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Introduction

Excel made its debut on the Macintosh in 1985 and has never lost its position as the most popular
spreadsheet application in the Mac environment. In 1987, Excel was ported to the PC, running under
Windows. It took many years for Excel to overtake Lotus 1-2-3, which was one of the most successful
software systems in the history of computing at that time.

A number of spreadsheet applications enjoyed success prior to the release of the IBM PC in 1981. Among
these were VisiCalc and Multiplan. VisiCalc started it all, but fell by the wayside early on. Multiplan was
Microsoft’s predecessor to Excel, using the R1C1 cell addressing which is still available as an option in
Excel. But it was 1-2-3 that shot to stardom very soon after its release in 1982 and came to dominate the
PC spreadsheet market.

Early Spreadsheet Macros

1-2-3 was the first spreadsheet application to offer spreadsheet, charting, and database capabilities in one
package. However, the main reason for its runaway success was its macro capability. Legend has it that
the 1-2-3 developers set up macros as a debugging and testing mechanism for the product. It is said that
they only realized the potential of macros at the last minute, and included them in the final release
pretty much as an afterthought.

Whatever their origins, macros gave non-programmers a simple way to become programmers and
automate their spreadsheets. They grabbed the opportunity and ran. At last they had a measure of
independence from the computer department.

The original 1-2-3 macros performed a task by executing the same keystrokes that a user would use to
carry out the same task. It was, therefore, very simple to create a macro because there was virtually nothing
new to learn to progress from normal spreadsheet manipulation to programmed manipulation. All you
had to do was remember what keys to press and write them down. The only concessions to traditional pro-
gramming were eight extra commands, the /x commands. The /x commands provided some primitive
decision-making and branching capabilities, a way to get input from a user, and a way to construct menus.

One major problem with 1-2-3 macros was their vulnerability. The multi-sheet workbook had not yet been
invented and macros had to be written directly into the cells of the spreadsheet they supported, along with
input data and calculations. Macros were at the mercy of the user. For example, they could be inadvertently
disrupted when a user inserted or deleted rows or columns. Macros were also at the mercy of the program-
mer. A badly designed macro could destroy itself quite easily while trying to edit spreadsheet data.

Despite the problems, users reveled in their newfound programming ability and millions of lines of code
were written in this cryptic language, using arcane techniques to get around its many limitations. The
world came to rely on code that was often badly designed, nearly always poorly documented, and at all
times highly vulnerable, often supporting enterprise-critical control systems.
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The XLM Macro Language

The original Excel macro language required you to write your macros in a macro sheet that was saved in
a file with an . x1m extension. In this way, macros were kept separate from the worksheet, which was
saved in a file with an .x1s extension. These macros are now often referred to as XLM macros, or Excel 4
macros, to distinguish them from the VBA macro language introduced in Excel Version 5.

The XLM macro language consisted of function calls, arranged in columns in the macro sheet. There
were many hundreds of functions necessary to provide all the features of Excel and allow programmatic
control. The XLM language was far more sophisticated and powerful than the 1-2-3 macro language,
even allowing for the enhancements made in 1-2-3 Releases 2 and 3. However, the code produced was
not much more intelligible.

The sophistication of Excel’s macro language was a two-edged sword. It appealed to those with high
programming aptitude, who could tap the language’s power, but was a barrier to most users. There was
no simple relationship between the way you manually operated Excel and the way you programmed it.
There was a very steep learning curve involved in mastering the XLM language.

Another barrier to Excel’s acceptance on the PC was that it required Windows. The early versions of
Windows were restricted by limited access to memory, and Windows required much more horsepower
to operate than DOS. The Graphical User Interface was appealing, but the tradeoffs in hardware cost and
operating speed were perceived as problems.

Lotus made the mistake of assuming that Windows was a flash in the pan, soon to be replaced by OS/2,
and did not bother to plan a Windows version of 1-2-3. Lotus put its energy into 1-2-3/G, a very nice GUI
version of 1-2-3 that only operated under OS/2. This one-horse bet was to prove the undoing of 1-2-3.

By the time it became clear that Windows was here to stay, Lotus was in real trouble as it watched users
flocking to Excel. The first attempt at a Windows version of 1-2-3, released in 1991, was really 1-2-3
Release 3 for DOS in a thin GUI shell. Succeeding releases have closed the gap between 1-2-3 and Excel,
but have been too late to stop the almost universal adoption of Microsoft Office by the market.

Excel 5

Microsoft made a brave decision to unify the programming code behind its Office applications by intro-
ducing VBA (Visual Basic for Applications) as the common macro language in Office. Excel 5, released
in 1993, was the first application to include VBA. It was gradually introduced into the other Office appli-
cations in subsequent versions of Office. Excel, Word, Access, PowerPoint, and Outlook all use VBA as
their macro language in Office.

