Robust Portfolio Optimization and Management

FRANK J. FABOZZI
PETTER N. KOLM
DESSISLAVA A. PACHAMANOVA
SERGIO M. FOCARDI

John Wiley & Sons, Inc.
THE FRANK J. FABOZZI SERIES

Fixed Income Securities, Second Edition by Frank J. Fabozzi
Focus on Value: A Corporate and Investor Guide to Wealth Creation by James L. Grant and James A. Abate
Handbook of Global Fixed Income Calculations by Dragomir Krgin
Managing a Corporate Bond Portfolio by Leland E. Crabbe and Frank J. Fabozzi
Real Options and Option-Embedded Securities by William T. Moore
Capital Budgeting: Theory and Practice by Pamela P. Peterson and Frank J. Fabozzi
The Exchange-Traded Funds Manual by Gary L. Gastineau
Professional Perspectives on Fixed Income Portfolio Management, Volume 3 edited by Frank J. Fabozzi
Investing in Emerging Fixed Income Markets edited by Frank J. Fabozzi and Efstathia Pilarinu
Handbook of Alternative Assets by Mark J. P. Anson
The Global Money Markets by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry
The Handbook of Financial Instruments edited by Frank J. Fabozzi
Collateralized Debt Obligations: Structures and Analysis by Laurie S. Goodman and Frank J. Fabozzi
Interest Rate, Term Structure, and Valuation Modeling edited by Frank J. Fabozzi
Investment Performance Measurement by Bruce J. Feibel
The Handbook of Equity Style Management edited by T. Daniel Coggin and Frank J. Fabozzi
The Theory and Practice of Investment Management edited by Frank J. Fabozzi and Harry M. Markowitz
Foundations of Economic Value Added: Second Edition by James L. Grant
Financial Management and Analysis: Second Edition by Frank J. Fabozzi and Pamela P. Peterson
Measuring and Controlling Interest Rate and Credit Risk: Second Edition by Frank J. Fabozzi, Steven V. Mann, and Moorad Choudhry
Professional Perspectives on Fixed Income Portfolio Management, Volume 4 edited by Frank J. Fabozzi
The Handbook of European Fixed Income Securities edited by Frank J. Fabozzi and Moorad Choudhry
The Handbook of European Structured Financial Products edited by Frank J. Fabozzi and Moorad Choudhry
The Mathematics of Financial Modeling and Investment Management by Sergio M. Focardi and Frank J. Fabozzi
Short Selling: Strategies, Risks, and Rewards edited by Frank J. Fabozzi
The Real Estate Investment Handbook by G. Timothy Haight and Daniel Singer
Market Neutral Strategies edited by Bruce L. Jacobs and Kenneth N. Levy
Securities Finance: Securities Lending and Repurchase Agreements edited by Frank J. Fabozzi and Steven V. Mann
Fat-Tailed and Skewed Asset Return Distributions by Svetlozar T. Rachev, Christian Menn, and Frank J. Fabozzi
Financial Modeling of the Equity Market: From CAPM to Cointegration by Frank J. Fabozzi, Sergio M. Focardi, and Petter N. Kolm
Analysis of Financial Statements, Second Edition by Pamela P. Peterson and Frank J. Fabozzi
Handbook of Alternative Assets, Second Edition by Mark J. P. Anson
Introduction to Structured Finance by Frank J. Fabozzi, Henry A. Davis, and Moorad Choudhry
Financial Econometrics by Svetlozar T. Rachev, Stefan Mittnik, Frank J. Fabozzi, Sergio M. Focardi, and Teo Jasic
Developments in Collateralized Debt Obligations: New Products and Insights by Douglas J. Lucas, Laurie S. Goodman, Frank J. Fabozzi, and Rebecca J. Manning
FJF
To my wife Donna and my children,
Francesco, Patricia, and Karly

PNK
To Åke and Gunilla, my parents, and to John and Carmen,
my wife's parents, for their unending love and support

DAP
To my husband, Christian Hicks,
and in memory of my grandfather, Georgyi Milyankov

SMF
To the memory of Bertrand Russell to whom I owe
the foundation of my intellectual development
Contents

Preface xi
About the Authors xv

CHAPTER 1
Introduction 1
Quantitative Techniques in the Investment Management Industry 1
Central Themes of This Book 9
Overview of This Book 12

PART ONE
Portfolio Allocation: Classical Theory and Extensions 15

CHAPTER 2
Mean-Variance Analysis and Modern Portfolio Theory 17
The Benefits of Diversification 18
Mean-Variance Analysis: Overview 21
Classical Framework for Mean-Variance Optimization 24
The Capital Market Line 35
Selection of the Optimal Portfolio When There Is a Risk-Free Asset 41
More on Utility Functions: A General Framework for Portfolio Choice 45
Summary 50

