MASS SPECTROMETRY OF PROTEIN INTERACTIONS

Edited by

KEVIN M. DOWNARD
The University of Sydney
Sydney, Australia
MASS SPECTROMETRY
OF PROTEIN
INTERACTIONS
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
MASS SPECTROMETRY OF PROTEIN INTERACTIONS

Edited by

KEVIN M. DOWNARD
The University of Sydney
Sydney, Australia

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

Preface ix
Contributors xi

1 Direct Characterization of Protein Complexes by Electrospray Ionization Mass Spectrometry and Ion Mobility Analysis 1
Joseph A. Loo and Catherine S. Kaddis

1.1 Introduction, 2
1.1.1 Historical Perspective of ESI-MS for Measuring Protein Complexes, 3
1.1.2 Types of Interactions that Are Probed by ESI-MS, 6
1.2 Critical Aspects of the Experimental Procedure, 8
1.2.1 Instrumental Parameters, 8
1.2.1.1 Electrospray Ionization Source, 9
1.2.1.2 Atmosphere/Vacuum Interface and Pressure, 9
1.2.1.3 Mass Spectrometry Analyzers, 10
1.2.1.4 Ion Mobility Analyzers, 12
1.2.2 Sample Preparation, 15
1.3 Solution Phase Equilibria and Gas Phase Dissociation, 16
1.3.1 Measuring Solution Dissociation Constants, 16
1.3.2 Tandem Mass Spectrometry of Protein Complexes, 16
1.4 Conclusions, 18
Acknowledgments, 19
References, 19
2 Softly, Softly—Detection of Protein Complexes by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry 25
Kevin M. Downard

2.1 Introduction, 25
2.2 First Glimpses and the First-Shot Phenomenon, 28
2.3 Matrix and Solution Criteria to Preserve Protein Complexes, 30
2.4 Laser Fluence, Wavelength, and Ion Extraction, 32
2.5 Preservation of Protein Complexes on Conventional MALDI Targets, 35
2.6 Affinity Targets and Surfaces Coupled to MALDI, 37
2.7 Conclusions, 39
References, 39

3 Probing Protein Interactions Using Hydrogen–Deuterium Exchange Mass Spectrometry 45
David D. Weis, Suma Kaveti, Yan Wu, and John R. Engen

3.1 Introduction, 46
3.2 Hydrogen Exchange Background, 46
3.3 General HX-MS Method, 47
 3.3.1 Location Information Provided by HX-MS, 49
 3.3.2 Revealing Interactions by Comparison, 50
3.4 Interactions of Proteins, 50
3.5 Examples, 52
 3.5.1 Conformational Changes of Proteins During Binding, 52
 3.5.2 Protein–Protein Interactions, 52
 3.5.3 Protein–Peptide Interactions, 54
 3.5.4 Protein–Small Molecule Interactions, 55
3.6 Conclusions, 57
Acknowledgements, 57
References, 57

4 Limited Proteolysis Mass Spectrometry of Protein Complexes 63
Maria Monti and Piero Pucci

4.1 Introduction, 63
4.2 Limited Proteolysis Analysis, 64
4.3 Experimental Design, 67
4.4 Probing Protein–Protein Interactions, 69
4.5 Probing Protein–Nucleic Acid Interactions, 72
4.6 Probing Protein–Ligand Interactions, 74
5 Chemical Cross-Linking and Mass Spectrometry for Investigation of Protein–Protein Interactions