Since the release of Excel 5, Excel has supported both the XLM and the VBA macro languages, and the
support for XLM should continue into the foreseeable future, but has decreased in significance as users
switch to VBA.

VBA is an object-oriented programming language that is identical to the Visual Basic programming lan-

guage in the way it is structured and in the way it handles objects. If you learn to use VBA in Excel, you
know how to use it in the other Office applications.

XXiv



Introduction

The Office applications differ in the objects they expose to VBA. To program an application, you need

to be familiar with its object model. The object model is a hierarchy of all the objects that you find in the
application. For example, part of the Excel object model tells us that there is an Application object that
contains a Workbook object that contains a Worksheet object that contains a Range object.

VBA is somewhat easier to learn than the XLM macro language, is more powerful, is generally more
efficient, and allows you to write well-structured code. You can also write badly structured code, but by
following a few principles, you should be able to produce code that is readily understood by others and is
reasonably easy to maintain.

In Excel 5, VBA code was written in modules, which were sheets in a workbook. Worksheets, chart
sheets, and dialog sheets were other types of sheets that could be contained in an Excel 5 workbook.

A module is really just a word-processing document with some special characteris-
tics that help you write and test code.

Excel 97

In Excel 97, Microsoft introduced some dramatic changes in the VBA interface and some changes in the
Excel object model. From Excel 97 onward, modules are not visible in the Excel application window and
modules are no longer objects contained by the Workbook object. Modules are contained in the VBA pro-
ject associated with the workbook and can only be viewed and edited in the Visual Basic Editor (VBE)
window.

In addition to the standard modules, class modules were introduced, which allow you to create your
own objects and access application events. CommandBars were introduced to replace menus and tool-
bars, and UserForms replaced dialog sheets. Like modules, UserForms can only be edited in the VBE
window. As usual, the replaced objects are still supported in Excel, but are considered to be hidden
objects and are not documented in the Help screens.

In previous versions of Excel, objects such as buttons embedded in worksheets could only respond to a
single event, usually the C1ick event. Excel 97 greatly increased the number of events that VBA code
can respond to and formalized the way in which this is done by providing event procedures for the
workbook, worksheet, and chart sheet objects. For example, in Excel 2007 workbooks have 29 events
they can respond to, such as BeforeSave, BeforePrint, and BeforeClose. Excel 97 also introduced
ActiveX controls that can be embedded in worksheets and UserForms. ActiveX controls can respond to
a wide range of events such as GotFocus, MouseMove, and DblClick.

The VBE provides users with much more help than was previously available. For example, as you write
code, pop-ups appear with lists of appropriate methods and properties for objects, and arguments and
parameter values for functions and methods. The Object Browser is much better than previous versions,
allowing you to search for entries, for example, and providing comprehensive information on intrinsic
constants.
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Microsoft has provided an Extensibility library that makes it possible to write VBA code that manipu-
lates the VBE environment and VBA projects. This makes it possible to write code that can directly
access code modules and UserForms. It is possible to set up applications that indent module code or
export code from modules to text files, for example.

Excel 2000

Excel 2000 did not introduce dramatic changes from a VBA programming perspective. There were a
large number of improvements in the Office 2000 and Excel 2000 user interfaces and improvements in
some Excel features such as PivotTables. A new PivotChart feature was added. Web users benefited the
most from Excel 2000, especially through the ability to save workbooks as web pages. There were also
improvements for users with a need to share information, through new online collaboration features.

One long-awaited improvement for VBA users was the introduction of modeless UserForms. Previously,
Excel only supported modal dialog boxes, which take the focus when they are onscreen so that no other
activity can take place until they are closed. Modeless dialog boxes allow the user to continue with other
work while the dialog box floats above the worksheet. Modeless dialog boxes can be used to show a
“splash” screen when an application written in Excel is loaded and to display a progress indicator while
a lengthy macro runs.

Excel 2002

Excel 2002 also introduced only incremental changes. Once more, the major improvements were in the
user interface rather than in programming features. Microsoft continued to concentrate on improving
web-related features to make it easier to access and distribute data using the Internet. New features that
can be useful for VBA programmers included a new Protection object, SmartTags, RTD (Real Time
Data), and improved support for XML.

The Protection object allows selective control over the features that are accessible to users when you
protect a worksheet. You can decide whether users can sort, alter cell formatting, or insert and delete
rows and columns, for example. There is also a new AllowEditRange object that you can use to specify
which users can edit specific ranges and whether they must use a password to do so. You can apply dif-
ferent combinations of permissions to different ranges.

SmartTags allow Excel to recognize data typed into cells as having special significance. For example,
Excel 2002 can recognize stock market abbreviations, such as MSFT for Microsoft Corporation. When
Excel sees an item like this, it displays a SmartTag symbol that has a pop-up menu. You can use the
menu to obtain related information, such as the latest stock price or a summary report on the company.
Microsoft provides a kit that allows developers to create new SmartTag software to make data available
throughout an organization or across the Internet.

