NANOSCALE

ISSUES AND PERSPECTIVES FOR THE NANO CENTURY

Edited by

Nigel M. de S. Cameron
Center on Nanotechnology and Society
Illinois Institute of Technology
Chicago, Illinois

M. Ellen Mitchell
Institute of Psychology
Illinois Institute of Technology
Chicago, Illinois
NANOSCALE
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

WILLIAM J. PESCE
President and Chief Executive Officer

PETER BOOTH WILEY
Chairman of the Board
NANOSCALE

ISSUES AND PERSPECTIVES FOR THE NANO CENTURY

Edited by

Nigel M. de S. Cameron
Center on Nanotechnology and Society
Illinois Institute of Technology
Chicago, Illinois

M. Ellen Mitchell
Institute of Psychology
Illinois Institute of Technology
Chicago, Illinois
“Now nanotechnology had made nearly everything possible, and so the cultural role in deciding what should be done with it had become far more important than imagining what could be done with it.”
—Neal Stephenson, *The Diamond Age or a Young Lady’s Primer* (1995)

“Each new power won by man is a power over man as well. Each advance leaves him weaker as well as stronger. In every victory, besides the general who triumphs, he is a prisoner who follows the triumphal car . . . Human nature will be the last part of Nature to surrender to Man. The battle will then be won. We shall have “taken the thread out of the hands of Clotho” and be free henceforth to make of our species whatever we wish it to be. The battle will indeed be won. But who, precisely, will have won it?”
—C. S. Lewis, *The Abolition of Man* (1943)

“[T]he discoverer of an art is not the best judge of the good or harm which will accrue to those who practice it.”
—Plato, *Phaedrus* (c. 370 BC)

“Science Finds, Industry Applies, Man Conforms”
—Motto of Chicago World’s Fair, 1933–34 (Century of Progress Exposition)
CONTENTS

Preface xvii
Acknowledgments xxi
Contributors xxiii

PART 1: POLICY AND PERSPECTIVES 1

1. The View from Congress: A Roundtable on Nanopolicy 3
 U.S. Congressman Mike Honda, U.S. Congressman Brad Sherman,
 U.S. Congressman David Weldon, and Marty Spitzer

 Marty Spitzer 3
 U.S. Congressman David Weldon 6
 U.S. Congressman Brad Sherman 8
 U.S. Congressman Mike Honda 10

2. Nanotechnology and the Two Faces of Risk from a Reinsurance
 Perspective 15
 Annabelle Hett

 The Different Approaches to Risk 16
 A New Kind of Risk 17
 No Future Without Risk 18
 Risk is Knowledge of Possible Losses 18
 Insurance is No Substitute for Safety 19
 Warn Earlier, React Faster 19
 Prophecies of Doom are of Little Use 20
 Risks are a Matter of Definition 21
 Many Causes, Many Perpetrators, No Liability? 21
 What to Believe—or Whom to Believe 22
 Faint Signals? 23
 The Challenge of Risk Assessment 23
Public Perception of Risk 24
Fright Factors 24
Better Safe than Sorry 25
Toward Sustainability 26
Bibliography 26

3. Ethics, Policy, and the Nanotechnology Initiative:
The Transatlantic Debate on “Converging Technologies” 27
Nigel M. de S. Cameron

Roots of Controversy 27
“Converging Technologies” Terminology as a Reflection of Policy 28
European Commission Response 29
Defining Converging Technologies 30
Converging Technologies and the Social Order 32
Risk Management 34
Embedding Converging Technologies Policy 35
Upstream Participation and Agenda Setting 36
Ethics and Social Context 37
International Standards 39
Conclusions 40

4. Scientific Promise: Reflections on Nano-Hype 43
M. Ellen Mitchell

The Role of Expectations in Processes and Outcomes 44
Linear Causal Models 48
Perfection 50
Elusive Truth 52
Scientific Knowledge 53
The Role of Beliefs 56
The Case for Reason, Stability, and Interdisciplinarity 59

