a dot. The sums of

squares for the ith whole plot treatment, i ¼ 1, 2, . . ., a, are:

Ti ¼
Xr

h¼1

Xb

j¼1

Y2
hij

Ci ¼ Y2
:i:=br

Ri ¼
Xr

h¼1

Y2
hi:=b� Y2

:i:=br ¼ b
Xr

i¼1

ð�yhi: � �y:i:Þ2

Bi ¼
Xb

j¼1

Y2
:ij=r � Y2

:i:=br ¼ r
Xb

j¼1

ð�y:ij � �y:i:Þ2:

These are the usual equations for computing sums of squares for data from a

randomized complete block designed experiment. Ei is obtained by subtraction.
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Data from a split-plot-designed experiment should not be analyzed as a three-

factor factorial of the three factors A, B, and R. This is not correct as can be seen

from the above and noting that the b R� B interactions are nested within whole plot

treatments. This means that this interaction is completely confounded with the

R� A� B interaction. The replicates for different wpeus are not the same even

though they may have the same numbering. They are from different parts of the

experiment. The calculations can be performed but this does not validate the

partition for these two interactions.

A combined ANOVA is easily obtained from the above analyses as indicated in

the table that follows.

Source of variation Degrees of freedom Sum of squares

Total rab T1þ T2þ . . .þ Ta

Correction for mean 1 CFM Compute as usual

Whole plot treatment A a� 1 C1þ C2þ . . .þ Ca� CFM

Replicate within A aðr � 1Þ R1þ R2þ . . .þ Ra

Replicate r � 1 Compute as usual

Error A ¼ R� A ða� 1Þðr � 1Þ Subtraction

Split plot treatment B within A aðb� 1Þ B1þ B2þ . . .þ Ba

Split plot treatment B a� 1 Compute as usual

A� B ða� 1Þðb� 1Þ Subtraction

Error B ¼ R� B within A aðb� 1Þðr � 1Þ E1þ E2þ . . .þ Ea

The Replicate within A sum of squares with aðr � 1Þ degrees of freedom is the

sum R1þ R2þ . . .þ Ra. This is the Replicate sum of squares þ the Error A sum of

squares. The additional sums of squares required for the above table are obtained

from the following equations:

CFM ¼ Y2
:::=abr

Replicate ¼
Xr

i¼1

Y2
h::=ab� Y2

:::=abr

Split plot treatment B ¼
Xb

i¼1

Y2
::j=ar � Y2

:::=abr:

Using this format for obtaining an ANOVA for an SPED can be enlightening for

information on the nature of the factor B responses at each level of factor A and for

observing the homogeneity of the error mean squares Ei=ðrb� r � b� 1Þ at each

level of factor A.

In the above form, it may be instructive in some situations to partition each of the

Ei sum of squares into Tukey’s one-degree-of-freedom for nonadditivity (see e.g.,

Snedecor and Cochran, 1980, Section 15.8) and a residual sum of squares with

rb� r � b degrees of freedom. Likewise, the R� A sum of squares may be partitioned
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to check for nonadditivity. The formula for computing Tukey’s one-degree-of-

freedom sum of squares for a two-way layout is

TNA ¼

Pr
h¼1

Pb
j¼1

Yhijð�yhi: � �y:i:Þð�y:ij � �y:i:Þ
" #2

Pr
h¼1

ð�yhi: � �y:i:Þ2
Pb
j¼1

ð�y:ij � �y:i:Þ2
: ð1:2Þ

The mean of combination hi is �yhi:. �y:i: is the ith whole plot mean. �y::j is the mean of

the jth split plot treatment, and �y:ij is the mean of treatment combination ij. For the

numerical example, Example 1.2, in Section 1.7 and i ¼ 0, the differences of

replicate means from the overall mean are �5/12, �2/12, and 7/12. The differences

of seed treatment means from the overall mean are 500/12, �156/12, �148/12, and

�196/12. The replicates by seed treatment responses for genotype 0 are:

Seed treatment

Replicate 0 1 2 3 Total �yh0: � �y:0:

1 66 12 13 6 97 �5/12

2 63 10 13 12 98 �2/12

3 70 13 11 7 101 7/12

Total 199 35 37 25 296 —

�y:0j � �y:0: 500/12 �156/12 �148/12 �196/12

Using Equation (1.2) for the above data, TNA is computed as:

½66ð500=12Þð�5=12Þ þ 63ð500=12Þð�2=12Þ þ 70ð500=12Þð7=12Þ
þ . . .þ 7ð�196=12Þð7=12Þ�2=½fð�5=12Þ2 þ . . .þ ð�196=12Þ2g�
¼ ½�1; 145þ 65þ . . .� 79� 67�2=ð2:167=4Þð6; 972=3Þ ¼ 2:80:

1.5. F-TESTS

The replicate effects should always be considered as random effects. Considering

them as fixed effects makes no sense as an experimenter is concerned with

inferences beyond these particular replicates. This means that the Error A mean

square is the appropriate error term for testing significance of whole plot treatment

main effects, that is, factor A effects. Depending on the validity of the assumption

that the Error A effects, dhi, are normally, identically, and independently distributed

with zero mean and common variance s2
d, that is, NIID(0,s2

d), an F-test of the Factor

A mean square divided by the Error A mean square is appropriate for testing the null

hypothesis that the A effects are zero.
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When the whole plot treatment effects are fixed effects and the assumption of

normality of the random error effects is correct, an F-test of the null hypothesis of

zero split plot treatment effects is performed using the Error B mean square.

Likewise, an F-test to test the null hypothesis of zero A� B interaction effects is

obtained using the Error B mean square. Note that the normality assumption is not

crucial in most cases as an F-test is quite robust, especially when the number of

degrees of freedom associated with the denominator mean square is not small.

When the whole plot treatments are random effects, the appropriate error mean

square for testing the null hypothesis of zero split plot treatment effects is the A� B

interaction mean square. The appropriate error term for testing the null hypothesis of

zero A� B interaction effects is the Error B mean square.

When the split plot treatments are random effects and whole plot treatments are

fixed effects, the appropriate error mean square for testing the null hypothesis for

zero split plot treatment effects is the Error B mean square. For the interaction

variance component for factors A and B defined as s2
ab, the error mean square

s2
e þ bs2

d þ
ras2

ab

a� 1

is the appropriate mean square for testing for zero factor A effects. The degrees of

freedom associated with the above mean square are unknown and will need to be

approximated (see, e.g., Snedecor and Cochran, 1980, Section 6.11). The expected

value of the interaction mean square is

s2
e þ

ars2
ab

a� 1
:

The following table presents the expected values of the mean squares in an analysis

of variance table for factors A and B as fixed effects and as random effects:

Source of Degrees of Expected value of mean square

variation freedom Fixed A and B Random A and B

Replicate r � 1 s2
e þ bs2

d þ abs2
r s2

e þ bs2
d þ abs2

r

Factor A a� 1 s2
e þ bs2

d þ f ðaiÞ s2
e þ bs2

d þ rs2
ab þ rbs2

a

Error A ða� 1Þðr � 1Þ s2
e þ bs2

d s2
e þ bs2

d

Factor B b� 1 s2
e þ f ðbjÞ s2

e þ rs2
ab þ ars2

b

A� B ða� 1Þðb� 1Þ s2
e þ f ðabijÞ s2

e þ rs2
ab

Error B aðb� 1Þðr � 1Þ s2
e s2

e

The variance components for factor A effects and factor B effects are s2
a and s2

b,

respectively. The other variance components have been defined previously. The term

f (x) refers to a function of the sum of squares of the parameter x inside the

parentheses.
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