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FOREWORD

The discovery of efficacious new human therapeutic agents is one of humanity’s most vital

tasks. It is an enormously demanding activity that requires creativity, a vast range of scien-

tific knowledge, and great persistence. It is also an exceedingly expensive activity. In an

ideal world, no education would be complete without some exposure to the ways in which

new medicines are discovered and developed. For those young people interested in science

or medicine, such knowledge is arguably mandatory.

In this book, Douglas Johnson, Jie Jack Li, and their colleagues present a glimpse

into the realities and demands of drug discovery. It is both penetrating and authoritative.

The intended audience, practitioners and students of medicinal and synthetic chemistry,

can gain perspective, wisdom, and valuable factual knowledge from this volume. The

first two chapters of the book provide a clear view of the many complexities of drug dis-

covery, the numerous stringent requirements that any potential therapeutic molecule must

meet, the challenges and approaches involved in finding molecular structures that “hit” a

biological target, and the many facets of chemical synthesis that connect initial small-scale

laboratory synthesis with the evolution of a process for successful commercial production.

The remaining 15 chapters provide a wealth of interesting synthetic chemistry as applied

to the real world of the molecular medicine of cancer, infectious, cardiovascular, and

metabolic diseases. At the same time, each of these chapters illuminates the way in

which a first-generation therapeutic agent is refined and improved by the application of

medicinal chemistry to the discovery of second- and third-generation medicines.

The authors have produced a valuable work for which they deserve much credit. It is

another step in the odyssey of drug finders; a hardy breed that accepts the high-risk nature

of their prospecting task, the uncertainties at the frontier, and the need for good fortune, as

well as focus and sustained hard work. My ability to predict the future is no better than that

of others, but I think it is possible that a highly productive age of medicinal discovery lies

ahead, for three reasons: (1) the discovery of numerous important new targets for effective

disease therapy, (2) the increasing power of high-throughput screening and bio-target

structure-guided drug design in identifying lead molecules, and (3) the ever-increasing

sophistication of synthetic and computational chemistry.

E. J. COREY
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PREFACE

Our first book on drug synthesis, Contemporary Drug Synthesis, was published in 2004

and was well received by the chemistry community. Due to time and space constraints,

we only covered 14 classes of top-selling drugs, leaving many important drugs out. In pre-

paring The Art of Drug Synthesis, the second volume in our series on “Drug Synthesis,” we

have enlisted 16 chemists in both medicinal and process chemistry, encompassing nine

pharmaceutical companies. Some authors were even intimately involved with the discov-

ery of the drugs that they reviewed. Their perspectives are invaluable to the reader with

regard to the drug discovery process.

In Chapter 1, John Lowe details “The Role of Medicinal Chemistry in Drug

Discovery” in the twenty first century. The overview should prove invaluable to novice

medicinal chemists and process chemists who are interested in appreciating what medic-

inal chemists do. In Chapter 2, Neal Anderson summarizes his experience in process

chemistry. The perspectives provide a great insight for medicinal chemists who are not

familiar with what process chemistry entails. Their contributions afford a big picture of

both medicinal chemistry and process chemistry, where most of the readers are employed.

Following two introductory chapters, the remainder of the book is divided into three major

therapeutic areas: I. Cancer and Infectious Diseases (five chapters); II. Cardiovascular and

Metabolic Diseases (six chapters); and III. Central Nervous System Diseases (four

chapters).

We are grateful to Susan Hagen and Derek Pflum at Pfizer, and Professor John

Montgomery of the University of Michigan and his students Ryan Baxter, Christa

Chrovian, and Hasnain A. Malik for proofreading portions of the manuscript. Jared

Milbank helped in collating the subject index.

We welcome your critique.

DOUGLAS S. JOHNSON

JIE JACK LI

Ann Arbor, Michigan

April 2007
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1

THE ROLE OF MEDICINAL
CHEMISTRY IN DRUG

DISCOVERY
John A. Lowe, III

1.1 INTRODUCTION

This volume represents the efforts of the many chemists whose ability to master both

synthetic and medicinal chemistry enabled them to discover a new drug. Medicinal chem-

istry, like synthetic chemistry, comprises both art and science. It requires a comprehensive

mind to collect and synthesize mountains of data, chemical and biological. It requires the

instinct to select the right direction to pursue, and the intellect to plan and execute the strat-

egy that leads to the desired compound. Most of all, it requires a balance of creativity and

perseverance in the face of overwhelming odds to reach the goal that very few achieve—a

successfully marketed drug.