5. Beyond Human Nature: The Debate Over Nanotechnological Enhancement 61
James Hughes

Nanotechnology Threatens Humanness? 61
Unhelpful Ontological Concreteness in Human Cognition 62
Human Nature has No Clear Definition 63
Human Nature: No Clear Beginning and No Clear Boundary with Other Species 64
Human Nature has No Clear Ending 64
Human Nature is Not Normative 65
The Inescapable Racism of the Human Nature Concept 66
The Violent Potential of the Human Racists 68
Beyond Human Nature: The Need for a Broad Normative Range for Acceptable Human Enhancement

6. Nanotechnology Jumps the Gun: Nanoparticles in Consumer Products
 Brent Blackwelder
 The Procedures Used to Determine Products Containing Nanoingredients
 Why Size Matters
 Health Risks
 Failure to Conduct or Publicize Health Studies
 Status of Regulations on Nanotechnology
 Research and Funding of Nanotechnology Safety
 Conclusions

7. Nanotechnology: Maximizing Benefits, Minimizing Downsides
 Jacob Heller and Christine Peterson
 Innovation
 Government Financing of Nanotech Research and Development
 Intellectual Property Issues and Nanotech
 Regulation
 Nanoparticle Safety
 Human Enhancement
 Export Controls
 Implications
 Poverty and Disparity
 Surveillance
 Conclusions

8. Reasoning About the Future of Nanotechnology
 Ruthanna Gordon
 Counterfactual Reasoning
 Time Orientation
 Biases in Prediction and Planning
 Conclusions
 Bibliography

 Jerry C. Collins
 Ancient and New Nanotechnology
 Smaller and Smaller
The Faustian Bargain and Stem-Cell Research 117
Learning is a Painful Process 118
Current Issues in Nanotechnology 121
Ethical Arguments for Nanotechnology and Biotechnology 121
Is Rational Public Discussion of Nanotechnology Possible? 123
Teach It to Our Children 125
Nanotechnology in High School: A Case Study 126
Conclusions 127

10. Technological Revolutions: Ethics and Policy in the Dark 129

Nick Bostrom

Ethical, Legal, and Societal Issues Research, and
Public Concerns About Science and Technology 130
Unpredictability 133
Strategic Considerations in S&T Policy 137
Limiting the Scope of Our Deliberations? 141
Expanding the Scope of Our Deliberations? 145
Bibliography 150

PART 2: NANO LAW AND REGULATION 153

11. Regulating Nanotechnology: A Vicious Circle 155

Sonia E. Miller

The Regulatory System 157
The Rhetoric Behind Nanotechnology 158
Nanotechnology: Is It Legal? 160
Nanotechnology: A Market Force? 162
Public Perception: The Vicious Circle—Part I 163
A New Law for Nanotechnology? 165
Congressional Reaction: The Vicious Circle—Part II 166
The Vicious Circle: Part II—Conclusions 171
Regulatory Uncertainties: The Vicious Circle—Part III 172
EPA 172
TSCA 172
FIFRA 173
CERCLA 175
RCRA 176
CWA 176
CAA 177
EPA Conclusion 178
FDA 179
CPSC 182
NRC 183
12. The European Approach to Nanoregulation

Trudy A. Phelps

The Legislative Focus

The New Approach and the Importance of Harmonized Standards

Who Needs What?

