Excel’ 2007 VBA

Programmer’s Reference

John Green
Stephen Bullen
Rob Bovey
Michael Alexander

1807
5| ®WILEY |2
:2007;

~~~~~~~~~~~

Wiley Publishing, Inc.






Excel’ 2007 VBA

Programmer’s Reference






Excel’ 2007 VBA

Programmer’s Reference

John Green
Stephen Bullen
Rob Bovey
Michael Alexander

1807
5| ®WILEY |2
:2007;

~~~~~~~~~~~

Wiley Publishing, Inc.

Excel® 2007 VBA Programmer’s Reference

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-04643-2

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107
or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax
(317) 572-4355, or online at http: / /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTAND-
ING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMA-
TION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Cus-
tomer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Excel 2007 VBA programmer’s reference / John Green ... [etal.].
.cm.
Includes index.
ISBN 978-0-470-04643-2 (paper / website)
1. Microsoft Excel (Computer file) 2. Business—Computer programs. I. Green, John, 1945-
HF5548.4.M523E92988 2007
005.54—dc22
2007004976

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and
may not be used without written permission. Microsoft and Excel are registered trademarks of Microsoft Corpora-
tion in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

About the Authors

John Green lives and works in Sydney, Australia, as an independent computer consultant, specializing in
Excel and Access. He has 35 years of computing experience, a Chemical Engineering degree, and an MBA.

He wrote his first programs in FORTRAN, took a part in the evolution of specialized planning languages
on mainframes and, in the early ‘80s, became interested in spreadsheet systems, including 1-2-3 and Excel.

John established his company, Execuplan Consulting, in 1980, specializing in developing computer-
based planning applications and in training. He has led training seminars for software applications and
operating systems both in Australia and overseas.

John has had regular columns in a number of Australian magazines and has contributed chapters to a num-
ber of books including Excel Expert Solutions and Using Visual Basic for Applications 5. He also co-authored
Professional Excel Development with Stephen Bullen and Rob Bovey.

From 1995 to 2005 he was accorded the status of MVP (Most Valuable Professional) by Microsoft for his
contributions to the CompuServe Excel forum and MS Internet newsgroups.

John Green contributed the Introduction, Chapters 1-11, 13, 15-17, and 19 to this book.

Stephen Bullen lives in Woodford Green, London, England, with his partner Clare, daughter Becky, and
their dogs, Fluffy and Charlie. He has two other daughters, Jane and Katie, from his first marriage.

A graduate of Oxford University, Stephen has an MA in Engineering, Economics, and Management,
providing a unique blend of both business and technical skills. He has been providing Excel consulting
and application development services since 1994, originally as an employee of Price Waterhouse
Management Consultants and later as an independent consultant trading under the names of Business
Modelling Solutions Limited and Office Automation Limited. Stephen now works for Barclays Capital in
London, developing trading systems for complex exotic derivative products.

The Office Automation web site, www.oaltd. co.uk, provides a number of helpful and interesting utili-
ties, examples, tips and techniques to help in your use of Excel and development of Excel applications.

As well as co-authoring previous editions of the Excel VBA Programmer’s Reference, Stephen co-authored
Professional Excel Development.

In addition to his consulting and writing assignments, Stephen actively supports the Excel user community
in Microsoft’s peer-to-peer support newsgroups and the Daily Dose of Excel blog. In recognition of his
knowledge, skills and contributions, Microsoft has awarded him the title of Most Valuable Professional
each year since 1996.

Stephen Bullen contributed Chapters 14, 18, 24-27, and Appendix B to this book.

Rob Bovey is president of Application Professionals, a software development company specializing in
Microsoft Office, Visual Basic, and SQL Server applications. He brings many years” experience creating
financial, accounting, and executive information systems for corporate users to Application
Professionals. You can visit the Application Professionals web site at www . appspro. com.

Rob developed several add-ins shipped by Microsoft for Microsoft Excel and co-authored the Microsoft
Excel 97 Developers Kit and Professional Excel Development. He earned his Bachelor of Science degree from
The Rochester Institute of Technology and his MBA from the University of North Carolina at Chapel
Hill. He is a Microsoft Certified Systems Engineer (MCSE) and a Microsoft Certified Solution Developer
(MCSD). Microsoft has awarded him the title of Most Valuable Professional each year since 1995.

Rob Bovey contributed Chapters 20-22 to this book.