The tools of medicinal chemistry have changed dramatically over the past few

decades, and continue to change today. Most medicinal chemists learn how to use these

tools by trial and error once they enter the pharmaceutical industry, a process that can

take many years. Medicinal chemists continue to redefine their role in the drug discovery

process, as the industry struggles to find a successful paradigm to fulfill the high expec-

tations for delivering new drugs. But it is clear that however this new paradigm works

out, synthetic and medicinal chemistry will continue to play a crucial role. As the chapters

in this volume make clear, drugs must be successfully synthesized as the first step in their

discovery. Medicinal chemistry consists of designing and synthesizing new compounds,

followed by evaluation of biological testing results and generation of a new hypothesis

as the basis for further compound design and synthesis. This chapter will discuss the

role of both synthetic and medicinal chemistry in the drug discovery process in preparation

for the chapters that follow on the syntheses of marketed drugs.

The Art of Drug Synthesis. Edited by Douglas S. Johnson and Jie Jack Li
Copyright # 2007 John Wiley & Sons, Inc.
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1.2 HURDLES IN THE DRUG DISCOVERY PROCESS

Although the tools of medicinal chemistry may have improved considerably (as discussed

below), the hurdles to discovering a new drug have outpaced this improvement, account-

ing to a certain extent for the dearth of newly marketed drugs. Discussion of some of these

hurdles, such as external pressures brought on by the public media and the stock market,

lies outside the scope of this review. Instead, we will discuss those aspects of drug discov-

ery under the control of the scientists involved.

One of the first challenges for the medicinal chemist assigned to a new project is to

read the biology literature pertaining to its rationale. Interacting with biology colleagues

and understanding the results from biological assays are critical to developing new hypoth-

eses and program directions. Given the increasing complexity of current biological assays,

more information is available, but incorporating it into chemistry planning requires more

extensive biological understanding. This complexity applies to both the primary in vitro

assay for the biological target thought to be linked to clinical efficacy, as well as selectivity

assays for undesired off-target in vitro activities. Some of the same considerations apply to

the increasingly sophisticated assays for other aspects of drug discovery, such as ADME

(absorption, distribution, metabolism, and elimination) and safety, as summarized in

Table 1.1.

The reader is referred to an excellent overview of the biology behind these assays, and

their deployment in a typical drug discovery program (Lin et al., 2003). The tools for

addressing each of these hurdles fall into two categories, in silico modeling and structure-

based drug design, which are covered in Sections 1.3.1 and 1.3.2. Obviously, the final hurdle

is in vivo efficacy and safety data, which generally determine a compound’s suitability for

advancement to clinical evaluation.

TABLE 1.1. Important Considerations for the Medicinal Chemists

In Vitro Target In Vitro ADMEa Physical Properties In Vivo Safety

Primary assay Microsomal

stability

(rat, human)

Rule-of-Five Functional Ames test

Whole cell

assay

Hepatocyte

stability

(rat, human)

In silico ADMEa

(see Section 1.3.1)

Behavioral

animal models

(efficacy)

Micronucleus test

Functional

assay

P450 substrate Solubility PK/PDc HERGd IC50

Selectivity

assays

P450 inhibitor Crystallinity (mp,

stable polymorph)

P450 induction

Permeability Broad ligand

screening

Transporter efflux

(e.g., P-gpb)

Others (depending

on project)

Protein binding

aAbsorption, distribution, metabolism, and elimination; bP-glycoprotein; cPharmacokinetics/pharmacodynamics;
dConcentration for 50% inhibition of the function of the delayed rectifier Kþ channel encoded by the human ether

a-go-go related-gene (HERG).