RTD allows developers to create sources of information that users can draw from. Once you establish a
link to a worksheet, changes in the source data are automatically passed on. An obvious use for this is to
obtain stock prices that change in real time during the course of trading. Other possible applications
include the ability to log data from scientific instruments or industrial process controllers.
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Improved XML support meant that it was getting easier to create applications that exchange data
through the Internet and intranets. As everyone becomes more dependent on these burgeoning tech-
nologies, XML support becomes of increasing importance.

Excel 2003

Excel 2003 continued to introduce new web-orientated features, including improved support for XML
and improved online help and the ability to share and update data using Windows SharePoint Services.

Excel 2003 introduced corrected versions of a number of Excel’s statistical functions.

The List feature was introduced to allow easier management of a database table. Lists make it easier to
sort, filter, and edit data. Lists can also be integrated into SharePoint to share data via the Internet.

New features were introduced to enhance document sharing and management of access rights. Side-by-
side comparison of workbooks was also introduced.

Excel 2007

Excel 2007 represents the greatest change in Excel since Excel 97. The most impact will be made by the
new user interface, which uses the Ribbon as the primary navigation tool, replacing menus and toolbars.
Although the Ribbon is probably much easier to digest for new users, it means that experienced users
need to be re-educated. From a developer’s point of view, the Ribbon is a major challenge requiring a
whole new approach in application interfaces and a completely new set of programming rules.

Excel 2007 lifts many of the old limits, supporting 1,048,576 rows and 16,384 columns, for example. There
are many changes to the way features are accessed so that PivotTables and charts are more accessible and
easier to manipulate, as are many other features.

The List feature of Excel 2003, which handles database tables, has become the Table feature in Excel 2007
and is easier to use and has more capabilities. Sorting and filtering have been redesigned. You can sort on
up to 64 keys simultaneously, for example. Enhancements have also been made in the range of external
data sources that are now accessible, and the ways in which the data is accessed have been improved.

New file formats are used in Excel 2007, which are not compatible with previous versions although data
can be saved back to older formats with the loss of any new features. If you want to have VBA code

saved with a workbook, the format of the file is different compared with a standard workbook file.

Security concepts have been redesigned, introducing the Trust Center. You can now designate folders as
“trusted,” and macros in these folders will be allowed to run without needing digital certificates.

For a VBA programmer there are a number of new objects to be discovered and new concepts to be
learned.
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Excel 2007 VBA Programmer’s Reference

This book is aimed squarely at Excel users who want to harness the power of the VBA language in their
Excel applications. At all times, the VBA language is presented in the context of Excel, not just as a gen-
eral application programming language.

The pages that follow have been loosely divided into three sections:

Q  Primer (Chapter 1)
Q  Working with Specific Objects (Chapters 2-27)
Q  Object Model References (Appendices A—-C)

The Primer has been written for those who are new to VBA programming and the Excel object model. It
introduces the VBA language and the features of the language that are common to all VBA applications.
It explains the relationship between collections, objects, properties, methods, and events and shows how
to relate these concepts to Excel through its object model. It also shows how to use the Visual Basic
Editor and its multitude of tools, including how to obtain help.

The middle section of the book takes the key objects in Excel and shows, through many practical examples,
how to go about working with those objects. The techniques presented have been developed through the
exchange of ideas of many talented Excel VBA programmers over many years and show the best way to
gain access to workbooks, worksheets, charts, ranges, and so on. The emphasis is on efficiency—that is,
how to write code that is readable and easy to maintain and that runs at maximum speed. In addition, the
chapters devoted to accessing external databases detail techniques for accessing data in a range of formats.

The final four chapters of the book address the following advanced issues: linking Excel to the Internet,
writing code for international compatibility, programming the Visual Basic Editor, and how to use the
functions in the Win32 API (Windows 32-bit Application Programming Interface).

Finally, the appendices are a comprehensive reference to the Excel 2007 object model, as well as the
Visual Basic Editor and Office object models. All the objects in the models are presented together with all
their properties, methods, and events. I trust that this book will become a well-thumbed resource that
you can dig into, as needed, to reveal that elusive bit of code that you must have right now.

Version Issues

Previous editions of this book were able to cover all versions of Excel from Excel 97 onward, because the
changes in the Excel object model and user interface were relatively minor. The changes in Excel 2007
have meant that it is no longer possible to do this without filling the book with complicated alternatives.
This book applies to Excel 2007.

What You Need to Use this Book

Nearly everything discussed in this book has examples with it. All the code is written out and there are
plenty of screenshots where they are appropriate. The version of Windows you use is not important. It is
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