CHAPTER 3
Advances in the Theory of Portfolio Risk Measures 53
Dispersion and Downside Measures 54
Portfolio Selection with Higher Moments through Expansions of Utility 70
Polynomial Goal Programming for Portfolio
Optimization with Higher Moments 78
Some Remarks on the Estimation of Higher Moments 80
The Approach of Malevergne and Sornette 81
Summary 86
CHAPTER 4
Portfolio Selection in Practice 87
Portfolio Constraints Commonly Used in Practice 88
Incorporating Transaction Costs in Asset-Allocation Models 101
Multiaccount Optimization 106
Summary 111

PART TWO

Robust Parameter Estimation 113

CHAPTER 5
Classical Asset Pricing 115
Definitions 115
Theoretical and Econometric Models 117
Random Walk Models 118
General Equilibrium Theories 131
Capital Asset Pricing Model (CAPM) 132
Arbitrage Pricing Theory (APT) 136
Summary 137

CHAPTER 6
Forecasting Expected Return and Risk 139
Dividend Discount and Residual Income Valuation Models 140
The Sample Mean and Covariance Estimators 146
Random Matrices 157
Arbitrage Pricing Theory and Factor Models 160
Factor Models in Practice 168
Other Approaches to Volatility Estimation 172
Application to Investment Strategies and Proprietary Trading 176
Summary 177

CHAPTER 7
Robust Estimation 179
The Intuition behind Robust Statistics 179
Robust Statistics 181
Robust Estimators of Regressions 192
Confidence Intervals 200
Summary 206
Contents

CHAPTER 8
Robust Frameworks for Estimation: Shrinkage, Bayesian Approaches, and the Black-Litterman Model 207
Practical Problems Encountered in Mean-Variance Optimization 208
Shrinkage Estimation 215
Bayesian Approaches 229
Summary 253

PART THREE
Optimization Techniques 255

CHAPTER 9
Mathematical and Numerical Optimization 257
Mathematical Programming 258
Necessary Conditions for Optimality for Continuous Optimization Problems 267
Optimization Duality Theory 269
How Do Optimization Algorithms Work? 272
Summary 288

CHAPTER 10
Optimization under Uncertainty 291
Stochastic Programming 293
Dynamic Programming 308
Robust Optimization 312
Summary 332

CHAPTER 11
Implementing and Solving Optimization Problems in Practice 333
Optimization Software 333
Practical Considerations When Using Optimization Software 340
Implementation Examples 346
Specialized Software for Optimization Under Uncertainty 358
Summary 360
PART FOUR

Robust Portfolio Optimization 361

CHAPTER 12
Robust Modeling of Uncertain Parameters in Classical Mean-Variance Portfolio Optimization 363
Portfolio Resampling Techniques 364
Robust Portfolio Allocation 367
Some Practical Remarks on Robust Portfolio Allocation Models 392
Summary 393

CHAPTER 13
The Practice of Robust Portfolio Management: Recent Trends and New Directions 395
Some Issues in Robust Asset Allocation 396
Portfolio Rebalancing 410
Understanding and Modeling Transaction Costs 413
Rebalancing Using an Optimizer 422
Summary 435

CHAPTER 14
Quantitative Investment Management Today and Tomorrow 439
Using Derivatives in Portfolio Management 440
Currency Management 442
Benchmarks 445
Quantitative Return-Forecasting Techniques and Model-Based Trading Strategies 447
Trade Execution and Algorithmic Trading 456
Summary 460

APPENDIX A
Data Description: The MSCI World Index 463

INDEX 473
In the past few years, there has been a notable increase in the use of financial modeling and optimization tools in equity portfolio management. In addition to the pressure on asset management firms to reduce costs and maintain a more stable and predictable performance in the aftermath of the downturn in the U.S. equity markets in 2002, three other general trends have contributed to this increase. First, there has been a revived interest in predictive models for asset returns. Predictive models assume that it is possible to make conditional forecasts of future returns—an objective that was previously considered not achievable by classical financial theory. Second, the wide availability of sophisticated and specialized software packages has enabled generating and exploiting these forecasts in portfolio management, often in combination with optimization and simulation techniques. Third, the continuous increase in computer speed and the simultaneous decrease in hardware costs have made the necessary computing power affordable even to small firms.

As the use of modeling techniques has become widespread among portfolio managers, however, the issue of how much confidence practitioners can have in theoretical models and data has grown in importance. Consequently, there is an increased level of interest in the subject of robust estimation and optimization in modern portfolio management. For years, robustness has been a crucial ingredient in the engineering, statistics, and operations research fields. Today, these fields provide a rich source of ideas to finance professionals. While robust portfolio management undoubtedly demands much more than the robust application of quantitative techniques, there is now a widespread recognition for the need of a disciplined approach to the analysis and management of investments.

