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PREFACE

As increasing voice, audio, video, TV, and gaming traffic is carried over IP, Internet traffic
continues to grow rapidly. Many network-related applications are emerging for portable
devices. As smart cellular phone technology advances, the price decreases, and the infras-
tructure to support wireless applications (voice, data, video) is being deployed ubiquitously
to meet unprecedented demands from users. All of these fast-growing services translate into
the high volume of Internet traffic, stringent quality of service (QoS) requirements, large
number of hosts/devices to be supported, large forwarding tables to support, high speed
packet processing, and large storage capability. When designing/operating next genera-
tion switches and routers, these factors create new specifications and new challenges for
equipment vendors and network providers.

Jonathan has co-authored two books: Broadband Packet Switching Technologies—A
Practical Guide to ATM Switches and IP Routers and Quality of Service Control in High-
Speed Networks, published by John Wiley in 2001. Because the technologies in both
electronics and optics have significantly advanced and because the design specifications
for routers have become more demanding and challenging, it is time to write another book.
This book includes new architectures, algorithms, and implementations developed since
2001. Thus, it is more updated and more complete than the two previous books.

In addition to the need for high-speed and high-capacity transmission/switching equip-
ment, the control function of the equipment and network has also become more sophisticated
in order to support new features and requirements of the Internet, including fast re-routing
due to link failure (one or more failures), network security, network measurement for
dynamic routing, and easy management. This book focuses on the subsystems and devices
on the data plane. There is a brief introduction to IP network management to familiarize
readers with how the network is managed, as many routers are interconnected together.

The book starts with an introduction to today’s and tomorrow’s networks, the router
architectures and their building blocks, examples of commercial high-end routers, and
the challenging issues of designing high-performance high-speed routers. The book first
covers the main functions in the line cards of a core router, including route lookup, packet
classification, and traffic management for QoS control described in Chapters 2, 3, and

XV
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4, respectively. It then follows with 11 chapters in packet switching designs, covering
various architectures, algorithms, and technologies (including electrical and optical packet
switching). The last chapter of the book presents the state-of-the-art commercial chipsets
used to build the routers. This is one of the important features in this book—showing readers
the architecture and functions of practical chipsets to reinforce the theories and conceptual
designs covered in previous chapters.

A distinction of this book is that we provide as many figures as possible to explain the
concepts. Readers are encouraged to first scan through the figures and try to understand
them before reading the text. If fully understood, readers can skip to the text to save time.
However, the text is written in such a way as to talk the readers through the figures.

Jonathan and Bin each have about 20 years of experience researching high-performance
switches and routers, implementing them in various systems with VLSI (very-large-scale
integration) and FPGA (field-programmable gate array) chips, transferring technology to the
industry, and teaching such subjects in the college and to the industry companies. They have
accumulated their practical experience in writing this book. The book includes theoretical
concepts and algorithms, design architectures, and actual implementations. It will benefit
the readers in different aspects of building a high-performance switch/router. The draft of
the book has been used as a text for the past two years when teaching senior undergraduate
and first-year graduate students at the author’s universities. If any errors are found, please
send an email to chao@poly.edu. The authors will then make the corresponding corrections
in future editions.

Audience

This book is an appropriate text for senior and graduate students in Electrical Engineering,
Computer Engineering, and Computer Science. They can embrace the technology of the
Internet so as to better position themselves when they graduate and look for jobs in the high-
speed networking field. This book can also be used as a reference for people working in the
Internet-related area. Engineers from network equipment vendors and service providers can
also benefit from the book by understanding the key concepts of packet switching systems
and the key techniques of building high-speed and high-performance routers.
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CHAPTER 1

INTRODUCTION

The Internet, with its robust and reliable Internet Protocol (IP), is widely considered the
most reachable platform for the current and next generation information infrastructure.
The virtually unlimited bandwidth of optical fiber has tremendously increased the data
transmission speed over the past decade. Availability of unlimited bandwidth has stimulated
high-demand multimedia services such as distance learning, music and video download,
and videoconferencing. Current broadband access technologies, such as digital subscriber
lines (DSLs) and cable television (CATV), are providing affordable broadband connection
solutions to the Internet from home. Furthermore, with Gigabit Ethernet access over dark
fiber to the enterprise on its way, access speeds are expected to largely increase. It is clear
that the deployment of these broadband access technologies will result in a high demand
for large Internet bandwidth. To keep pace with the Internet traffic growth, researchers are
continually exploring faster transmission and switching technologies. The advent of optical
transmission technologies, such as dense wave division multiplexing (DWDM), optical add-
drop multiplexers, and ultra-long-haul lasers have had a large influence on lowering the costs
of digital transmission. For instance, 300 channels of 11.6 Gbps can be wavelength-division
multiplexed on a single fiber and transmitted over 7000 km [1]. In addition, a 1296 x 1296
optical cross-connect (OXC) switching system using micro-electro-mechanical systems
(MEMS) with a total switching capacity of 2.07 petabits/s has been demonstrated [2]. In
the rest of this chapter, we explore state-of-the-art network infrastructure, future design
trends, and their impact on next generation routers. We also describe router architectures
and the challenges involved in designing high-performance large-scale routers.