Michael Alexander is a Microsoft Certified Application Developer (MCAD) with more than 14 years’
experience consulting and developing office solutions. He parlayed his experience with VBA and VB
into a successful consulting practice in the private sector, developing middleware and reporting solu-
tions for a wide variety of industries. He currently lives in Frisco, Texas, where he serves as a Senior
Program Manager for a top technology firm. Michael is the author of several books on Microsoft Access
and Excel, and is the principle behind DataPig Technologies, where he shares Access and Excel knowl-
edge with the Office community.

Michael Alexander contributed Chapters 12 and 23 and Appendices A and C to this book.

Acquisitions Editor
Katie Mohr

Development Editor
Brian Herrmann

Technical Editor
Dick Kusleika

Production Editor
William A. Barton

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Credits

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Jennifer Theriot

Graphics and Production Specialists
Carrie A. Foster

Denny Hager

Joyce Haughey

Jennifer Mayberry

Barbara Moore

Barry Offringa

Heather Ryan

Quality Control Technicians
Jessica Kramer
Christine Pingleton

Proofreading and Indexing
Kevin Broccoli
Sean Medlock

Contents

Acknowledgments XXi
Introduction xxiii
Chapter 1: Primer in Excel VBA 1
Using the Macro Recorder 2
Recording Macros 2
Running Macros 6
The Visual Basic Editor 8
Other Ways to Run Macros 11
User-Defined Functions 17
Creating a UDF 18
What UDFs Cannot Do 21
The Excel Object Model 21
Objects 22
Getting Help 27
Experimenting in the Immediate Window 29
The VBA Language 30
Basic Input and Output 30
Calling Functions and Sub Procedures 35
Parentheses and Argument Lists 37
Variable Declaration 38
Scope and Lifetime of Variables 40
Variable Type 42
Object Variables 45
Making Decisions 47
Looping 50
Arrays 55
Run-Time Error-Handling 59
Summary 62
Chapter 2: The Application Object 63
Globals 63
The Active Properties 64
Display Alerts 65
Screen Updating 66

Contents

Evaluate 66
InputBox 68
StatusBar 70
SendKeys 70
OnTime 71
OnKey 72
Worksheet Functions 73
Caller 74
Summary 75
Chapter 3: Workbooks and Worksheets 77
The Workbooks Collection 77
Getting a Filename from a Path 78
Files in the Same Directory 81
Overwriting an Existing Workbook 81
Saving Changes 82
The Sheets Collection 83
Worksheets 83
Copy and Move 85
Grouping Worksheets 87
The Window Object 89
Synchronizing Worksheets 90
Summary 91
Chapter 4: Using Ranges 93
Activate and Select 93
Range Property 95
Shortcut Range References 96
Ranges on Inactive Worksheets 96
Range Property of a Range Object o7
Cells Property o7
Cells Used in Range 98
Ranges of Inactive Worksheets 99
More on the Cells Property of the Range Object 99
Single-Parameter Range Reference 101
Offset Property 102
Resize Property 103
SpecialCells Method 105
Last Cell 105
Deleting Numbers 107

Contents

CurrentRegion Property 108
End Property 110
Referring to Ranges with End 110
Summing a Range 111
Columns and Rows Properties 112
Areas 113
Union and Intersect Methods 115
Empty Cells 115
Transferring Values between Arrays and Ranges 118
Deleting Rows 121
Summary 123
Chapter 5: Using Names 125
Naming Ranges 127
Using the Name Property of the Range Object 128
Special Names 128
Storing Values in Names 129
Storing Arrays 130
Hiding Names 131
Working with Named Ranges 132
Searching for a Name 133
Searching for the Name of a Range 135
Determining which Names Overlap a Range 136
Summary 139
Chapter 6: Data Lists 141
Structuring the Data 141
Sorting a Range 142
Older Excel Versions 144
Creating a Table 144
Sorting a Table 145
AutoFilter 146
AutoFilter Object 147
Filter Object 148
Date Custom Filter 148
Adding Combo Boxes 149
Copying the Visible Rows 153
Finding the Visible Rows 154
Advanced Filter 156
Data Form 158
Summary 159

Xi

Contents

Chapter 7: PivotTables 161
Creating a PivotTable Report 162
PivotCaches 165
PivotTables Collection 165
PivotFields 166
CalculatedFields 170
Pivotitems 171
Grouping 171
Visible Property 175
Calculatedltems 176
PivotCharts 177
External Data Sources 178
Summary 180
Chapter 8: Charts 181
Chart Sheets 182
The Recorded Macro 184
Adding a Chart Sheet Using VBA Code 184
Embedded Charts 185
Using the Macro Recorder 186
Adding an Embedded Chart Using VBA Code 186
Editing Data Series 187
Defining Chart Series with Arrays 190
Converting a Chart to Use Arrays 193
Determining the Ranges Used in a Chart 194
Chart Labels 195
Summary 196
Chapter 9: Event Procedures 199
Worksheet Events 199
Enable Events 200
Worksheet Calculate 201
Chart Events 202
Before Double Click 202
Workbook Events 205
Save Changes 206
Headers and Footers 207
Summary 208