In this book we bring together concepts from finance, economic theory, robust statistics, econometrics, and robust optimization, and illustrate that they are part of the same theoretical and practical environment—in a way that even a nonspecialized audience can understand and appreciate. At the same time, we emphasize a practical treatment of the subject, and translate complex concepts into real-world applications for robust return
forecasting and asset allocation optimization. Thereby, we address a num-
ber of issues in portfolio allocation and rebalancing. In particular, we dis-
cuss how to make portfolio management robust with respect to model risk,
long-term views of the market, and market frictions such as trading costs.

The book is divided into four parts. Part I covers classical portfolio
theory and its modern extensions. We provide an up-to-date treatment of
methods for advanced risk management, nonnormal distributions for
asset returns, transaction costs, and multiaccount portfolio management.
Part II introduces traditional and modern frameworks for robust estima-
tion of returns. We address a number of topics that include dimension-
ality reduction, robust covariance matrix estimation, shrinkage estimators,
and the Black-Litterman framework for incorporating investors’ views in
an equilibrium framework. Part III provides readers with the necessary
background for handling the optimization part of portfolio management.
It covers major issues in numerical optimization, introduces widely used
optimization software packages and modeling platforms, and discusses
methods for handling uncertainty in optimization models such as sto-
chastic programming, dynamic programming, and robust optimization.
Part IV focuses on applications of the robust estimation and optimization
methods described in the previous parts, and outlines recent trends and
new directions in robust portfolio management and in the investment
management industry in general. We cover a range of topics from portfo-
lio resampling, robust formulations of the classical portfolio optimization
framework under modeling uncertainty, robust use of factor models,
and multiperiod portfolio allocation models—to the use of derivatives in
portfolio management, currency management, benchmark selection,
modern quantitative trading strategies, model risk mitigation, as well as
optimal execution and algorithmic trading.

We believe that practitioners and analysts who have to develop and
use portfolio management applications will find these themes—along
with the numerous examples of applications and sample computer
code—useful. At the same time, we address the topics in this book in a
theoretically rigorous way, and provide references to the original works,
so the book should be of interest to academics, students, and research-
ers who need an updated and integrated view of the theory and practice
of portfolio management.

TEACHING USING THIS BOOK

This book can be used in teaching courses in advanced econometrics,
financial engineering, quantitative investments and portfolio manage-
ment, as the main course book, as supplemental reading on advanced topics, and/or for student projects. The material in Chapters 2 through 11 of the book is appropriate for undergraduate advanced electives on investment management, and all topics in the book are accessible to graduate students in finance, economics or in the mathematical and physical sciences. The material is also appropriate for use in advanced graduate electives in the decision sciences and operations research that focus on applications of quantitative techniques in finance.

For a typical course, it is natural to start with Chapters 2, 5, and 6 where modern portfolio and asset pricing theory and standard estimation techniques are covered. Basic practical considerations are presented in Chapters 4 and 11. Chapters 3, 7, 8, 10, 12, and 13 are more advanced and do not have to be covered in full. A possibility is to focus on the most common techniques used in portfolio management today, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) (in Chapter 3), shrinkage estimators and the Black-Litterman model (in Chapter 8), robust optimization (in Chapters 10 and 12), and transaction costs and portfolio rebalancing (in Chapter 13). Student projects can be based on specialized topics such as multiaccount optimization (in Chapter 4), numerical optimization techniques (in Chapter 9), modern trading strategies, optimal execution, and algorithmic trading (in Chapter 14).

ACKNOWLEDGMENTS

In writing a book that covers a wide range of topics in portfolio management theory and practice, applied mathematics, statistics, and operations research, we were fortunate to have received valuable comments and suggestions from the following individuals (listed below in alphabetical order):

- Sebastian Ceria and Robert Stubbs of Axioma, Inc. reviewed Chapter 12.
- Eranda Dragoti-Cela of Siemens—Fin4Cast reviewed Chapter 12.
- Dashan Huang of Kyoto University reviewed Chapters 10, 12, and 13.
- Ivana Ljubic of the University of Vienna reviewed Chapter 12.
- John M. Manoyan of CYMALEX Advisors reviewed Chapter 14.
- Jeff Miller of Millennium Partners reviewed Chapters 13 and 14.
- Bernd Scherer of Morgan Stanley reviewed Chapter 4.
- Melvyn Sim of the National University of Singapore Business School reviewed Chapter 12.
Reha Tütüncü of Goldman Sachs Asset Management reviewed Chapters 10 and 12.

We thank Morgan Stanley Capital International, Inc., http://www.msci.com, for providing us with the MSCI World Index data set used in some of the computational examples throughout the book. In particular, we are indebted to Nicholas G. Keyes for answering all of our questions in regards to the data set.

Megan Orem typeset the book and provided editorial assistance. We appreciate her patience and understanding in working through numerous revisions of the chapters and several reorganizations of the table of contents.