High Performance Switches and Routers, by H. Jonathan Chao and Bin Liu
Copyright © 2007 John Wiley & Sons, Inc.



2 INTRODUCTION
1.1 ARCHITECTURE OF THE INTERNET: PRESENT AND FUTURE

1.1.1 The Present

Today’s Internet is an amalgamation of thousands of commercial and service provider net-
works. It is not feasible for a single service provider to connect two distant nodes on the
Internet. Therefore, service providers often rely on each other to connect the dots. Depend-
ing on the size of network they operate, Internet Service Providers (ISPs) can be broken
down into three major categories. Tier-1 ISPs are about a dozen major telecommunication
companies, such as UUNet, Sprint, Qwest, XO Network, and AT&T, whose high-speed
global networks form the Internet backbone. Tier-1 ISPs do not buy network capacity from
other providers; instead, they sell or lease access to their backbone resource to smaller
Tier-2 ISPs, such as America Online and Broadwing. Tier-3 ISPs are typically regional
service providers such as Verizon and RCN through whom most enterprises connect to the
Internet. Figure 1.1 illustrates the architecture of a typical Tier-1 ISP network.

Each Tier-1 ISP operates multiple [P/MPLS (multi-protocol label switching), and some-
times ATM (asynchronous transfer mode), backbones with speeds varying anywhere from
T3 to OC-192 (optical carrier level 192, ~10 Gbps). These backbones are interconnected
through peering agreements between ISPs to form the Internet backbone. The backbone
is designed to transfer large volumes of traffic as quickly as possible between networks.
Enterprise networks are often linked to the rest of the Internet via a variety of links, any-
where from a T1 to multiple OC-3 lines, using a variety of Layer 2 protocols, such as Gigabit
Ethernet, frame relay, and so on. These enterprise networks are then overhauled into service
provider networks through edge routers. An edge router can aggregate links from multiple
enterprises. Edge routers are interconnected in a pool, usually at a Point of Presence (POP)
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Figure 1.2 Point of presence (POP).

of a service provider, as shown in Figure 1.2. Each POP may link to other POPs of the same
ISP through optical transmission/switching equipment, may link to POPs of other ISPs to
form a peering, or link to one or more backbone routers. Typically, a POP may have a few
backbone routers in a densely connected mesh. In most POPs, each edge router connects to
at least two backbone routers for redundancy. These backbone routers may also connect to
backbone routers at other POPs according to ISP peering agreements. Peering occurs when
ISPs exchange traffic bound for each other’s network over a direct link without any fees.
Therefore, peering works best when peers exchange roughly the same amount of traffic.
Since smaller ISPs do not have high quantities of traffic, they often have to buy transit from
a Tier-1 provider to connect to the Internet. A recent study of the topologies of 10 service
providers across the world shows that POPs share this generic structure [3].

Unlike POPs, the design of backbone varies from service provider to service provider. For
example, Figure 1.3 illustrates backbone design paradigms of three major service providers

Figure 1.3 Three distinct backbone design paradigms of Tier-1 ISPs. (a) AT&T; (b) Sprint;
(c) Level 3 national network infrastructure [3].
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in the US. AT&T’s backbone design includes large POPs at major cities, which in turn fan
out into smaller per-city POPs. In contrast, Sprint’s backbone has only 20 well connected
POPs in major cities and suburban links are back-hauled into the POPs via smaller ISPs.
Most major service providers still have the AT&T backbone model and are in various stages
of moving to Sprint’s design. Sprint’s backbone design provides a good solution to service
providers grappling with a need to reduce capital expenditure and operational costs associ-
ated with maintaining and upgrading network infrastructure. Interestingly, Level 3 presents
another design paradigm in which the backbone is highly connected via circuit technology
such as, MPLS, ATM or frame relays. As will be seen later, this is the next generation of
network design where the line between backbone and network edge begins to blur.