Xii

Contents

Chapter 10: Adding Controls 209
Form and ActiveX Controls 209
ActiveX Controls 210

Scrollbar Control 211
Spin Button Control 211
CheckBox Control 212
Option Button Controls 212
Forms Controls 214
Dynamic ActiveX Controls 216
Controls on Charts 220
Summary 221

Chapter 11.: Text Files and File Dialog 223
Opening Text Files 223
Writing to Text Files 224
Reading Text Files 226
Writing to Text Files Using Print 227

Reading Data Strings 229
Flexible Separators and Delimiters 230
FileDialog 233
FileDialogFilters 235
FileDialogSelectedltems 235
Dialog Types 235
Execute Method 235
MultiSelect 236
Summary 238

Chapter 12: Working with XML and the Open XML File Formats 239

The Basics of Using XML Data in Excel 240
XML Fundamentals 240
Consuming XML Data Directly 246
Creating and Managing Your Own XML Maps 249

Using VBA to Program XML Processes 253
Programming XML Maps 253
Leveraging DOM and XPath to Manipulate XML Files 258

Using VBA to Program Open XML Files 265
Programming Open XML Files with VBA 266
Programmatically Zipping an Excel Container 267

Summary 272

Xiii

Contents

Chapter 13: UserForms 273
Displaying a UserForm 273
Creating a UserForm 275
Directly Accessing Controls in UserForms 277
Stopping the Close Button 281
Maintaining a Data List 282
Modeless UserForms 288

Progress Indicator 288
Variable UserForm Name 291
Summary 291

Chapter 14: RibbonX 293
Overview 293
Prerequisites 294
Adding the Customizations 294
XML Structure 295
RibbonX and VBA 298
Control Types 299

Basic Controls 299
Container Controls 300
Control Attributes 301
Control Callbacks 303
Managing Control Images 305
Other RibbonX Elements, Attributes, and Callbacks 307
Sharing Controls among Multiple Workbooks 308
Updating Controls at Run Time 309
Hooking Built-In Controls 311
RibbonX in Dictator Applications 312
Customizing the Office Menu 312
Customizing the QAT 313
Controlling Tabs, Tab Sets, and Groups 313
Dynamic Controls 314
dropDown, comboBox, and gallery 315
dynamicMenu 315
CommandBar Extensions for the Ribbon 316
RibbonX Limitations 317
Summary 318

Xiv

Contents

Chapter 15: Command Bars 319
Toolbars, Menu Bars, and Popups 320
Excel’s Built-in Command Bars 322
Controls at All Levels 325

Facelds 328
Creating New Menus 330

The OnAction Macros 332
Passing Parameter Values 333
Deleting a Menu 334
Creating a Toolbar 335
Popup Menus 338
Showing Popup Command Bars 342

Table-Driven Command Bar Creation 344
Summary 354

Chapter 16: Class Modules 355
Creating Your Own Objects 356
Property Procedures 357
Creating Collections 359

Class Module Collection 360
Encapsulation 363
Trapping Application Events 363
Embedded Chart Events 365
A Collection of UserForm Controls 368
Referencing Classes Across Projects 370
Summary 371

Chapter 17: Add-ins 373
Hiding the Code 374
Creating an Add-in 374
Closing Add-ins 375
Code Changes 376
Saving Changes 377
Interface Changes 377
Installing an Add-in 379
Addininstall Event 381
Removing an Add-in from the Add-ins List 381
Summary 382

XV

Contents

Chapter 18: Automation Add-Ins and COM Add-Ins 383
Automation Add-Ins 383
A Simple Add-In — Sequence 384
Registering Automation Add-Ins with Excel 385
Using Automation Add-Ins 386
Introducing the IDTExtensibility2 Interface 388
COM Add-Ins 394
The IDTExtensibility2 Interface (Continued) 395
Registering a COM Add-In with Excel 395
The COM Add-In Designer 396
Summary 409
Chapter 19: Interacting with Other Office Applications 411
Establishing the Connection 411
Late Binding 412
Early Binding 414
Opening a Document in Word 416
Accessing an Active Word Document 417
Creating a New Word Document 418
Access and ADO 419
Access, Excel, and, Outlook 420
Better than Mail Merge 423
Readable Document Variables 428
Summary 430
Chapter 20: Data Access with ADO 431
An Introduction to Structured Query Language (SQL) 431
The SELECT Statement 432
The INSERT Statement 434
The UPDATE Statement 434
The DELETE Statement 435
An Overview of ADO 436
The Connection Object 437
The Recordset Object 441
The Command Object 445
Using ADO in Microsoft Excel Applications 447
Using ADO with Microsoft Access 448
Using ADO with Microsoft SQL Server 454
Using ADO with Non-Standard Data Sources 463
Summary 468