Industry

Government Agencies

Insurance Industry

Retail Organizations

Academia

Media

Standardization

The Need for Standards

European Standards Committee: CEN/TC 352 Nanotechnologies

The Role of Research in Standardization

The Royal Society Report and the Government Response

Industrial Applications

Health and Safety in the Workplace

Explosive Hazard

Environment

End of Life and the Waste Stream

Voluntary Reporting Scheme

Consumer Products

Food and Food Packaging

Cosmetics and Sunscreens

Medicinal Products (Medicines) and Medical Devices

Ethical, Legal, and Societal Issues

Public Dialogue

Intellectual Property

Military Uses of Nanotechnology and Other Security Risks

Conclusions

13. The Potential Environmental Hazards of Nanotechnology and the Applicability of Existing Law

George A. Kimbrell

Nanotechnology and Nanomaterials: The Future is Now

On the Loose: Manufactured Nanomaterials in Nature

A New Class of Nonbiodegradable Pollutants

The Potential Environmental Impacts of Nanomaterials
Mobility/Absorption and Transportation of Pollutants 218
Durability/Bioaccumulation of Nanomaterials 219
Detection/Removal 219
The Case of Carbon Fullerenes 220
Applying Existing Environmental Laws to Nanomaterials 221
 Toxic Substances Control Act 222
 TSCA’s Section 5: New Chemicals versus Existing Chemicals 224
 EPA’s TSCA Voluntary Pilot Program 225
 Clean Air Act 226
 Clean Water Act 227
 Resource Conservation and Recovery Act 228
 Comprehensive Environmental Response, Compensation, and Liability Act 229
 Federal Insecticide, Fungicide, and Rodenticide Act 230
 National Environmental Policy Act 232
 The Federal Food, Drug, and Cosmetic Act 233
 The Occupational Safety and Health Act 235
Conclusions 235

Patent Law and Nanoinvention 241
 The Constitutional and Statutory Foundation of the U.S. Patent System 243
 Patents May Only Be Granted on Eligible Subject Matter 245
 Novelty and Nonobviousness 246
The USPTO’s Response to Nanotechnology 248
 Practical Review Issues Faced by the USPTO 251
 Patent Infringement and the Strict Liability Standard 253
Conclusions 257

15. Patenting Trends in Nanotechnology 259
Jessica K. Fender

Results 260
 Nanotechnology Patents on the Rise 260
 Beyond the Numbers: Emerging Trends in Nanotechnology Patenting 266
Conclusions 277
PART 3: NANOMEDICINE, ETHICS, AND THE HUMAN CONDITION 279

16. Toward Nanoethics?
Nigel M. de S. Cameron
Ethics, Policy, and New Technologies 281
The Emerging Ethical Agenda 284
The Context of Bioethics 285
An Ethical Agenda for Nanotechnology 288
The Prospect of “Enhancement” 291
The Question of “Nanoethics” 293

17. Anticipating the Impact of Nanoscience and Nanotechnology in Healthcare
Debra Bennett-Woods
A Strategic Mandate 296
Scope and Background 297
Frame Analysis 299
The Structural Frame 300
Human Resource Frame 304
Political Frame 305
Symbolic Frame 307
Conclusions 311
Bibliography 312

18. Doing Small Things Well: Translating Nanotechnology into Nanomedicine
William P. Cheshire, Jr.
The Discovery of Cells and Germs 316
Penetrating the Subcellular Matrix 318
The Nanorealm 318
The Tools of Nanomedicine 319
Heir of Micromedicine 321
Unlike Previous Medicine 322
Visions of Medical Nanoutopia 327
Visions of Medical Nanodystopia 330
Medical Nanorealism 334

19. Nanotechnology and the Future of Medicine
C. Christopher Hook
Nanomedicine and Human Re-engineering 342
Freitas’ Normative Volitional Model 344
PART 4: NANO AND SOCIETY: THE NELSI IMPERATIVE