Andrea Sinz

5.1 Introduction, 84
5.2 Cross-Linking Strategies, 85
 5.2.1 Bottom–Up Approach, 85
 5.2.2 Top–Down Approach, 88
5.3 Functional Groups of Cross-Linking Reagents: Reactivities, 89
 5.3.1 Amine- Reactive Cross-Linkers, 89
 5.3.2 Sulfhydryl-Reactive Cross-Linkers, 91
 5.3.3 Photoreactive Cross-Linkers, 91
5.4 Cross-Linker Design, 92
 5.4.1 Homobifunctional Cross-Linkers, 92
 5.4.2 Heterobifunctional Cross-Linkers, 93
 5.4.3 Zero-Length Cross-Linkers, 93
 5.4.4 Trifunctional Cross-Linkers, 93
5.5 Mass Spectrometric Analysis of Cross-Linked Products, 94
 5.5.1 Bottom–Up Analysis by MALDI-MS, 94
 5.5.2 Bottom–Up Analysis by ESI-MS (LC/MS), 94
 5.5.3 Bottom–Up and Top–Down Analysis by ESI-FTICR-MS, 95
5.6 Identification of Cross-Linked Products, 97
5.7 Computer Software for Data Analysis, 99
5.8 Conclusions and Perspectives, 99
Abbreviations, 100
Acknowledgments, 100
References, 101
6.4 Generation of Radicals on Millisecond Timescales, 117
6.5 Applications of RP-MS to Studies of Protein Interactions, 119
 6.5.1 Intramolecular Interactions, 120
 6.5.2 Intermolecular Interactions: Protein–Peptide and
 Protein–Protein Complexes, 122
6.6 Onset of Oxidative Damage and Its Implications for Protein
 Interactions, 126
6.7 Application of Radical Oxidation to Study Protein
 Assemblies, 128
6.8 Modeling Protein Complexes with Data from
 RP-MS Experiments, 129
6.9 Conclusions, 130
References, 131

Index
PREFACE

THROUGH THE LOOKING GLASS — PROTEIN INTERACTIONS AS VIEWED BY MASS SPECTROMETRY

Mass spectrometry has come a long way from its role in the discovery of isotopes for many of the chemical elements. In just a few decades, difficulties with introducing large, highly polar molecules such as proteins into a mass spectrometer have been overcome and the mass spectrometer, in its many guises, stands as a central technology for the analysis and sequencing of proteins. Perhaps even more astounding, given its construct, is the increasing role that mass spectrometry now plays in the study of protein and other macromolecular interactions.

There are a large number of experimental approaches at hand with which to examine some facet of protein interactions. Although mass spectrometry is not yet routinely practiced by all researchers for this application, it nonetheless can provide a unique window into the nature and stability of these interactions. Developments on a number of fronts from the direct detection of protein complexes and assemblies, to the use of hydrogen isotopic exchange and other chemical labeling approaches with mass spectrometry, to the application of ion mobility mass spectrometry, and the preservation of protein complexes on activated surfaces, have all advanced the study of protein interactions by mass spectrometry. Importantly, the salient features of mass spectrometric analysis—namely, the ability to detect molecules at low sample levels, to do so in complex mixtures without their purification, and to perform the analysis rapidly—are all transposed to these studies.
The use of mass spectrometry to investigate protein interactions using any one individual approach or a combination of approaches is beginning to move from the domain of specialist research laboratories involved in their development to protein scientists and biologists in general. Over a decade on from the earliest observations, an appropriate juncture has been reached at which to review the progress made thus far and report on the latest discoveries and applications as well as new and ongoing challenges. At the time of preparation, there is no book available that covers these developments in a single authoritative volume. This book aims to bring together a series of chapters covering the many avenues with which to study protein interactions by mass spectrometry, each written by international authorities, and in some cases pioneers of the approaches.

In teaching students of the wonders and wherefores of mass spectrometry, I have likened the mass spectrometer to a well-trained dog. Largely obedient, quick to perform, precise in execution, the mass spectrometer eagerly, expeditiously, and expertly can analyze and sequence proteins. But as owners, or should I say custodians, we in the mass spectrometry research community would like our “dog” to jump a little higher, run a little faster, and not without a little satisfaction outperform other “animals” (read analytical technologies).

I am reminded of the words of Lewis Carroll from *Alice’s Adventures in Wonderland*.

Will you walk a little faster? said a whiting to a snail,
There’s a porpoise close behind us and he’s treading on my tail.
See how eagerly the lobsters and the turtles all advance!
They are waiting on the shingle—will you come and join the dance?
Will you, won’t you, will you, won’t you, will you join the dance?

The contents of this book allows one to peer through the looking glass to view the present state-of-play, presents the latest achievements and challenges, and leaves the reader to wonder about what might be possible in the years ahead. On behalf of the contributing authors, I invite you, the reader, to come and join the dance.