Xvi

Contents

Chapter 21: Managing External Data 469
The External Data User Interface 469
Get External Data 470
Manage Connections 471
The QueryTable and ListObject 472
A QueryTable from a Relational Database 472

A Query Table Associated with a ListObject 475
QueryTables and Parameter Queries 476
QueryTables from Web Queries 479

A QueryTable from a Text File 482
Creating and Using Connection Files 484
The WorkbookConnection Object and the Connections Collection 487
External Data Security Settings 489
Summary 490
Chapter 22: The Trust Center and Document Security 491
The Trust Center 491
Trusted Publishers 492
Trusted Locations 492
Add-ins 494
ActiveX Settings 495
Macro Settings 497
Message Bar 498
External Content 499
Privacy Options 501
Automating Document Inspection 503
The RemoveDocumentinformation Method 503
The Documentinspectors Collection 505
Summary 506
Chapter 23: Browsing OLAP Data Sources with Excel 507
Analyzing OLAP Data via Pivot Tables 508
Connecting to an OLAP Data Source 508
Browsing the OLAP Data Source 510
Understanding the MDX behind OLAP-based Pivot Tables 512
The Basics of MDX 513
Browsing OLAP Data Sources without Pivot Tables 517
Using ADO to Return Flattened Recordsets 517
Using ADO MD to Get Cube Schema Information 518
Creating an Inventory of Dimensions, Hierarchies, and Levels 519

Xvii

Contents

Creating Offline Cubes 521
Creating an Offline Cube Manually 521
Using the CreateCubeFile Method 521
Creating an Offline Cube Using ADO MD and VBA 522

Summary 523

Chapter 24: Excel and the Internet 525

What Can the Internet Do for You? 526

Using the Internet for Storing Workbooks 526

Using the Internet as a Data Source 527
Opening Web Pages as Workbooks 528
Using Web Queries 528
Parsing Web Pages for Specific Information 530

Using the Internet to Publish Results 531
Setting Up a Web Server 532
Saving Worksheets as Web Pages 532
Creating Interactive Web Pages 533

Using the Internet as a Communication Channel 533
Communicating with a Web Server 534

Summary 536

Chapter 25: International Issues 537

Changing Windows Regional Settings and the Office 2007 Ul Language 537

Responding to Regional Settings and the Windows Language 538
Identifying the User’s Regional Settings and Windows Language 538
VBA Conversion Functions from an International Perspective 539

Interacting with Excel 545
Sending Data to Excel 545
Reading Data from Excel 548
The Rules for Working with Excel 548

Interacting with Users 549
Paper Sizes 549
Displaying Data 549
Interpreting Data 550
The xxxLocal Properties 550
The Rules for Working with Your Users 551

Excel 2007’s International Options 552

Features That Don’t Play by the Rules 554
The OpenText Function 555
The SaveAs Function 556
The ShowDataForm Sub Procedure 556

xviii

Contents

Pasting Text 557
PivotTable Calculated Fields and Items, and Conditional Format and
Data Validation Formulas 557
Web Queries 558
=TEXT() Worksheet Function 558
The Range.Value, Range.Formula, and Range.FormulaArray Properties 559
The Range.AutoFilter Method 559
The Range.AdvancedFilter Method 559
The Application.Evaluate, Application.ConvertFormula, and
Application.ExecuteExcel4Macro Functions 560
Responding to Office 2007 Language Settings 560
Where Does the Text Come From? 560
Identifying the Office Ul Language Settings 562
Creating a Multilingual Application 562
Working in a Multilingual Environment 564
The Rules for Developing a Multilingual Application 565
Some Helpful Functions 565
The bWinToNum Function 566
The bWinToDate Function 566
The sFormatDate Function 567
The ReplaceHolders Function 568
Summary 568
Chapter 26: Programming the VBE 571
Identifying VBE Objects in Code 572
The VBE Object 572
The VBProject Object 572
The VBComponent Object 573
The CodeModule Object 574
The CodePane Object 574
The Designer Object 574
Starting Up 575
Adding Menu Items to the VBE 576
Working with Workbooks 580
Working with Code 589
Working with UserForms 594
Working with References 598
COM Add-ins 599
Summary 600