2 1 THE ROLE OF MEDICINAL CHEMISTRY IN DRUG DISCOVERY



1.3 THE TOOLS OF MEDICINAL CHEMISTRY

1.3.1 In Silico Modeling

To overcome the many hurdles to discovering a new drug, medicinal chemists must focus

on synthesizing compounds with drug-like properties. One of the first tools developed to

help chemists design more drug-like molecules takes advantage of an area totally under the

chemist’s control—the physical properties of the compounds being designed. These are

the rules developed by Chris Lipinski, sometimes referred to as the “Rule-of-Five”

(Ro5), which describe the attributes drug-like molecules generally possess that chemists

should try to emulate (Lipinski et al., 2001). The Ro5 states that drug-like molecules

tend to exhibit four important properties, each related to the number 5 (molecular

weight ,500; cLogP, a measure of lipophilicity,,5; H-bond donors ,5; and H-bond

acceptors ,10). The Ro5 can be applied all the way from library design in the earliest

stages of drug discovery to the final fine-tuning process that leads to the compound

selected for development. Correlating microsomal instability and/or absorption/efflux
with Ro5 properties can also provide insight about the property most important for

gaining improvement in these areas.

As is the case with any good model, the Ro5 is based on data, in this case from

hundreds of marketed drugs. Using more specific data, models to address each of the

hurdles in the drug discovery process have been developed (for comprehensive reviews,

see Beresford et al., 2004; van de Waterbeemd and Gifford, 2003; Winkler, 2004).

These include models of solubility (Cheng and Merz, 2003; Hou et al., 2004; Liu and

So, 2001), absorption/permeability (Bergstroem, 2005; Stenberg et al., 2002), oral bioa-

vailability (Stoner et al., 2004), brain penetration (Abbott, 2004; Clark, 2003) and P450

interaction (de Graaf et al., 2005). More recently, the solution of X-ray crystal structures

of the P450 enzymes 3A4 (Tickle et al., 2005) and 2D6 (Rowland et al., 2006) should

enable application of structure-based drug design (see below) to help minimize interactions

with these metabolic enzymes. Models for safety issues, such as genotoxicity (Snyder et al.,

2004) and HERG (human ether a-go-go related-gene) interaction (which can lead to car-

diovascular side effects due to QT prolongation) (Aronov, 2005; Vaz and Rampe, 2005) are

also being developed. Although this profusion of in silico models offers considerable

potential for overcoming hurdles in the drug discovery process, the models are only as

good as the data used to build them, and often the best models are those built for a

single project using data from only the compounds prepared for that specific project.

The models described above can be used, alone or in combination with structure-based

drug design (see Section 1.3.2), to screen real or virtual libraries of compounds as an integral

part of the design process. These improvements in library design, coupled with more effi-

cient library synthesis and screening, provide value in both time and cost savings. The

move towards using this library technology has been accelerated by the availability of a

new resource for library generation: outsourcing (Goodnow, 2001). Contract research

organizations (CROs) in the United States or offshore provide numerous synthetic services

such as synthesis of literature standards, templates and monomers for library preparation,

and synthesis of libraries (D’Ambra, 2003). These capabilities can relieve in-house medic-

inal chemists of much of the routine synthetic chemistry so they can focus on design and

synthesis to enable new structure-activity relationships (SAR) directions. For an overview

of the process as it fits together for the successful discovery of new drugs, see Lombardino

and Lowe, 2004.

1.3 THE TOOLS OF MEDICINAL CHEMISTRY 3



1.3.2 Structure-Based Drug Design (SBDD)

Progress in SBDD has been steady over the past two decades such that it has become a

generally accepted strategy in medicinal chemistry, transforming the way medicinal che-

mists decide how to pursue their series’ SAR. Although obtaining X-ray crystallographic

data for SBDD was achieved early on, it has taken many years to learn how to interpret,

and not over-interpret, this data. Structural information on the protein target provided by

X-ray crystallography offers the greatest structural resolution for docking proposed

ligands, but other spectroscopic techniques, such as nuclear magnetic resonance

(NMR), have demonstrated their utility as well. X-ray crystallography, however, is gener-

ally restricted to analysing soluble proteins such as enzymes. Also required is a ready

source of large quantities of the target protein for crystallization, as is often the case for

proteins obtained from microorganisms grown in culture.