Now, let us see how network design impacts on the next generation routers. Router
design is often guided by the economic requirements of service providers. Service providers
would like to reduce the infrastructure and maintenance costs while, at the same time,
increasing available bandwidth and reliability. To this end, network backbone has a set of
well-defined, narrow requirements. Routers in the backbone should simply move traffic as
fast as possible. Network edge, however, has broad and evolving requirements due simply to
the diversity of services and Layer 2 protocols supported at the edge. Today most POPs have
multiple edge routers optimized for point solutions. In addition to increasing infrastructure
and maintenance costs, this design also increases the complexity of POPs resulting in an
unreliable network infrastructure. Therefore, newer edge routers have been designed to
support diversity and are easily adaptable to the evolving requirements of service providers.
This design trend is shown in Table 1.1, which lists some properties of enterprise, edge, and
core routers currently on the market. As we will see in the following sections, future network
designs call for the removal of edge routers altogether and their replacement with fewer core
routers to increase reliability, throughput, and to reduce costs. This means next generation
routers would have to amalgamate the diverse service requirements of edge routers and the
strict performance requirements of core routers, seamlessly into one body. Therefore, the
real question is not whether we should build highly-flexible, scalable, high-performance
routers, but how?

1.1.2 The Future

As prices of optical transport and optical switching sharply decrease, some network
designers believe that the future network will consist of many mid-size IP routers or MPLS

TABLE 1.1 Popular Enterprise, Edge, and Core Routers in the Market

Model Capacity? Memory Power Features

Cisco 7200 - 256 MB  370W QoS, MPLS, Aggregation
Cisco 7600 720 Gbps 1GB - QoS, MPLS, Shaping
Cisco 10000 51.2 Gbps - 1200W QoS, MPLS

Cisco 12000 1.28 Tbps 4GB 4706 W MPLS, Peering

Juniper M-320 320 Gbps 2GB 3150W MPLS, QoS, VPN

Cisco CRS 92 Tbps 4GB 16,560 W MPLS, Qos, Peering
Juniper TX/T-640 2.5 Tbps/640Gbps 2GB 4550W/6500W  MPLS, QoS, Peering

“Note that the listed capacity is the combination of ingress and egress capacities.
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Figure 1.4 Replacing a cluster of mid-size routers with a large-capacity scalable router.

switches at the network edge that are connected to optical crossconnects (OXCs), which
are then interconnected by DWDM transmission equipment. The problem for this approach
is that connections to the OXC are usually high bit rates, for example, 10 Gbps for now
and 40 Gbps in the near future. When the edge routers want to communicate with all other
routers, they either need to have direct connections to those routers or connect through
multiple logical hops (i.e., routed by other routers). The former case results in low link
utilization while the latter results in higher latency. Therefore, some network designers
believe it is better to build very large IP routers or MPLS switches at POPs. They aggregate
traffic from edge routers onto high-speed links that are then directly connected to other large
routers at different POPs through DWDM transmission equipment. This approach achieves
higher link utilization and fewer hops (thus lower latency). As a result, the need for an OXC
is mainly for provisioning and restoring purposes but not for dynamic switching to achieve
higher link utilization.

Current router technologies available in the market cannot provide large switching
capacities to satisfy current and future bandwidth demands. As a result, a number of mid-
size core routers are interconnected with numerous links and use many expensive line
cards that are used to carry intra-cluster traffic rather than revenue-generating users’ or
wide-area-network (WAN) traffic. Figure 1.4 shows how a router cluster is replaced by a
large-capacity scalable router, saving the cost of numerous line cards and links, and real
estate. It provides a cost-effective solution that can satisfy Internet traffic growth without
having to replace routers every two to three years. Furthermore, there are fewer individual
routers that need to be configured and managed, resulting in a more efficient and reliable
system.

1.2 ROUTER ARCHITECTURES

IP routers’ functions can be classified into two categories: datapath functions and control
plane functions [4].
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The datapath functions such as forwarding decision, forwarding through the backplane,
and output link scheduling are performed on every datagram that passes through the router.
When a packet arrives at the forwarding engine, its destination IP address is first masked
by the subnet mask (logical AND operation) and the resulting address is used to lookup
the forwarding table. A so-called longest prefix matching method is used to find the output
port. In some applications, packets are classified based on 104 bits that include the IP
source/destination addresses, transport layer port numbers (source and destination), and
type of protocol, which is generally called 5-tuple. Based on the result of classification,
packets may be either discarded (firewall application) or handled at different priority levels.
Then, time-to-live (TTL) value is decremented and a new header checksum is recalculated.