Xix

Contents

Chapter 27: Programming with the Windows API 601
Anatomy of an API Call 602
Interpreting C-Style Declarations 603
Constants, Structures, Handles, and Classes 606
What If Something Goes Wrong? 609
Wrapping API Calls in Class Modules 611
Some Example Classes 616

A High-Resolution Timer Class 616
Class Module CHighResTimer 616
Freeze a UserForm 618
A System Info Class 619
Modifying UserForm Styles 622
Window Styles 623
The CFormChanger Class 624
Resizable UserForms 625
Absolute Changes 626
Relative Changes 627
The CFormResizer Class 628
Summary 634

Appendix A: Excel 2007 Object Model 635

Appendix B: VBE Object Model 971

Appendix C: Office 2007 Object Model 995
Index 1079

XX

Acknowledgments

John Green
Thanks to Katie Mohr and Michael Alexander for getting us back together, and thanks to Brian Herrmann
for melding us into a coherent whole.

Dick Kusleika deserves special mention as our technical editor. He has saved us from some embarrass-
ment and suggested numerous improvements in the examples and text. Thank you, Dick.

I would like to thank Michael Beale for seeding some of the examples of interaction with other Office
applications.

Finally, a heartfelt thank you to my fellow authors. I have handled the basics and Michael, Rob, and
Stephen have supplied the benefits of their specialized knowledge in the higher-level topics to take us
further than I would have ever dared on my own.

Stephen Bullen
First and foremost, I'd like to thank my long-suffering girlfriend, Clare, for putting up with all the late
nights and lonely evenings she endured while I wrote this update. Thanks also goes to Mike Alexander
and Katie Mohr for their efforts in resurrecting the original author team to write this update to the book,
and to John and Rob for agreeing to do it—your professionalism leaves me humbled.

Dick Kusleika is the unsung hero of this book. While the four authors could concentrate on our own
chapters, Dick had to carefully read every word and check its accuracy. The credit for the amazingly
high quality of this work goes to him, while any remaining errors are ours.

Of course, without the Excel team at Microsoft, we wouldn’t have had anything to write about, so thanks
goes to David Gainer and his team for crafting an amazing update to a quite mature product, and for
being so open with the Excel MVPs and wider public over the past few years. The Ribbon is the biggest
change that has happened to Office for many years and Jensen Harris and Savraj Dhanjal and their teams
have done a brilliant job in designing the Ribbon’s Ul and programmability model, respectively. I'd par-
ticularly like to thank them for listening to the (sometimes harsh) criticism from the beta testers, and for
updating their designs in response.

Last, I’d like to thank you, the reader, for buying this book, writing the five-star reviews on Amazon and
recommending it to all your friends and colleagues!

Mike Alexander
I would like to first thank the original authors—John Green, Stephen Bullen, and Rob Bovey—for agreeing
to reclaim their work. Believe me when I say that these men are very well respected among professional
Excel developers, and it is an absolute honor to be associated with their work.

Acknowledgments

A big thank you goes to Katie Mohr for joining me in lobbying to get the original author team back on
board. It is safe to say that without her efforts, this title would not be the superb product it is today. I would
also like to thank Brian Herrmann and the professionals at Wiley for all of their time and resources in help-
ing this ambitious title come to fruition.

Dick Kusleika is definitely the “the fifth Beatle” of this book. Dick clearly put a lot of time and effort into
keeping us honest and ensuring that our work is as clean as possible. A solid technical editor is paramount

for an all-encompassing reference like this one, and Dick Kusleika really came through for all of us.

A very special thank you to Mary for putting up with all of my crazy projects. The royalty checks are in
the mail, my love.

xXii

Introduction

Excel made its debut on the Macintosh in 1985 and has never lost its position as the most popular
spreadsheet application in the Mac environment. In 1987, Excel was ported to the PC, running under
Windows. It took many years for Excel to overtake Lotus 1-2-3, which was one of the most successful
software systems in the history of computing at that time.

A number of spreadsheet applications enjoyed success prior to the release of the IBM PC in 1981. Among
these were VisiCalc and Multiplan. VisiCalc started it all, but fell by the wayside early on. Multiplan was
Microsoft’s predecessor to Excel, using the R1C1 cell addressing which is still available as an option in
Excel. But it was 1-2-3 that shot to stardom very soon after its release in 1982 and came to dominate the
PC spreadsheet market.