Bacterial proteins are an ideal starting point for SBDD, as in the case of the b-ketoacyl
carrier protein synthase III (FabH), the target for a recent SBDD-based approach (Nie

et al., 2005). FabH catalyzes the initiation of fatty acid biosynthesis, and a combination

of X-ray data along with structures of substrates and known inhibitors led to selection

of a screening library to provide a starting point for one recent study. Following screening,

co-crystallization of selected inhibitors then guided the addition of functionality to take

advantage of interactions with the enzyme visualized by X-ray and docking studies. A

50-fold improvement in enzyme inhibitory potency was realized in going from structure 1

to 2, accounted for by amino acid side-chain movements revealed by X-ray co-crystal

structures of both compounds with the enzyme. Although much remains to be learned

so that these side-chain movements can be predicted and exploited for new compound

design, the study nonetheless provides a successful example of the implementation of

SBDD in drug design.

Although human proteins are more challenging to obtain in sufficient quantity for

crystallization, modeling based on X-ray crystal structures has been successfully applied

to many human targets. Probably the best-known efforts have been in the kinase area in

search of anticancer drugs, which has been reviewed recently (Ghosh et al., 2001). For

example, X-ray crystallographic data revealed important aspects of the binding of the

anticancer drug Gleevec (3) to its target, the Bcr-Abl kinase, including the role of the

pendant piperazine group, added originally to improve solubility, and the requirement

for binding to an inactive conformation of the enzyme (Schindler et al., 2000). Combined

with studies of the mutations responsible for Gleevec-resistant variants of Bcr-Abl, these

studies enabled design of a new compound, BMS-354825 (4), active against most of these

resistant mutants (Shah et al., 2004). More recently, non-ATP binding site inhibitors have

been discovered and modeled by SBDD. For example, SBDD helped to characterize a new

class of p38 kinase inhibitors that bind to a previously unobserved conformation of the

enzyme that is incompatible with ATP binding (Pargellis et al., 2002). Insights from

4 1 THE ROLE OF MEDICINAL CHEMISTRY IN DRUG DISCOVERY



SBDD then guided design of a picomolar p38 kinase inhibitor based on binding to this site,

BIRB 796 (5).

SBDD approaches to other soluble proteins have produced inhibitors of the tissue

factor VIIa complex (Parlow et al., 2003) and cathepsin G (Greco et al., 2002). In the

case of factor VIIa inhibitors, X-ray data provided information for both designing a

new scaffold for inhibitors and for simultaneously improving binding affinity and selectiv-

ity over thrombin. Compound 6 from this work was advanced to clinical trials based on its

potency and selectivity for factor VIIa inhibition. The cathepsin G inhibitor program

revealed a novel binding mode for an alpha-keto phosphonate to the enzyme’s oxyanion

hole and active site lysine, as well as an opportunity to extend groups into a vacant binding

site to improve potency. The result was a nearly 100-fold increase in inhibition following

an SAR study of this direction using the amide group in compound 7.

Another spectroscopic technique that has been widely applied to drug design is

nuclear magnetic resonance (NMR) spectroscopy (Homans, 2004). Both X-ray crystallo-

graphy and NMR can be used to take advantage of the opportunity to screen fragments,

small molecules with minimal enzyme affinity, but which can be linked together with

structural information to form potent inhibitors (Erlanson et al., 2004). For example, a

recent approach to caspase inhibitors generated its lead structure by tethering an aspartyl

moeity to a salicylic acid group; an X-ray co-crystal structure of the most potent compound

8 was found to mimic most of the interactions of the known peptidic caspase inhibitors

1.3 THE TOOLS OF MEDICINAL CHEMISTRY 5



(Choong et al., 2002). Another example explored replacement of the phosphate group

found in most Src SH2 domain inhibitors with various heteroatom-containing groups by

soaking fragments into a large crystal and obtaining X-ray data, leading to the 5 nM

malonate-based inhibitor 9 (Lesuisse et al., 2002).

For proteins that are not water soluble, such as membrane proteins, techniques that

depend on crystallization are very challenging. Homology modeling is an alternative

that can be applied to transmembrane proteins such as the G-protein-coupled receptors

(GPCRs), which are the target of many marketed drugs. Based on X-ray data for a proto-

type member of this family of proteins, bovine rhodopsin, a number of homology models

for therapeutically relevant GPCRs have been built. In the case of the chemokine GPCR

CCR5, a target for AIDS drugs, a homology model afforded an appreciation of the role of

aromatic interactions and H-bonds involved in binding antagonists (Xu et al., 2004). A

three-dimensional QSAR model was next developed based on a library of potent antagon-

ists, and then combined with the homology model to confirm important interactions and

indicate directions for new compound design, resulting in compound 10, a subnanomolar