Frank J. Fabozzi
Petter N. Kolm
Dessislava A. Pachamanova
Sergio M. Focardi
About the Authors

Frank J. Fabozzi is Professor in the Practice of Finance in the School of Management at Yale University. Prior to joining the Yale faculty, he was a Visiting Professor of Finance in the Sloan School at MIT. Frank is a Fellow of the International Center for Finance at Yale University and on the Advisory Council for the Department of Operations Research and Financial Engineering at Princeton University. He is the editor of the Journal of Portfolio Management and an associate editor of the Journal of Fixed Income. He earned a doctorate in economics from the City University of New York in 1972. In 2002 was inducted into the Fixed Income Analysts Society’s Hall of Fame and is the 2007 recipient of the C. Stewart Shepard Award given by the CFA Institute. He earned the designation of Chartered Financial Analyst and Certified Public Accountant. He has authored and edited numerous books in finance.

Petter N. Kolm is a doctoral student in Finance at the School of Management, Yale University, a financial consultant in New York City, and a member of the editorial board of the Journal of Portfolio Management. Previously, he worked in the Quantitative Strategies Group at Goldman Sachs Asset Management where his responsibilities included researching and developing new quantitative investment strategies for the group’s hedge fund. Petter coauthored the books Financial Modeling of the Equity Market: From CAPM to Cointegration and Trends in Quantitative Finance. His research interests include various topics in finance, such as equity and fixed income modeling, delegated portfolio management, financial econometrics, risk management, and optimal portfolio strategies. Petter received a doctorate in mathematics from Yale University in 2000. He also holds an M.Phil. in applied mathematics from the Royal Institute of Technology in Stockholm and an M.S. in mathematics from ETH Zürich.

Dessislava A. Pachamanova is an Assistant Professor of Operations Research at Babson College where she holds the Zwerling Term Chair. Her research interests lie in the areas of robust optimization, portfolio
risk management, simulation, and financial engineering. Dessislava’s academic research is supplemented by consulting and previous work in the financial industry, including projects with quantitative strategy groups at WestLB and Goldman Sachs. She holds an A.B. in Mathematics from Princeton University and a Ph.D. in Operations Research from the Sloan School of Management at MIT.

As the use of quantitative techniques has become more widespread in the financial industry, the issues of how to apply financial models most effectively and how to mitigate model and estimation errors have grown in importance. This book discusses some of the major trends and innovations in the management of financial portfolios today, focusing on state-of-the-art robust methodologies for portfolio risk and return estimation, optimization, trading, and general management.

In this chapter, we give an overview of the main topics in the book. We begin by providing a historical outlook of the adoption of quantitative techniques in the financial industry and the factors that have contributed to its growth. We then discuss the central themes of the book in more detail, and give a description of the structure and content of its remaining chapters.

QUANTITATIVE TECHNIQUES IN THE INVESTMENT MANAGEMENT INDUSTRY

Over the last 20 years there has been a tremendous increase in the use of quantitative techniques in the investment management industry. The first applications were in risk management, with models measuring the risk exposure to different sources of risk. Nowadays, quantitative models are considered to be invaluable in all the major areas of investment management, and the list of applications continues to grow: option pricing models for the valuation of complicated derivatives and structured products, econometric techniques for forecasting market returns, automated execution algorithms for efficient trading and transaction cost management, portfolio optimization for asset allocation and financial
planning, and statistical techniques for performance measurement and attribution, to name a few.

Today, quantitative finance has evolved into its own discipline—an example thereof is the many university programs and courses being offered in the area in parallel to the “more traditional” finance and MBA programs. Naturally, many different factors have contributed to the tremendous development of the quantitative areas of finance, and it is impossible to list them all. However, the following influences and contributions are especially noteworthy:

- The development of modern financial economics, and the advances in the mathematical and physical sciences.
- The remarkable expansion in computer technology and the invention of the Internet.
- The maturing and growth of the capital markets.

Below, we highlight a few topics from each one of these areas and discuss their impact upon quantitative finance and investment management in general.

Modern Financial Economics and the Mathematical and Physical Sciences

The concepts of portfolio optimization and diversification have been instrumental in the development and understanding of financial markets and financial decision making. The major breakthrough came in 1952 with the publication of Harry Markowitz’s theory of portfolio selection. The theory, popularly referred to as modern portfolio theory, provided an answer to the fundamental question: How should an investor allocate funds among the possible investment choices? Markowitz suggested that investors should consider risk and return together and determine the allocation of funds among investment alternatives on the basis of the trade-off between them. Before Markowitz’s seminal article, the finance literature had treated the interplay between risk and return in a casual manner.