Early Spreadsheet Macros

1-2-3 was the first spreadsheet application to offer spreadsheet, charting, and database capabilities in one
package. However, the main reason for its runaway success was its macro capability. Legend has it that
the 1-2-3 developers set up macros as a debugging and testing mechanism for the product. It is said that
they only realized the potential of macros at the last minute, and included them in the final release
pretty much as an afterthought.

Whatever their origins, macros gave non-programmers a simple way to become programmers and
automate their spreadsheets. They grabbed the opportunity and ran. At last they had a measure of
independence from the computer department.

The original 1-2-3 macros performed a task by executing the same keystrokes that a user would use to
carry out the same task. It was, therefore, very simple to create a macro because there was virtually nothing
new to learn to progress from normal spreadsheet manipulation to programmed manipulation. All you
had to do was remember what keys to press and write them down. The only concessions to traditional pro-
gramming were eight extra commands, the /x commands. The /x commands provided some primitive
decision-making and branching capabilities, a way to get input from a user, and a way to construct menus.

One major problem with 1-2-3 macros was their vulnerability. The multi-sheet workbook had not yet been
invented and macros had to be written directly into the cells of the spreadsheet they supported, along with
input data and calculations. Macros were at the mercy of the user. For example, they could be inadvertently
disrupted when a user inserted or deleted rows or columns. Macros were also at the mercy of the program-
mer. A badly designed macro could destroy itself quite easily while trying to edit spreadsheet data.

Despite the problems, users reveled in their newfound programming ability and millions of lines of code
were written in this cryptic language, using arcane techniques to get around its many limitations. The
world came to rely on code that was often badly designed, nearly always poorly documented, and at all
times highly vulnerable, often supporting enterprise-critical control systems.

Introduction

The XLM Macro Language

The original Excel macro language required you to write your macros in a macro sheet that was saved in
a file with an . x1m extension. In this way, macros were kept separate from the worksheet, which was
saved in a file with an .x1s extension. These macros are now often referred to as XLM macros, or Excel 4
macros, to distinguish them from the VBA macro language introduced in Excel Version 5.

The XLM macro language consisted of function calls, arranged in columns in the macro sheet. There
were many hundreds of functions necessary to provide all the features of Excel and allow programmatic
control. The XLM language was far more sophisticated and powerful than the 1-2-3 macro language,
even allowing for the enhancements made in 1-2-3 Releases 2 and 3. However, the code produced was
not much more intelligible.

The sophistication of Excel’s macro language was a two-edged sword. It appealed to those with high
programming aptitude, who could tap the language’s power, but was a barrier to most users. There was
no simple relationship between the way you manually operated Excel and the way you programmed it.
There was a very steep learning curve involved in mastering the XLM language.

Another barrier to Excel’s acceptance on the PC was that it required Windows. The early versions of
Windows were restricted by limited access to memory, and Windows required much more horsepower
to operate than DOS. The Graphical User Interface was appealing, but the tradeoffs in hardware cost and
operating speed were perceived as problems.

Lotus made the mistake of assuming that Windows was a flash in the pan, soon to be replaced by OS/2,
and did not bother to plan a Windows version of 1-2-3. Lotus put its energy into 1-2-3/G, a very nice GUI
version of 1-2-3 that only operated under OS/2. This one-horse bet was to prove the undoing of 1-2-3.

By the time it became clear that Windows was here to stay, Lotus was in real trouble as it watched users
flocking to Excel. The first attempt at a Windows version of 1-2-3, released in 1991, was really 1-2-3
Release 3 for DOS in a thin GUI shell. Succeeding releases have closed the gap between 1-2-3 and Excel,
but have been too late to stop the almost universal adoption of Microsoft Office by the market.

Excel 5

Microsoft made a brave decision to unify the programming code behind its Office applications by intro-
ducing VBA (Visual Basic for Applications) as the common macro language in Office. Excel 5, released
in 1993, was the first application to include VBA. It was gradually introduced into the other Office appli-
cations in subsequent versions of Office. Excel, Word, Access, PowerPoint, and Outlook all use VBA as
their macro language in Office.

Since the release of Excel 5, Excel has supported both the XLM and the VBA macro languages, and the
support for XLM should continue into the foreseeable future, but has decreased in significance as users
switch to VBA.

VBA is an object-oriented programming language that is identical to the Visual Basic programming lan-

guage in the way it is structured and in the way it handles objects. If you learn to use VBA in Excel, you
know how to use it in the other Office applications.