The control plane functions include the system configuration, management, and
exchange of routing table information. These are performed relatively infrequently. The
route controller exchanges the topology information with other routers and constructs a
routing table based on a routing protocol, for example, RIP (Routing Information Proto-
col), OSPF (Open Shortest Path Forwarding), or BGP (Border Gateway Protocol). It can
also create a forwarding table for the forwarding engine. Since the control functions are not
performed on each arriving individual packet, they do not have a strict speed constraint and
are implemented in software in general.

Router architectures generally fall into two categories: centralized (Fig. 1.5a) and
distributed (Fig. 1.50).

Figure 1.5a shows a number of network interfaces, forwarding engines, a route controller
(RC), and a management controller (MC) interconnected by a switch fabric. Input interfaces
send packet headers to the forwarding engines through the switch fabric. The forwarding
engines, in turn, determine which output interface the packet should be sent to. This infor-
mation is sent back to the corresponding input interface, which forwards the packet to the
right output interface. The only task of a forwarding engine is to process packet headers
and is shared by all the interfaces. All other tasks such as participating in routing protocols,
reserving resource, handling packets that need extra attention, and other administrative and
maintenance tasks, are handled by the RC and the MC. The BBN multi-gigabit router [5]
is an example of this design.

The difference between Figure 1.5a and 1.5b is that the functions of the forwarding
engines are integrated into the interface cards themselves. Most high-performance routers
use this architecture. The RC maintains a routing table and updates it based on routing pro-
tocols used. The routing table is used to generate a forwarding table that is then downloaded

Route Route

Forwarding controller Interface — ] Interface controller Interface
engine | || Forwarding engine Forwarding engine ||
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Figure 1.5 (a) Centralized versus (b) distributed models for a router.
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Figure 1.6 Typical router architecture.

from the RC to the forwarding engines in the interface cards. It is not necessary to download
a new forwarding table for every route update. Route updates can be frequent, but routing
protocols need time, in the order of minutes, to converge. The RC needs a dynamic routing
table designed for fast updates and fast generation of forwarding tables. Forwarding tables,
on the other hand, can be optimized for lookup speed and need not be dynamic.

Figure 1.6 shows a typical router architecture, where multiple line cards, an RC, and an
MC are interconnected through a switch fabric. The communication between the RC/MC
and the line cards can be either through the switch fabric or through a separate intercon-
nection network, such as a Ethernet switch. The line cards are the entry and exit points
of data to and from a router. They provide the interface from physical and higher layers
to the switch fabric. The tasks provided by line cards are becoming more complex as new
applications develop and protocols evolve. Each line card supports at least one full-duplex
fiber connection on the network side, and at least one ingress and one egress connection
to the switch fabric backplane. Generally speaking, for high-bandwidth applications, such
as OC-48 and above, the network connections support channelization for aggregation of
lower-speed lines into a large pipe, and the switch fabric connections provide flow-control
mechanisms for several thousand input and output queues to regulate the ingress and egress
traffic to and from the switch fabric.

A line card usually includes components such as a transponder, framer, network processor
(NP), traffic manager (TM), and central processing unit (CPU).

Transponder/Transceiver. This component performs optical-to-electrical and electrical-
to-optical signal conversions, and serial-to-parallel and parallel-to-serial conversions
[6, 7].

Framer. A framer performs synchronization, frame overhead processing, and cell
or packet delineation. On the transmit side, a SONET (synchronous optical
network)/SDH (synchronous digital hierarchy) framer generates section, line, and
path overhead. It performs framing pattern insertion (Al, A2) and scrambling. It
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generates section, line, and path bit interleaved parity (B1/B2/B3) for far-end perfor-
mance monitoring. On the receive side, it processes section, line, and path overhead.
It performs frame delineation, descrambling, alarm detection, pointer interpreta-
tion, bit interleaved parity monitoring (B1/B2/B3), and error count accumulation
for performance monitoring [8]. An alternative for the framer is Ethernet framer.

Network Processor. The NP mainly performs table lookup, packet classification, and
packet modification. Various algorithms to implement the first two functions are
presented in Chapters 2 and 3, respectively. The NP can perform those two functions
at the line rate using external memory, such as static random access memory (SRAM)
or dynamic random access memory (DRAM), but it may also require external content
addressable memory (CAM) or specialized co-processors to perform deep packet
classification at higher levels. In Chapter 16, we present some commercially available
NP and ternary content addressable memory (TCAM) chips.