CCR5 antagonist. A more sophisticated approach based on docking of virtual compounds

to a homology model for the neurokinin NK-1 receptor for the neurotransmitter peptide

substance P has revealed structurally novel antagonists (Evers and Klebe, 2004). The

most potent of these, ASN-1377642 (11), overlaps nicely with CP-96,345, the literature

NK-1 receptor antagonist on which the pharmacophore used for virtual screening was

based. Similar combinations of SBDD-based technology are providing insights for new

compound design in numerous areas of medicinal chemistry.

1.4 THE ROLE OF SYNTHETIC CHEMISTRY IN DRUG DISCOVERY

Some may ask why anything needs to be said about synthetic chemistry as a tool for drug

discovery; after all, it is common to hear that “we can make anything.” On the other hand,

we can only carry out biological evaluation of compounds that have been synthesized.
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Once the evaluation of biological activity and physical properties has been used to design

new targets, a suitable synthetic route must be developed. However, considerations of

what can be readily prepared factor into design much earlier. Chemists typically recognize

familiar structural features for which they know a feasible synthetic route as they analyze

data and properties. Design is guided by what can be readily made, especially what can be

prepared as a library of compounds, so that work can begin immediately toward initiating

the next round of biological testing.

Although there will always be limitations to what can be synthesized based on our

imperfect knowledge, recent developments in two areas have facilitated the chemist’s

job: analysis/purification and synthetic methodology. In the first area, routine high-field

NMR instruments allow 1H-NMR and 13C-NMR characterization of small amounts

(,10 mg) of organic compounds. Liquid-chromatography/mass spectroscopy (LCMS)

and other rapid analytical techniques, combined with medium- and high-pressure chrom-

atography, allow for ready separation of reaction mixtures. New technologies such as

reactor chips and miniaturization, supercritical fluids and ionic fluid reaction solvents,

and chiral separation techniques will continue to improve synthetic capabilities.

In the second area, two recent advances have transformed synthetic methodology:

transition-metal catalyzed cross-coupling reactions (Nicolaou et al., 2005) and olefin-

metathesis technology (Grubbs, 2004). The formation of carbon–carbon bonds is probably

themost fundamental reaction in synthetic chemistry. For the first several decades of the twen-

tieth century, this reaction depended primarily on displacement of electrophilic leaving

groups by enolate anions (or enamines) or addition of organometallic (e.g., Grignard)

reagents. The advent of palladium-catalyzed coupling of more stable derivatives, such as

olefins and acetylenes, boronic acids/esters, and tin or zinc compounds changed this

simple picture. At the same time, the development of air-stable catalysts for producing

complex carbon frameworks by metathesis of olefins expanded the chemist’s repertoire.

These methods allow much greater flexibility and tolerance for sensitive functional groups,

enabling construction of more complicated, highly functionalized carbon frameworks.

Assembling this methodology, along with that developed over the previous century, into

library-enabled synthesis allows the preparation of the large numbers of compounds favored

for today’s search for lead compounds using high-throughput screening (HTS) and in lead

compound follow-up. Combinatorial chemistry was initially facilitated by developments in

robotic handling technology and, for solid-phase synthesis, by Merrifield peptide synthesis.

Both solution-phase (Selway and Terret, 1996) and solid-phase (Ley and Baxendale, 2002)

parallel syntheses allow generation of large chemical libraries. The emphasis on these new

technologies, combined with the cross-coupling and olefin metathesis synthetic method-

ologies, facilitates the synthesis of new classes of compounds with complex carbon frame-

works. Their emergence as lead series and the ensuing follow-up are largely the result of

their preponderance in the collection of compounds screened. In other words, it can be

argued that synthetic methodology creates the chemical space that is available for screening

and hence influences in a very profound way the medicines available to mankind. As the

syntheses in the succeeding chapters make clear, synthetic chemistry plays a significant

role alongside medicinal chemistry in the drug discovery process.
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2

PROCESS RESEARCH: HOW
MUCH? HOW SOON?