The idea that sound financial decision making is a quantitative trade-off between risk and return was revolutionary for two reasons. First, it posited that one could make a quantitative evaluation of risk

1 Harry M. Markowitz, “Portfolio Selection,” *Journal of Finance* 7, no. 1 (March 1952), pp. 77–91. The principles in Markowitz’s article were later expanded upon in his book *Portfolio Selection*, Cowles Foundation Monograph 16 (New York: John Wiley & Sons, 1959). Markowitz was awarded the Nobel Prize in Economic Sciences in 1990 for his work.
and return *jointly* by considering portfolio returns and their comovements. An important principle at work here is that of portfolio diversification. It is based on the idea that a portfolio’s riskiness depends on the covariances of its constituents, not only on the average riskiness of its separate holdings. This concept was foreign to classical financial analysis, which revolved around the notion of the value of single investments, that is, the belief that investors should invest in those assets that offer the highest future value given their current price. Second, it formulated the financial decision-making process as an optimization problem. In particular, the so-called mean-variance principle formulated by Markowitz suggests that among the infinite number of portfolios that achieve a particular return objective, the investor should choose the portfolio that has the smallest variance. All other portfolios are “inefficient” because they have a higher variance and, therefore, higher risk.

Building on Markowitz’s work, William Sharpe, John Lintner, and Jan Mossin introduced the first asset pricing theory, the capital asset pricing model—CAPM in short—between 1962 and 1964. The CAPM became the foundation and the standard on which risk-adjusted performance of professional portfolio managers is measured.

Modern portfolio theory and diversification provide a theoretical justification for mutual funds and index funds, that have experienced a tremendous growth since the 1980s. A simple classification of fund management is into active and passive management, based upon the efficient market hypotheses introduced by Eugene Fama and Paul Samuelson in 1965. The efficient market hypothesis implies that it is not possible to outperform the market consistently on a risk-adjusted basis after accounting for transaction costs by using available information. In active management, it is assumed that markets are not fully efficient and that a fund manager can outperform a market index by using specific information, knowledge, and experience. Passive management, in con-

contrary, relies on the assumption that financial markets are efficient and that return and risk are fully reflected in asset prices. In this case, an investor should invest in a portfolio that mimics the market. John Bogle used this basic idea when he proposed to the board of directors of the newly formed Vanguard Group to create the first index fund in 1975. The goal was not to outperform the S&P 500 index, but instead to track the index as closely as possible by buying each of the stocks in the S&P 500 in amounts equal to the weights in the index itself.

Despite the great influence and theoretical impact of modern portfolio theory, today—more than 50 years after Markowitz's seminal work—full risk-return optimization at the asset level is primarily done only at the more quantitatively oriented firms. In the investment management business at large, portfolio management is frequently a purely judgmental process based on qualitative, not quantitative, assessments. The availability of quantitative tools is not the issue—today's optimization technology is mature and much more user-friendly than it was at the time Markowitz first proposed the theory of portfolio selection—yet many asset managers avoid using the quantitative portfolio allocation framework altogether.

A major reason for the reluctance of investment managers to apply quantitative risk-return optimization is that they have observed that it may be unreliable in practice. Specifically, risk-return optimization is very sensitive to changes in the inputs (in the case of mean-variance optimization, such inputs include the expected return of each asset and the asset covariances). While it can be difficult to make accurate estimates of these inputs, estimation errors in the forecasts significantly impact the resulting portfolio weights. It is well-known, for instance, that in practical applications equally weighted portfolios often outperform mean-variance portfolios, mean-variance portfolios are not necessarily well-diversified, and mean-variance optimization can produce extreme or non-intuitive weights for some of the assets in the portfolio. Such examples, however, are not necessarily a sign that the theory of risk-return optimization is flawed; rather, that when used in practice, the classical framework has to be modified in order to achieve reliability, stability, and robustness with respect to model and estimation errors.

It goes without saying that advances in the mathematical and physical sciences have had a major impact upon finance. In particular, mathematical areas such as probability theory, statistics, econometrics, operations research, and mathematical analysis have provided the necessary tools and discipline for the development of modern financial economics. Substantial advances in the areas of robust estimation and robust optimization were made during the 1990s, and have proven to be
of great importance for the practical applicability and reliability of portfolio management and optimization.

Any statistical estimate is subject to error—estimation error. A robust estimator is a statistical estimation technique that is less sensitive to outliers in the data. For example, in practice, it is undesirable that one or a few extreme returns have a large impact on the estimation of the average return of a stock. Nowadays, Bayesian techniques and robust statistics are commonplace in financial applications. Taking it one step further, practitioners are starting to incorporate the uncertainty introduced by estimation errors directly into the optimization process. This is very different from the classical approach, where one solves the portfolio optimization problem as a problem with deterministic inputs, without taking the estimation errors into account. In particular, the statistical precision of individual estimates is explicitly incorporated in the portfolio allocation process. Providing this benefit is the underlying goal of robust portfolio optimization.