XXiv

Introduction

The Office applications differ in the objects they expose to VBA. To program an application, you need

to be familiar with its object model. The object model is a hierarchy of all the objects that you find in the
application. For example, part of the Excel object model tells us that there is an Application object that
contains a Workbook object that contains a Worksheet object that contains a Range object.

VBA is somewhat easier to learn than the XLM macro language, is more powerful, is generally more
efficient, and allows you to write well-structured code. You can also write badly structured code, but by
following a few principles, you should be able to produce code that is readily understood by others and is
reasonably easy to maintain.

In Excel 5, VBA code was written in modules, which were sheets in a workbook. Worksheets, chart
sheets, and dialog sheets were other types of sheets that could be contained in an Excel 5 workbook.

A module is really just a word-processing document with some special characteris-
tics that help you write and test code.

Excel 97

In Excel 97, Microsoft introduced some dramatic changes in the VBA interface and some changes in the
Excel object model. From Excel 97 onward, modules are not visible in the Excel application window and
modules are no longer objects contained by the Workbook object. Modules are contained in the VBA pro-
ject associated with the workbook and can only be viewed and edited in the Visual Basic Editor (VBE)
window.

In addition to the standard modules, class modules were introduced, which allow you to create your
own objects and access application events. CommandBars were introduced to replace menus and tool-
bars, and UserForms replaced dialog sheets. Like modules, UserForms can only be edited in the VBE
window. As usual, the replaced objects are still supported in Excel, but are considered to be hidden
objects and are not documented in the Help screens.

In previous versions of Excel, objects such as buttons embedded in worksheets could only respond to a
single event, usually the C1ick event. Excel 97 greatly increased the number of events that VBA code
can respond to and formalized the way in which this is done by providing event procedures for the
workbook, worksheet, and chart sheet objects. For example, in Excel 2007 workbooks have 29 events
they can respond to, such as BeforeSave, BeforePrint, and BeforeClose. Excel 97 also introduced
ActiveX controls that can be embedded in worksheets and UserForms. ActiveX controls can respond to
a wide range of events such as GotFocus, MouseMove, and DblClick.

The VBE provides users with much more help than was previously available. For example, as you write
code, pop-ups appear with lists of appropriate methods and properties for objects, and arguments and
parameter values for functions and methods. The Object Browser is much better than previous versions,
allowing you to search for entries, for example, and providing comprehensive information on intrinsic
constants.

XXV

Introduction

Microsoft has provided an Extensibility library that makes it possible to write VBA code that manipu-
lates the VBE environment and VBA projects. This makes it possible to write code that can directly
access code modules and UserForms. It is possible to set up applications that indent module code or
export code from modules to text files, for example.

Excel 2000

Excel 2000 did not introduce dramatic changes from a VBA programming perspective. There were a
large number of improvements in the Office 2000 and Excel 2000 user interfaces and improvements in
some Excel features such as PivotTables. A new PivotChart feature was added. Web users benefited the
most from Excel 2000, especially through the ability to save workbooks as web pages. There were also
improvements for users with a need to share information, through new online collaboration features.

One long-awaited improvement for VBA users was the introduction of modeless UserForms. Previously,
Excel only supported modal dialog boxes, which take the focus when they are onscreen so that no other
activity can take place until they are closed. Modeless dialog boxes allow the user to continue with other
work while the dialog box floats above the worksheet. Modeless dialog boxes can be used to show a
“splash” screen when an application written in Excel is loaded and to display a progress indicator while
a lengthy macro runs.

Excel 2002

Excel 2002 also introduced only incremental changes. Once more, the major improvements were in the
user interface rather than in programming features. Microsoft continued to concentrate on improving
web-related features to make it easier to access and distribute data using the Internet. New features that
can be useful for VBA programmers included a new Protection object, SmartTags, RTD (Real Time
Data), and improved support for XML.

The Protection object allows selective control over the features that are accessible to users when you
protect a worksheet. You can decide whether users can sort, alter cell formatting, or insert and delete
rows and columns, for example. There is also a new AllowEditRange object that you can use to specify
which users can edit specific ranges and whether they must use a password to do so. You can apply dif-
ferent combinations of permissions to different ranges.

SmartTags allow Excel to recognize data typed into cells as having special significance. For example,
Excel 2002 can recognize stock market abbreviations, such as MSFT for Microsoft Corporation. When
Excel sees an item like this, it displays a SmartTag symbol that has a pop-up menu. You can use the
menu to obtain related information, such as the latest stock price or a summary report on the company.
Microsoft provides a kit that allows developers to create new SmartTag software to make data available
throughout an organization or across the Internet.