KEVIN M. DOWNARD

The University of Sydney
Sydney, Australia
CONTRIBUTORS

*Kevin Downard School of Molecular and Microbial Biosciences, The University of Sydney, Australia [email: kdownard@usyd.edu.au]

*John R. Engen Department of Chemistry, University of New Mexico, Albuquerque, NM 87131-0001 [email: engen@unm.edu]

Suma Kaveti Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195

Catherine S. Kaddis David Geffen School of Medicine, University of California, Los Angeles, CA 90095

*Joseph A. Loo Molecular Biology Institute, University of California, Los Angeles, CA 90095 [email: JLo@chem.ucla.edu]

*Simin D. Maleknia School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia [email: s.maleknia@unsw.edu.au]

Maria Monti Università di Napoli “Federico II,” Napoli, Italy

*Piero Pucci Università di Napoli “Federico II,” Napoli, Italy [email: pucci@unina.it]

*Andrea Sinz Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Germany [email: andrea.sinz@pharmazie.uni-halle.de]

*Indicates corresponding author.
David D. Weis Department of Chemistry, University of New Mexico, Albuquerque, NM 87131-0001

Yan Wu Department of Chemistry, University of New Mexico, Albuquerque, NM 87131-0001
DIRECT CHARACTERIZATION OF PROTEIN COMPLEXES BY ELECTROSPRAY IONIZATION MASS SPECTROMETRY AND ION MOBILITY ANALYSIS

JOSEPH A. LOO
Departments of Chemistry and Biochemistry, and Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095

CATHERINE S. KADDIS
Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095

1.1 Introduction
1.1.1 Historical Perspective of ESI-MS for Measuring Protein Complexes
1.1.2 Types of Interactions that Are Probed by ESI-MS

1.2 Critical Aspects of the Experimental Procedure
1.2.1 Instrumental Parameters
 1.2.1.1 Electrospray Ionization Source
 1.2.1.2 Atmosphere/Vacuum Interface and Pressure
 1.2.1.3 Mass Spectrometry Analyzers
 1.2.1.4 Ion Mobility Analyzers
1.2.2 Sample Preparation

1.3 Solution Phase Equilibria and Gas Phase Dissociation
1.3.1 Measuring Solution Dissociation Constants
1.3.2 Tandem Mass Spectrometry of Protein Complexes
1.1 INTRODUCTION

Beyond its primary, secondary, and tertiary structures, the quaternary structure of a protein can be defined as its interactions and associations with other proteins, macromolecules, and ligands that conspire to define its biological function. Thus, the structural determination of protein complexes can play an important role in the fundamental understanding of biochemical pathways. Traditionally, researchers have a variety of tools at their disposal to probe and measure such interactions. These tools include ultracentrifugation, light scattering, yeast two-hybrid, surface plasmon resonance, affinity chromatography, and native gel electrophoresis, and the methods that provide an “image” of the protein complex, such as cryoelectron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography. Each of these methods has its advantages and disadvantages, and each provides a defined level of information detail, from low-resolution assembly size information (e.g., dynamic light scattering) to high-resolution structure from NMR and X-ray.

Mass spectrometry (MS) is becoming a tool for probing noncovalently bound protein–ligand associations. Its popularity is increasing for several reasons, including the impressive results from a number of researchers worldwide, including Carol Robinson [1] and Albert Heck [2], who have demonstrated the capabilities of MS to measure protein complexes as large as the 2 MDa ribosome [3]. In addition, the general field of proteomics has featured prominently and has encouraged more biochemical scientists to apply mass spectrometry into their research strategies. Perhaps the greatest incentive for the increasing interest in mass spectrometry is the improvements in the technology; sensitivity, resolving power, and mass accuracy have been improving steadily, and the availability of more MS systems tailored to specific requirements (e.g., laboratory space, budget) is increased. Although most of the improvements have targeted peptide-centric analysis for protein sequencing and identification, these improved features have benefited also the analysis of intact proteins and protein complexes.

As demonstrated by the pioneering work of John Fenn, who was awarded the Nobel Prize in Chemistry in 2002 for his development of electrospray