20. The NELSI Landscape

Michele Mekel and Nigel M. de S. Cameron

NELSI and the Nanosphere: Setting the Stage

When Congress Talks: The NELSI Mandate

Do People Listen?: The NNI’s Performance on the NELSI Front

An Overview of U.S. NELSI Initiatives

Academic-Based NELSI Initiatives

NGOs and Other Entities with a NELSI Focus

Governance in a Nanoworld

Big Issues from Small Science: Formulating a NELSI Framework

Nanoethics

Nanogovernance and Nanopolicy

Risk Management, Socially Responsible Development, and Sustainability

Public Engagement

Lessons in NELSI from The Diamond Age

21. The Center for Nanotechnology in Society at Arizona State University and the Prospects for Anticipatory Governance

David H. Guston

Studying Nanotechnology in Society

CNS–ASU and Anticipatory Governance

CNS–ASU and RTTA

Education and Outreach

CNS–ASU and the Prospects for Anticipatory Governance

Bibliography

22. The International Council on Nanotechnology: A New Model of Engagement

Kristen M. Kulinowski

The NNI and the Genesis of CBEN

Societal Debate Heats Up

Genesis of ICON

EHS Database
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.</td>
<td>From the Lab to the Marketplace: Managing Nanotechnology Responsibly</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Vivian Weil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-the-Ground Nanodevelopments</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>Rationale for Concentrating on Responsible Management: Public Trust</td>
<td>415</td>
</tr>
<tr>
<td></td>
<td>Responsibility in Research</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>Translation to the Marketplace</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>Experiments in Public Engagement</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>Policymakers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nigel M. de S. Cameron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science Policy and Nanotechnology</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>Points to Consider</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>The Administration of the National Nanotechnology Initiative</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>The Development of Nanotechnology Policy</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>The Lewis Paradox: The Abolition of Man?</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>The Challenge to the Policy Community</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>1. Key Documents Related to NELSI</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>2. Online Resources Addressing NELSI</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>INDEX</td>
<td>445</td>
</tr>
</tbody>
</table>
Most Americans have not yet heard of nanotechnology, and many of those who have cannot offer a working definition of the term. This low profile is anomalous, disconcerting, and destined, before long, for a correction that could be dramatic in nature. It can, perhaps, be explained by a combination of low public interest in science and science policy in general, the recent dominance of the science space by the stem-cell and cloning debates, the wide variety of applications of nanoscale research, and the fact that there is not—yet—a significant political constituency with an interest in critiquing, or at least monitoring, the very extensive federal funding of work on the nanoscale.

Nevertheless, the broad social implications of this new wave of technology have been recognized in the funding process. When President Bush signed the 21st Century Nanotechnology Research and Development Act (the Act) in December of 2003, a sum of $3.7 billion was designated for nanoscale research over a period of 4 years. This federal largesse, now running in excess of $1 billion a year, is being distributed across more than 20 different agencies, with the National Science Foundation (NSF) as lead. The National Nanotechnology Initiative (NNI) is monitored by congressional reporting requirements and a supervisory committee designated by the President—a role that has been assigned to the President’s Council of Advisors on Science and Technology (PCAST) in the White House Office of Science and Technology Policy.

The Act specifies the need to fund nano-related ethical, legal, and societal issues (NELSI) research in addition to work on the technology itself, in a manner that parallels the ELSI (ethical, legal, and societal issues) program established under the human genome project, the last major publicly funded science venture in the United States.

The human genome project was developed with the awareness that issues of science and technology cannot be pursued in isolation from their broader implications for society. The ethical, legal, and social issues raised by new technologies must be addressed in parallel, both to ensure that pitfalls unforeseen by scientists will be addressed in good time, and to help build public confidence in the technologies themselves. Alongside the NELSI issues, questions of environment, health, and safety (EHS) have also been singled out for research, as well as the need to review workforce implications and permeate the educational system with an understanding of this emerging technology and training of tomorrow’s scientists.
What, then, are the fundamental questions raised by nanotechnology? At least three distinct areas of concern can be identified.

First, there are concerns about its safety. A recent report by Swiss Re, the world’s largest reinsurance company, draws attention to substantial risk issues involved in this new technology that have yet to be assessed.\(^1\)

Second, there are concerns about the impact on the way we lead our lives. For example, one prospect is of miniaturized RFID (radio frequency ID) transponders that would enable the location of each of us to be pinpointed. Technologies that have many beneficial applications can also pose new threats to social values like privacy, and, while not requiring their development, may suggest new directions for the culture. Another aspect of ethical concern is the so-called nano-divide, in that the new capacities that this technology may be expected to provide (e.g., in healthcare and many other fields) will not come without costs that could deepen economic divisions within and between nations.

Third, there are concerns about the capacity of nanotechnology to reshape human nature itself. Early NSF documents have framed development of nanotechnology in the context of the “convergence” of nanotechnology, biotechnology, information technology, and cognitive science (together referred to as NBIC), with a view to the “improvement” of “human performance.” While some in the nano community downplay these capacities and others have exaggerated their significance, there is no doubt that a major strand of social concern relates to the potential employment of nanoscale products to effect changes to basic human capacities. The 2003 Act singles out the development of artificial intelligence and the enhancement of human intelligence as key issues of concern.