Traffic Manager. To meet the requirements of each connection and service class, the TM
performs various control functions to cell/packet streams, including traffic access con-
trol, buffer management, and cell/packet scheduling. Traffic access control consists of
a collection of specification techniques and mechanisms that (1) specify the expected
traffic characteristics and service requirements (e.g., peak rate, required delay bound,
loss tolerance) of a data stream; (2) shape (i.e., delay) data streams (e.g., reducing
their rates and/or burstiness); and (3) police data streams and take corrective actions
(e.g., discard, delay, or mark packets) when traffic deviates from its specification.
The usage parameter control (UPC) in ATM and differentiated service (DiffServ) in
IP performs similar access control functions at the network edge. Buffer manage-
ment performs cell/packet discarding, according to loss requirements and priority
levels, when the buffer exceeds a certain threshold. Proposed schemes include early
packet discard (EPD) [9], random early packet discard (REPD) [10], weighted REPD
[11], and partial packet discard (PPD) [12]. Packet scheduling ensures that packets
are transmitted to meet each connection’s allocated bandwidth/delay requirements.
Proposed schemes include deficit round-robin, weighted fair queuing (WFQ) and its
variants, such as shaped virtual clock [13] and worst-case fairness WFQ (W F2Q+)
[14]. The last two algorithms achieve the worst-case fairness properties. Details are
discussed in Chapter 4. Many quality of service (QoS) control techniques, algorithms,
and implementation architectures can be found in Ref. [15]. The TM may also manage
many queues to resolve contention among the inputs of a switch fabric, for example,
hundreds or thousands of virtual output queues (VOQs). Some of the representative
TM chips on the market are introduced in Chapter 16, whose purpose it is to match
the theories in Chapter 4 with practice.

Central Processing Unit. The CPU performs control plane functions including connec-
tion set-up/tear-down, table updates, register /buffer management, and exception han-
dling. The CPU is usually not in-line with the fast-path on which maximum-bandwidth
network traffic moves between the interfaces and the switch fabric.

The architecture in Figure 1.6 can be realized in a multi-rack (also known as multi-chassis
or multi-shelf) system as shown in Figure 1.7. In this example, a half rack, equipped with
a switch fabric, a duplicated RC, a duplicated MC, a duplicated system clock (CLK), and
a duplicated fabric shelf controller (FSC), is connected to all other line card (LC) shelves,
each of which has a duplicated line card shelf controller (LSC). Both the FSC and the
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Figure 1.7 Multi-rack router system.

LSC provide local operation and maintenance for the switch fabric and line card shelves,
respectively. They also provide the communication channels between the switch/line cards
with the RC and the MC. The duplicated cards are for reliability concerns. The figure also
shows how the system can grow by adding more LC shelves. Interconnections between the
racks are sets of cables or fibers, carrying information for the data and the control planes.
The cabling usually is a combination of unshielded twisted path (UTP) Category 5 Ethernet
cables for control path, and fiber-optic arrays for data path.

1.3 COMMERCIAL CORE ROUTER EXAMPLES

We now briefly discuss the two most popular core routers on the market: Juniper Network’s
T640 TX-Matrix [16] and Cisco System’s Carrier Routing System (CRS-1) [17].

1.3.1 T640 TX-Matrix

A T640 TX-Matrix is composed of up to four routing nodes and a TX Routing Matrix
interconnecting the nodes. A TX Routing Matrix connects up to four T640 routing nodes
via a three-stage Clos network switch fabric to form a unified router with the capacity of
2.56 Terabits. The blueprint of a TX Routing Matrix is shown in Figure 1.8. The unified
router is controlled by the Routing Engine of the matrix which is responsible for running
routing protocols and for maintaining overall system state. Routing engines in each routing
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Figure 1.8 TX Routing Matrix with four T640 routing nodes.

node manage their individual components in coordination with the routing engine of the
matrix. Data and control plane of each routing node is interconnected via an array of optical
and Ethernet cables. Data planes are interconnected using VCSEL (vertical cavity surface
emitting laser) optical lines whereas control planes are interconnected using UTP Category
5 Ethernet cables.

As shown in Figure 1.9, each routing node has two fundamental architectural compo-
nents, namely the control plane and the data plane. The T640 routing node’s control plane
is implemented by the JUNOS software that runs on the node’s routing engine. JUNOS is a
micro-kernel-based modular software that assures reliability, fault isolation, and high avail-
ability. It implements the routing protocols, generates routing tables and forwarding tables,
and supports the user interface to the router. Data plane, on the other hand, is responsible
for processing packets in hardware before forwarding them across the switch fabric from
the ingress interface to the appropriate egress interface. The T640 routing node’s data plane
is implemented in custom ASICs in a distributed architecture.
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Figure 1.9 T640 routing node architecture.