Neal G. Anderson

2.1 INTRODUCTION

When one treats 1,2,3-trichloropropane with alkali and a little water the reaction is violent;

there is a tendency to deposit the reaction product, the raw materials and the apparatus on

the ceiling and the attending chemist. I solved this by setting up duplicate 12-liter flasks,

each equipped with double reflux condensers and surrounding each with a half dozen large

tubs. In practice, when the reaction took off I would flee through the door or window and

battle the eruption with water from a garden hose. The contents flying from the flasks were

deflected by the ceiling and collected under water in the tubs. I used towels to wring out

the contents that separated, shipping the lower layer to [the client]. They complained of

solids suspended in the liquid, but accepted the product and ordered more. I increased the

number of flasks to four, doubled the number of wash tubs, and completed the new order.

They ordered a 55 gallon drum [of the product]. At best, with myself as chemist and super-

visor, I could make a gallon a day, arriving home with skin and lungs saturated with

2,3-dichloropropene. I needed help. An advertisement in the local newspaper resulted in an inter-

view with a former producer of illicit spirits named Preacher who had just done penance at the

local penitentiary. He listened carefully and approved ofmymethod of production, which he said

might be improved with copper coils. Immediately he began to enlarge our production room by

removing a wall, putting in an extra table, and increasing the number of washtubs and reaction

set-ups. It was amazing to see Preacher in action (I gave him encouragement through the

window); he would walk up the aisles from set-up to set-up putting in first the caustic then

the water, then fastening the rubber stoppers and condenser, then using the hose. At this stage

the room was a swirling mass of steam and 2,3-dichloropropene. We made a vast amount of

material and shipped the complete order to [the client]—on schedule.

(Max Gergel, 1979)

The Art of Drug Synthesis. Edited by Douglas S. Johnson and Jie Jack Li
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Chemical process research and development has greatly evolved over the past six

decades, and a number of resources are available (Anderson, 2000; Blaser and Schmidt,

2004; Cabri and Di Fabio, 2000; Collins et al., 1997; Gadamasetti, 1999; Lednicer,

1998; McConville, 2002; Rao, 2004; Repic, 1998; Weissermel and Arpe, 1997). In

the above account of scale-up in the early 1950s, as described by the head of Columbia

Organics, safety considerations, in-process controls, purification, and analyses were essen-

tially nonexistent. Today we are concerned not only for containing the product in the

process equipment, but also for keeping contaminants out of the batch. Today, such an

operation would be conducted only after safety hazard analysis, selection of suitable reac-

tors and protective personnel equipment (PPE), successful small-scale runs in the labora-

tory (use-tests), development of critical in-process controls, and thorough analyses of the

product from the small runs. Then the process would be detailed in a log sheet or batch

record, which would be approved by management. After completing the large-scale run,

the product would be analyzed and its quality documented. Despite the changes that

have evolved over the decades, it is important to note that both earlier and current pro-

cesses have a key feature in common: delivery must be on time.

In the continuum that is drug development, timeliness is crucial. Delaying the intro-

duction of a drug by six months may reduce the lifetime profits by 50% (Ritter, 2002). As a

drug candidate moves closer to launch, more material is required, and more resources

(expensive starting materials, attention of personnel, and so on) must be invested

(Fig. 2.1). Timely process research and development (R&D) can avoid costly surprises

that delay drug introduction. Because fewer than 10% of all drug candidates progress

from pilot plant scale-up to successful launch (Mullin, 2006), people are justifiably cau-

tious about investing time and money too early into process R&D.

Effective chemical process R&D speeds a drug to market. In the discovery laboratory,

paying attention to the practices of process research is likely to improve yields of labora-

tory reactions, reproduce small-scale runs more easily, and scale up to 100þ g runs more

efficiently. Observations may lead to better processes in later development, for example,

by minimizing byproducts, easing work-ups and purification, and by detecting

polymorphs.

Scale-up from grams to 100 g and more may lead to unexpected problems. Safe oper-

ations are essential to minimize risk during scale-up: with scale-up there is always

increased liability from accidents, including injury to personnel, loss of equipment,

delay of key deliveries, damage to a company’s reputation, and more. Some companies

require that safety hazard assessments be completed before any process is run in a pilot

plant; others require safety hazard assessments before a process is scaled up to greater

than a given threshold amount. Testing for such assessments may be conducted on

Figure 2.1. Batch sizes for compounds during drug development.
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