First introduced by El Ghaoui and Lebret\(^7\) and by Ben-Tal and Nemirovski,\(^8\) modern robust optimization techniques allow a portfolio manager to solve the robust version of the portfolio optimization problem in about the same time as needed for the classical portfolio optimization problem. The robust approach explicitly uses the distribution from the estimation process to find a robust portfolio in one single optimization, thereby directly incorporating uncertainty about inputs in the optimization process. As a result, robust portfolios are less sensitive to estimation errors than other portfolios, and often perform better than classical mean–variance portfolios. Moreover, the robust optimization framework offers great flexibility and many new interesting applications. For instance, robust portfolio optimization can exploit the notion of statistically equivalent portfolios. This concept is important in large-scale portfolio management involving many complex constraints such as transaction costs, turnover, or market impact. Specifically, with robust optimization, a manager can find the best portfolio that (1) minimizes trading costs with respect to the current holdings and (2) has an expected portfolio return and variance that are statistically equivalent to those of the classical mean–variance portfolio.

An important area of quantitative finance is that of modeling asset price behavior, and pricing options and other derivatives. This field can

be traced back to the early works of Thorvald Thiele9 in 1880, Louis Bachelier10 in 1900, and Albert Einstein11 in 1905, who knew nothing about each other’s research and independently developed the mathematics of Brownian motion. Interestingly, while the models by Thiele and Bachelier had little influence for a long time, Einstein’s contribution had an immediate impact on the physical sciences. Historically, Bachelier’s doctoral thesis is the first published work that uses advanced mathematics in the study of finance. Therefore, he is by many considered to be the pioneer of financial mathematics—the first “quant.”12

The first listed options began trading in April 1973 on the Chicago Board Options Exchange (CBOE), only one and four months, respectively, before the papers by Black and Scholes13 and by Merton14 on option pricing were published. Although often criticized in the general press, and misunderstood by the public at large, options opened the door to a new era in investment and risk management, and influenced the introduction and popularization of a range of other financial products including interest rate swaptions, mortgage-backed securities, callable bonds, structured products, and credit derivatives. New derivative products were made possible as a solid pricing theory was available. Without the models developed by Black, Scholes, and Merton and many others following in their footsteps, it is likely that the rapid expansion

10Louis Bachelier, “Théorie de la Speculation [Theory of Speculation],” Annales Scientifiques de l’École Normale Supérieure Sér. 3, 17 (1900), pp. 21–86.

12The term “quant” which is short for quantitative analyst (someone who works in the financial markets developing mathematical models) was popularized, among other things, by Emanuel Derman in his book My Life as a Quant (Hoboken, NJ: John Wiley & Sons, 2004). On a lighter note, a T-shirt with the words “Quants Do It with Models” circulated among some quantitative analysts on Wall Street a few years ago.

13Fischer S. Black and Myron S. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy 81, no. 3 (1973), pp. 637–659. Scholes received the Nobel Prize of Economic Science in 1997 for his work on option pricing theory. At that time, sadly, Fischer Black had passed away, but he received an honorable mention in the award.

of derivative products would never have happened. These modern instruments and the concepts of portfolio theory, CAPM, arbitrage and equilibrium pricing, and market predictability form the foundation not only for modern financial economics but for the general understanding and development of today’s financial markets. As Peter Bernstein so adequately puts it in his book *Capital Ideas*: “Every time an institution uses these instruments, a corporation issues them, or a homeowner takes out a mortgage, they are paying their respects, not just to Black, Scholes, and Merton, but to Bachelier, Samuelson, Fama, Markowitz, Tobin, Treynor, and Sharpe as well.”\(^{15}\)

Computer Technology and the Internet

The appearance of the first personal computers in the late 1970s and early 1980s forever changed the world of computing. It put computational resources within the reach of most people. In a few years every trading desk on Wall Street was equipped with a PC. From that point on, computing costs have declined at the significant pace of about a factor of 2 every year. For example, the cost per gigaflops\(^ {16}\) is about $1 today, to be compared to about $50,000 about 10 years ago.\(^ {17}\) At the same time, computer speed increased in a similar fashion: today’s fastest computers are able to perform an amazing 300 trillion calculations per second.\(^ {18}\) This remarkable development of computing technology has allowed finance professionals to deploy more sophisticated algorithms used, for instance, for derivative and asset pricing, market forecasting, portfolio allocation, and computerized execution and trading. With state-of-the-art optimization software, a portfolio manager is able to calculate the optimal allocation for a portfolio of thousands of assets in no more than a few seconds—on the manager’s desktop computer!

\(^{16}\) Flops is an abbreviation for floating point operations per second and is used as a measure of a computer’s performance. 1 gigaflops = \(10^9\) flops.

