WOOD-PLASTIC COMPOSITES

ANATOLE A. KLYOSOV
WOOD-PLASTIC COMPOSITES
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!
The book is targeted for multidisciplinary scientists and engineers dealing with wood-plastic composites, material science, cellulose, polymers, minerals, strain and stress, flammability, microbiology, rheology, plastic technology, as well as graduate-level students in these disciplines.
CONTENTS

Preface xxv

1. Foreword-Overview: Wood–Plastic Composites 1
 WPC: Pricing Restrictions, 11
 WPC: Brands and Manufacturers, 15
 Flexural Strength, 15
 Flexural Modulus and Deflection, 17
 Deck Boards, 17
 Stair Treads, 18
 Thermal Expansion–Contraction, 20
 Shrinkage, 22
 Slip Resistance, 24
 Water Absorption, Swell, and Buckling, 26
 Microbial Degradation, 29
 Termite Resistance, 33
 Flammability, 35
 Oxidation and Crumbling, 36
 Photooxidation and Fading, 40
 Wood–Plastic Composites—Products, Trends, Market Size and Dynamics, and Unsolved (or Partially Solved) Problems, 42
 WPC Products, 42
 The Public View: Perception, 43
2. Composition of Wood–Plastic Composite Deck Boards:

Thermoplastics

Introduction, 50
Polyethylene, 51

 Low-Density Polyethylene (LDPE), 54
 Medium-Density Polyethylene (MDPE), 55
 High-Density Polyethylene (HDPE), 55

Polypropylene, 56
Polyvinyl Chloride, 58
Acrylonitrile–Butadiene–Styrene Copolymer (ABS), 61
Nylon 6 and Other Polyamides, 62

Conclusion, 64

ASTM D 883 “Standard Terminology Relating to Plastics”, 67
ASTM D 1600 “Standard Terminology for Abbreviated Terms Relating to Plastics”, 68
ASTM D 4066 “Standard Classification System for Nylon Injection and Extrusion Materials (PA)”, 69
ASTM D 4101 “Standard Specification for Polypropylene Injection and Extrusion Materials”, 70
ASTM D 4216 “Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Related PVC and Chlorinated Poly(Vinyl Chloride) (CPVC) Building Products Compounds”, 70
ASTM D 4396 “Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds for Plastic Pipe and Fittings Used in Nonpressure Applications”, 70
ASTM D 4673 “Standard Classification System for Acrylonitrile–Butadiene–Styrene (ABS) Plastics and Alloys Molding and Extrusion Materials”, 70
ASTM D 4976 “Standard Specification for Polyethylene Plastics Molding and Extrusion Materials”, 71
ASTM D 5203 “Standard Specification for Polyethylene Plastics Molding and Extrusion Materials from Recycled Postconsumer (HDPE) Sources”, 72
ASTM D 6263 “Standard Specification for Extruded Rods and Bars Made from Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC)”, 72
ASTM D 6779 “Standard Classification System for Polyamide Molding and Extrusion Materials (PA)”, 73

References, 73

3. Composition of Wood–Plastic Composites: Cellulose and Lignocellulose Fillers

Introduction, 75
A Brief History of Cellulose Fillers in WPC in U.S. Patents, 78

Beginning of WPC: Thermosetting Materials, 79
Cellulose as a Reinforcing Ingredient in Thermoplastic Compositions, 80
Improving Mechanical and Other Properties of WPC, 83
Improving the Compatibility of the Filler with the Polymeric Matrix: Coupling Agents, 84
Plastics Beyond HDPE in Wood–Plastic Composite Materials, 87
Cellulose–Polyolefin Composite Pellets, 89
Foamed Wood–Plastic Composites Materials, 90
Biodegradable Wood–Plastic Composites, 91