In 2000, the same year as the NNI was established, Bill Joy, cofounder and for many years chief technologist at Sun Microsystems, emerged as an early cultural critic of nanotechnology in his essay, “Why the Future Doesn’t Need Us,” published in the premier new technology monthly Wired.\(^2\) Joy’s argument was that nano, together with genomics and robotics, has the potential to eclipse human nature—either through an accident that destroys the species, or through human choices that lead to the supremacy of a nonhuman form of life. While his remarks may represent far-fetched projections of the future ungrounded in current data, they accurately reflect that nanotechnology can be applied to virtually anything because it refers only to scale and it may have the potential to transform every aspect of life, perhaps even the nature of *Homo sapiens* itself, at some fundamental level. Sifting the truth from the hype is difficult. Mihail C. Roco of the NSF, who has been the most influential voice in U.S. nano policy, has written:

> The vision of the NNI includes a path to discoveries of new properties and phenomena at the nanoscale, working directly at the building blocks of matter with cross-cutting approaches and tools applicable to almost all man-made objects, and development of highly efficient manufacturing. This is completed by the promise of better

comprehension of nature, increased wealth, better healthcare and long-term sustainable
development.\(^3\)

Perhaps the greatest challenges facing our society lie in our assessment of these
projections, our management of the expectations they create, and our development
of judicious policy approaches to the technology options that may result.

The essays that follow have been selected with the purpose of contributing to
what we believe will be one of the greatest of all public debates. A debate that
will benefit from full discourse that includes both information and opinion. While
there is naturally some overlap between the two, they fall broadly into complemen-
tary categories: opinion pieces by visionaries, boosters and critics; and reviews of
key areas of ethical, legal, and societal questions. These chapters are rife with
strong opinion and new knowledge, and we invite you to use this volume to fuel
the conversation.

NIGEL M. DE S. CAMERON

M. ELLEN MITCHELL

Chicago, Illinois

ACKNOWLEDGMENTS

We would like to acknowledge the aid of many colleagues in the planning and compiling of this volume, especially Michele Mekel, J.D., Associate Director and Legal Fellow of the Center on Nanotechnology and Society at Illinois Institute of Technology, who has played a major role in the editorial task; Dawn Willow, J.D., also a Legal Fellow; our Administrative Associate Joseph P. Oldaker; and Christine Sackmann and her team of student assistants who have also lent their willing energies. It has been a delight to work with the colleagues at our university and further afield who have gladly contributed the chapters herein.

NIGEL M. DE S. CAMERON
M. ELLEN MITCHELL

Chicago, Illinois
Lori B. Andrews, J.D., is Distinguished Professor of Law at Chicago-Kent College of Law; the Director of the Institute of Science, Law, and Technology at Chicago-Kent College of Law, and Associate Vice President of Illinois Institute of Technology. She served as chair of the federal Working Group on the Ethical, Legal, and Social Implications of the Human Genome Project.

Debra Bennett-Woods, Ed.D., is Director and Associate Professor in the Department of Health Care Ethics in the Rueckert-Hartman School for Health Professions at Regis University, and a member of the Task Force on Nano-Ethics and Societal Impacts of the Colorado Nanotechnology Institute. She is also a Fellow of the Center on Nanotechnology and Society at Chicago-Kent College of Law/Illinois Institute of Technology.

Brent Blackwelder, Ph.D., is President of Friends of the Earth, an international group that lobbies for environmental causes. He is also a Fellow of the Institute on Biotechnology and the Human future.

Nick Bostrom, Ph.D., is Director of the Future of Humanities Institute at the University of Oxford. He is also co-founder and chair of the World Transhumanist Association.

Julie A. Burger, J.D., is the Assistant Director and Legal Fellow of the Institute for Science, Law, and Technology at Chicago-Kent College of Law/Illinois Institute of Technology. She previously practiced law at a Chicago-area firm.