\(^{18}\) As of November 2006, the IBM BlueGene/L system with 131072 processor units held the so-called Linpack record with a remarkable performance of 280.6 teraflops (that is, 280.6 trillions of floating-point operations per second). See TOP500, www.top500.org.
But computational power alone is not sufficient for financial applications. It is crucial to obtain market data and other financial information efficiently and expediently, often in real time. The Internet and the World Wide Web have proven invaluable for this purpose. The World Wide Web, or simply the “Web,” first created by Tim Berners-Lee working at CERN in Geneva, Switzerland around 1990, is an arrangement of interlinked, hypertext documents available over the Internet. With a simple browser, anybody can view webpages that may contain anything from text and pictures, to other multimedia based information, and jump from page to page by a simple mouse click. Berners-Lee’s major contribution was to combine the concept of hypertext with the Internet, born out of the NSFNet developed by the National Science Foundation in the early 1980s. The Web as we know it today allows for expedient exchange of financial information. Many market participants—from individuals to investment houses and hedge funds—use the Internet to follow financial markets as they move tick by tick and to trade many different kinds of assets such as stocks, bonds, futures, and other derivatives simultaneously across the globe. In today’s world, gathering, processing, and analyzing the vast amount of information is only possible through the use of computer algorithms and sophisticated quantitative techniques.

Capital Markets

The development of the capital markets has of course had a significant impact on quantitative finance and the investment management industry as a whole. Investors today have a vast number of assets available in the capital markets, from more traditional assets such as stocks, bonds, commodities (precious metals, etc.) and real estate to derivative instruments such as options, futures, swaps, credit linked securities, mortgage-backed securities and other structured products, and specialized financial insurance products. These securities and products allow market participants to get exposure to, or to hedge risks—sometimes very specific risks. For example, a corporate bond portfolio manager may decide to hedge specific credit risks in his portfolio using a credit default swap, or a proprietary trader can short equity volatility by selling a volatility swap.

However, the number of assets available alone is not enough to guarantee success, if the assets are only traded infrequently and in small volumes. Successful capital markets have to be liquid, allowing market participants to trade their positions quickly and at low cost. An asset is

19 A recent study concluded that as of January 2005 there are over 11.5 billion public webpages available on the Internet, see Antonio Gulli and Alessio Signorini, “The Indexable Web is More than 11.5 billion pages,” 2005, Dipartimento di Informatica at Universita’ di Pisa and Department of Computer Science at University of Iowa.
said to be liquid if it can be converted to cash quickly at a price close to fair market value. The U.S. capital markets are the most liquid in the world with Japan and the United Kingdom following. Cash, being the basic liquid asset, does not fluctuate in value—it itself defines price. All other assets can change in value and have an uncertain future price, making them risky assets. Naturally, informed investors will only hold less liquid and risky assets if they can expect to earn a premium, a risk premium.

With the tremendous increase in the number of assets—and with it, the amount of investment opportunities—it is hard, even for larger investment houses, to track and evaluate the different markets. Quantitative techniques lend themselves for automatic monitoring and analysis of the full multitude of securities. These tools give quantitative analysts, portfolio managers, and other decision makers the opportunity to summarize the vast amount of information available, and to present it in a cohesive manner. Modern financial and the econometric models rely on the access to accurate data, often with as long history as possible. It is typically much easier to obtain clean and trustworthy financial data from mature and liquid markets. In fact, the lack of reliable data is one of the inherent problems in applying sophisticated quantitative models to more illiquid markets. In these cases, practitioners are forced to rely on simulated data, make stronger assumptions in their models, or use less data-intensive models.

CENTRAL THEMES OF THIS BOOK

The purpose of this book is to provide a comprehensive introduction and overview of the state-of-the-art of portfolio management and optimization for practitioners, academics, and students alike. We attempt to bridge the gap from classical portfolio theory, as developed in the early 1950s, to modern portfolio optimization applications used in practice today. In particular, we provide an up-to-date review of robust estimation and optimization methods deployed in modern portfolio management, and discuss different techniques used in order to overcome the common pitfalls associated with classical mean-variance optimization. We discuss recent developments in quantitative trading strategies, trade execution, and operations research. While we focus on real world practical usability, and emphasize intuition and fundamental understanding, we try not to sacrifice mathematical rigor whenever possible.

We note that the concept of robustness in investment science extends beyond statistical and modeling methods. It suggests a new approach to financial forecasting, asset allocation, portfolio management, and trad-
As a matter of fact, the concept of a robust quantitative investment framework seems to be gaining ground in the quantitative investment community, and is loosely defined by the following four stages:

1. Estimate reliable asset forecasts along with a measure of their confidence.
2. Deploy a robust model for portfolio allocation and risk management.
3. Manage portfolio rebalancing and trading costs efficiently as market conditions change.
4. Monitor and review the entire investment process on a regular basis.

The last stage includes the ability to evaluate past performance, as well as to measure and analyze portfolio risk. The role of quantitative models for econometric forecasting and optimization at each of these stages is very important, especially in large-scale investment management applications that require allocating, rebalancing, and monitoring of thousands of assets and portfolios.