RTD allows developers to create sources of information that users can draw from. Once you establish a
link to a worksheet, changes in the source data are automatically passed on. An obvious use for this is to
obtain stock prices that change in real time during the course of trading. Other possible applications
include the ability to log data from scientific instruments or industrial process controllers.

XXVi

Introduction

Improved XML support meant that it was getting easier to create applications that exchange data
through the Internet and intranets. As everyone becomes more dependent on these burgeoning tech-
nologies, XML support becomes of increasing importance.

Excel 2003

Excel 2003 continued to introduce new web-orientated features, including improved support for XML
and improved online help and the ability to share and update data using Windows SharePoint Services.

Excel 2003 introduced corrected versions of a number of Excel’s statistical functions.

The List feature was introduced to allow easier management of a database table. Lists make it easier to
sort, filter, and edit data. Lists can also be integrated into SharePoint to share data via the Internet.

New features were introduced to enhance document sharing and management of access rights. Side-by-
side comparison of workbooks was also introduced.

Excel 2007

Excel 2007 represents the greatest change in Excel since Excel 97. The most impact will be made by the
new user interface, which uses the Ribbon as the primary navigation tool, replacing menus and toolbars.
Although the Ribbon is probably much easier to digest for new users, it means that experienced users
need to be re-educated. From a developer’s point of view, the Ribbon is a major challenge requiring a
whole new approach in application interfaces and a completely new set of programming rules.

Excel 2007 lifts many of the old limits, supporting 1,048,576 rows and 16,384 columns, for example. There
are many changes to the way features are accessed so that PivotTables and charts are more accessible and
easier to manipulate, as are many other features.

The List feature of Excel 2003, which handles database tables, has become the Table feature in Excel 2007
and is easier to use and has more capabilities. Sorting and filtering have been redesigned. You can sort on
up to 64 keys simultaneously, for example. Enhancements have also been made in the range of external
data sources that are now accessible, and the ways in which the data is accessed have been improved.

New file formats are used in Excel 2007, which are not compatible with previous versions although data
can be saved back to older formats with the loss of any new features. If you want to have VBA code

saved with a workbook, the format of the file is different compared with a standard workbook file.

Security concepts have been redesigned, introducing the Trust Center. You can now designate folders as
“trusted,” and macros in these folders will be allowed to run without needing digital certificates.

For a VBA programmer there are a number of new objects to be discovered and new concepts to be
learned.

Xxvii

Introduction

Excel 2007 VBA Programmer’s Reference

This book is aimed squarely at Excel users who want to harness the power of the VBA language in their
Excel applications. At all times, the VBA language is presented in the context of Excel, not just as a gen-
eral application programming language.

The pages that follow have been loosely divided into three sections:

Q Primer (Chapter 1)
Q Working with Specific Objects (Chapters 2-27)
Q Object Model References (Appendices A—-C)

The Primer has been written for those who are new to VBA programming and the Excel object model. It
introduces the VBA language and the features of the language that are common to all VBA applications.
It explains the relationship between collections, objects, properties, methods, and events and shows how
to relate these concepts to Excel through its object model. It also shows how to use the Visual Basic
Editor and its multitude of tools, including how to obtain help.

The middle section of the book takes the key objects in Excel and shows, through many practical examples,
how to go about working with those objects. The techniques presented have been developed through the
exchange of ideas of many talented Excel VBA programmers over many years and show the best way to
gain access to workbooks, worksheets, charts, ranges, and so on. The emphasis is on efficiency—that is,
how to write code that is readable and easy to maintain and that runs at maximum speed. In addition, the
chapters devoted to accessing external databases detail techniques for accessing data in a range of formats.

The final four chapters of the book address the following advanced issues: linking Excel to the Internet,
writing code for international compatibility, programming the Visual Basic Editor, and how to use the
functions in the Win32 API (Windows 32-bit Application Programming Interface).

Finally, the appendices are a comprehensive reference to the Excel 2007 object model, as well as the
Visual Basic Editor and Office object models. All the objects in the models are presented together with all
their properties, methods, and events. I trust that this book will become a well-thumbed resource that
you can dig into, as needed, to reveal that elusive bit of code that you must have right now.

Version Issues

Previous editions of this book were able to cover all versions of Excel from Excel 97 onward, because the
changes in the Excel object model and user interface were relatively minor. The changes in Excel 2007
have meant that it is no longer possible to do this without filling the book with complicated alternatives.
This book applies to Excel 2007.

What You Need to Use this Book

Nearly everything discussed in this book has examples with it. All the code is written out and there are
plenty of screenshots where they are appropriate. The version of Windows you use is not important. It is

XXViii