Nigel M. de S. Cameron, Ph.D., is Director of the Center on Nanotechnology and Society, President of the Institute on Biotechnology and the Human Future, Research Professor of Bioethics and Associate Dean at Chicago-Kent College of Law/Illinois Institute of Technology. He founded the journal Ethics and Medicine in 1983 and has represented the United States at United Nations meetings on issues of technology policy.

William P. Cheshire, Jr., M.D., is Consultant in Neurology at the Mayo Clinic in Jacksonville, Florida; Associate Professor of Neurology at the Mayo Clinic College of Medicine; Director of the Mayo Autonomic Reflex Laboratory; and
Past Chair of the Autonomic Nervous System Section of the American Academy of Neurology. He is also a Fellow of the Center on Nanotechnology and Society.

Jerry C. Collins, Ph.D. is Research Associate Professor of Biomedical Engineering at Vanderbilt University.

Jessica K. Fender, M.S. is a student at Chicago-Kent College of Law, where she is an associate editor for both the *Chicago-Kent Law Review* and the *Chicago-Kent Journal of Intellectual Property*. She has also worked as a research assistant for the Institute for Science, Law, Technology, and the Institute on Biotechnology and the Human Future.

Ruthanna Gordon, Ph.D. is an Assistant Professor in the Institute of Psychology at Illinois Institute of Technology. She is also a Member of the Center on Nanotechnology and Society Advisory Panel.

David Guston, Ph.D. is Professor of Political Science at Arizona State University; associate director of the Consortium for Science, Policy and Outcomes. He is Principal Investigator and Director of the Center for Nanotechnology in Society at Arizona State University.

Jacob Heller is Policy Associate at the Foresight Nanotech Institute, and Founder and Director of A Computer in Every Home, a community organization that provides free computers and technical training to underprivileged students. He was selected as a Harry S Truman Scholar for his commitment to technology policy and public service.

Annabelle Hett, Ph.D. is Head of Emerging Risk Management at Swiss Re. Based in Zurich, she is responsible for the systematic identification, assessment, and evaluation of emerging risks on Group level and also has responsibility for screening existing exposures arising from novel, unprecedented scenarios and accumulations.

U.S. Congressman Mike Honda (D), M.Ed. is the U.S. Representative for the 15th Congressional District of California. He joined Science Committee Chairman Sherwood Boehlert in introducing the 21st Century Nanotechnology Research and Development Act, which was ultimately signed into law by President Bush on December 3, 2003.

C. Christopher Hook, M.D. is Consultant in Hematology, Special Coagulation and the Comprehensive Hemophilia Center, and Assistant Professor of Medicine at the Mayo Clinic in Rochester, Minnesota; and Director of Ethics Education at Mayo Clinic Graduate School of Medicine. He created and chairs the Mayo Reproductive Medicine Advisory Board, the DNA Research Committee, the Ethics Consultation Service, and the Mayo Clinical Ethics Council. Additionally, he is a Fellow of the Center on Nanotechnology and Society.
James Hughes, Ph.D., is Professor of Health Policy at Trinity College in Hartford Connecticut, and serves as Trinity’s Associate Director of Institutional Research and Planning. He also serves as the Executive Director of the World Transhumanist Association and its affiliated Institute for Ethics and Emerging Technologies.

George A. Kimbrell, J.D., is Staff Attorney at the International Center for Technology Assessment in Washington, D.C. He works on legal developments in biotechnology, nanotechnology, and climate changes.

Kristen M. Kulinowski, Ph.D., is Executive Director for Education and Public Policy at the Center for Biological and Environmental Nanotechnology and for the International Council on Nanotechnology at Rice University.

Michele Mekel, J.D., M.H.A., M.B.A., is Associate Director of the Center on Nanotechnology and Society and Executive Director and Fellow of the Institute on Biotechnology and the Human Future—both at Chicago-Kent College of Law/Illinois Institute of Technology. A former Fulbright Fellow, she is also on the Board of the Converging Technologies Bar Association, and is an Associate Editor of Nanotechnology, Law and Business.