From a broad perspective, the topics in this book can be categorized in the following four main areas: robust estimation, robust portfolio allocation, portfolio rebalancing, and management of model risk.

Robust Estimation
Models to predict expected returns of assets are routinely used by major asset management firms. In most cases, these models are straightforward and based on factors or other forecasting variables. Since parameter estimation in these financial models is data-driven, they are inevitably subject to estimation error. What makes matters worse, however, is that different estimation errors are accumulated across the different stages in the portfolio management process. As a result, the compounding of small errors from the different stages may result in large aggregate errors at the final stage. It is therefore important that parameters estimated at the different stages are reliable and robust so that the aggregate impact of estimation errors is minimized.

Given the existing plethora of financial forecasting models, the entire topic of robust statistical estimation is too extensive to cover in this book.\(^\text{20}\) We will, however, touch upon several major topics. In particular, we review some fundamental statistical techniques for forecasting returns, show how robust statistical estimators for important inputs in the portfolio optimization process can be obtained, and how a robust

portfolio allocation framework minimizes the impact of estimation and model errors. We describe robust frameworks for incorporating the investor’s views such as shrinkage techniques and the Black-Litterman model to produce informed forecasts about the behavior of asset returns.

Robust Portfolio Allocation

Robust asset allocation is one of the most important parts of the investment management process, and the decision making is frequently based on the recommendations of risk-return optimization routines. Several major themes deserve attention. First, it is important to carefully consider how portfolio risk and return are defined, and whether these definitions are appropriate given observed or forecasted asset return distributions and underlying investor preferences. These concerns give rise to alternative theories of risk measures and asset allocation frameworks beyond classical mean-variance optimization. Second, the issue of how the optimization problem is formulated and solved in practice is crucial, especially for larger portfolios. A working knowledge of the state-of-the-art capabilities of quantitative software for portfolio management is critical. Third, it is imperative to evaluate the sensitivity of portfolio optimization models to inaccuracies in input estimates. We cover the major approaches for optimization under uncertainty in input parameters, including a recently developed area in optimization—robust optimization—that has shown a great potential and usability for portfolio management and optimization applications.

Portfolio Rebalancing

While asset allocation is one of the major strategic decisions, the decision of how to achieve this allocation in a cost-effective manner is no less important in obtaining good and consistent performance. Furthermore, given existing holdings, portfolio managers need to decide how to rebalance their portfolios efficiently to incorporate new views on expected returns and risk as the economic environment and the asset mix change. There are two basic aspects of the problem of optimal portfolio rebalancing. The first one is the robust management of the trading and transaction costs in the rebalancing process. The second is successfully combining both long-term and short-term views on the future direction and changes in the markets. The latter aspect is particularly important when taxes or liabilities have to be taken into account. The two aspects are not distinct, and in practice have to be considered simultaneously. By incorporating long-term views on asset behavior, portfolio managers may be able to reduce their overall transaction costs, as their portfolios do not have to be rebalanced as often. Although the interplay between the different aspects
is complex to evaluate and model, disciplined portfolio rebalancing using an optimizer provides portfolio managers with new opportunities.

Managing Model Risk
Quantitative approaches to portfolio management introduce a new source of risk—model risk—and an inescapable dependence on historical data as their raw material. Financial models are typically predictive—they are used to forecast unknown or future values on the basis of current or known values using specified equations or sets of rules. Their predictive or forecasting power, however, is limited by the appropriateness of the inputs and basic model assumptions. Incorrect assumptions, model identification and specification errors, or inappropriate estimation procedures inevitably lead to model risk, as does using models without sufficient out-of-sample testing. It is important to be cautious in how we use models, and to make sure that we fully understand their weaknesses and limitations. In order to identify the various sources of model risk, we need to take a critical look at our models, review them on a regular basis, and avoid their use beyond the purpose or application for which they were originally designed.

OVERVIEW OF THIS BOOK
We have organized the book as follows. Part I (Chapters 2, 3, and 4) introduces the underpinnings of modern portfolio theory. Part II (Chapters 5, 6, 7, and 8) summarizes important developments in the estimation of parameters such as expected asset returns and their covariances that serve as inputs to the classical portfolio optimization framework. Part III (Chapters 9, 10, and 11) describes the tools necessary to handle the optimization step of the process. Part IV (Chapters 12, 13, and 14) focuses on applications of the methods described in the previous parts, and outlines new directions in robust portfolio optimization and investment management as a whole.

We start out by describing the classical portfolio theory and the concepts of diversification in Chapter 2. We introduce the concepts of efficient sets and efficient frontiers, and discuss the effect of long-only constraints. We also present an alternative framework for optimal decision making in investment—expected utility optimization—and explain its relationship to classical mean-variance optimization.

Chapter 3 extends classical portfolio theory to a more general mean-risk setting. We cover the most common alternative measures of risk that, in some cases, are better suited than variance in describing