Sonia E. Miller, J.D., M.B.A., M.S.Ed., is a practicing attorney and principal of S.E. MILLER LAW FIRM, a boutique law firm that specialize in the implications of emerging and converging technologies. She is founder of the Converging Technologies Bar Association.

M. Ellen Mitchell, Ph.D., is the Director of the Institute of Psychology at Illinois Institute of Technology. She is Senior Fellow of the Center on Nanotechnology and Society, and a Fellow of the Institute on Biotechnology and the Human Future.

Christine Peterson is Founder and Vice President of Foresight Nanotech Institute. She serves on the Steering Committee of the International Council on Nanotechnology, the Editorial Advisory Board of NASA’s Nanotech Briefs, and California’s Blue Ribbon Task Force on Nanotechnology.

Trudy A. Phelps, Ph.D., is Standards Director at the Association of British Healthcare Industries (ABHI), Chairman of the ABHI Natural Rubber Latex Working Group, and Secretary to the European Medical Technology Industry Association (Eucomed) Standards Focus Group. She has chaired the European Commission’s Committee on nanotechnology standards.

U.S. Congressman Brad Sherman (D), J.D., is the U.S. Representative for the 27th Congressional District of California.

Marty Spitzer, J.D., Ph.D., is a former Professional Staff Member of the House Committee on Science, Subcommittee on Environment, Technology, and Standards.

Marianne R. Timm, J.D., is a Patent Attorney at Suiter Swantz. She previously worked with the Institute on Science, Law, and Technology.
Vivian Weil, Ph.D., is Director of the Center for the Study of Ethics in the Professions and Professor of Ethics at Illinois Institute of Technology. She is a Member of the Advisory Panel of the Center on Nanotechnology and Society.

U.S. Congressman David Weldon (R), M.D., is the U.S. Representative for the 15th Congressional District of Florida.
This section opens with perspectives from members of the U.S. Congress, and includes some of those who wrote the 2003 21st Century Nanotechnology Research and Development Act that established the National Nanotechnology Initiative. It is the product of a roundtable at the Center on Nanotechnology and Society’s first annual conference on nanopolicy (in 2006). Keynotes had been delivered by Mihail C. Roco, nanotechnology advisor at the National Science Foundation and the most influential figure in U.S. nanotechnology, and Sean Murdoch, who directs the trade group the NanoBusiness Alliance.

Central to the concerns of policymakers, technologists, and business leaders is the question of risk. This is discussed by Annabelle Hett, head of emerging technology risk at Swiss Re, now the world’s largest reinsurance company and publisher of the influential report she authored on risk and nanotechnology. Risk covers many issues; one plainly lies in environmental hazards and toxicology concerns. Brent Blackwelder, U.S. President of the international environmentalist group Friends of the Earth, offers a somewhat different perspective, focused on issues of consumer safety. Looking more broadly at the need to maximize benefits and minimize risks, Jacob Heller and Christine Peterson write from the Foresight Nanotech Institute (of which Peterson was co-founder with K. Eric Drexler), the nano think tank that has long promoted the nano vision, including a special focus on “molecular” nanotechnology.

But the implications of a new technology range more broadly than quantifiable issues of safety and broader risk. Two psychologists, M. Ellen Mitchell and Ruthanna Gordon, tackle wider questions with one eye on the human dimension and another on the claims made for technological promise.

What of the purpose for which nanotechnology is being developed, and the wider policy context? Nick Bostrom from Oxford and James Hughes from Trinity College, Hartford, Connecticut, both leaders of the World Transhumanist Association, make their respective cases for a vision of the future in which “human nature” may have become a thing of the past, and yet in which technology enables persons to thrive in conditions that stretch our imagination. On the same theme, Nigel Cameron reviews
the European response to the National Science Foundation’s first report on *Converging Technologies for Improving Human Performance*, which was seen as favoring the transhumanist vision (by enthusiasts and critics alike), and misunderstood by many as a statement of U.S. policy.

Taken together, these chapters set the scene for the cultural politics of the twenty-first century, setting out the promises and the perils of nanotechnology and sampling arguments that will be heard for many years to come.