General Properties of Lignocellulosic Fiber as Fillers, 92

Chemical Composition, 92
Detrimental Effects of Lignin, 95
Detrimental Effects of Hemicellulosics: Steam Explosion, 96
Aspect Ratio, 97
Density (Specific Gravity), 98
Particle Size, 99
Particle Shape, 99
Particle Size Distribution, 100
Particle Surface Area, 100
Moisture Content, the Ability to Absorb Water, 100
The Ability of Filler to Absorb Oil, 101
Flammability, 101
Effect on Mechanical Properties of the Composite Material, 101
Effect on Fading and Durability of Plastics and Composites, 103
Effect on Hot Melt Viscosity, 104
Effect on Mold Shrinkage, 105

Wood Fiber, 105
Wood Flour, 105
Sawdust, 106
Rice Hulls, 106
VOC from Rice Hulls, 108
Long Natural Fiber, 110
Papermaking Sludge, 111
Biodac®, 112
VOC from Biodac®, 112
Rice Hulls and Biodac® as Antioxidants in WPC, 114
References, 115

Introduction, 123
General Properties of Mineral Fillers, 125

Chemical Composition, 125
Aspect Ratio, 125
Density (Specific Gravity), 125
Particle Size, 126
Particle Shape, 127
Particle Size Distribution, 128
Particle Surface Area, 128
Moisture Content: The Ability to Absorb Water, 128
The Ability to Absorb Oil, 129
Flame Retardant Properties, 129
Effect on Mechanical Properties of the Composite Material, 129
Effect on Hot Melt Viscosity, 131
Effect on Mold Shrinkage, 131
Thermal Properties, 132
Color: Optical Properties, 132
Effect on Fading and Durability of Plastics and Composites, 132
Health and Safety, 133

Fillers, 133

Calcium Carbonate (CaCO₃), 133
Talc, 137
Biodac® (a Blend of Cellulose and Mineral Fillers), 141
Silica (SiO₂), 145
Kaolin Clay (Al₂O₃•2SiO₂•2H₂O), 146
Mica, 146
Wollastonite (CaSiO₃), 147
Glass Fibers, 147
5. Composition of Wood–Plastic Composites: Coupling Agents

Introduction, 161
Why Such a Task?, 162
A Brief Overview of the Chapter, 163
Maleated Polyolefins (Polybond, Integrate, Fusabond, Epolene, Exxelor, Orevac, Lotader, Scona, andUnnamed Series), 165
Organosilanes (Dow Corning Z-6020, Momentive A-172 and Others), 171
Metablen™ A3000 (Acrylic-Modified Polytetrafluoroethylene, PTFE), 173
Other Coupling Agents, 174
Effect of Coupling Agents on Mechanical Properties of Wood-Plastic Composites: Experimental Data, 174
Mechanisms of Crosslinking, Coupling and/or Compatibilizing Effects, 180

Spectroscopic Studies, 180
Rheological Studies, 186
Kinetic Studies, 188
Other Considerations, 189

Effect of Coupling Agents on WPC Properties: A Summary, 191

Effect on Flexural and Tensile Modulus, 192
Effect on Flexural and Tensile Strength, 193
Effect on Water Absorption, 194

Lubricants, Compatible and not Compatible with Coupling Agent, 194
References, 199

6. Density (Specific Gravity) of Wood-Plastic Composites and Its Effect on WPC Properties

Introduction, 202
Effect of Density (Specific Gravity) of WPC, 205

Effect on Flexural Strength and Modulus, 205
Effect on Oxidation and Degradation, 205
Effect on Flammability, Ignition, Flame Spread, 208
Effect on Moisture Content and Water Absorption, 209
Effect on Microbial Contamination/Degradation, 210
The Effect on Shrinkage, 211
The Effect on the Coefficient of Friction (The Slip Coefficient), 211
Density of Cross-Sectional Areas of Hollow Profiles of GeoDeck WPC Boards, 212
Densities and Weight of Some Commercial Wood–Plastic Deck Boards, 215
Determination of Density of Wood–Plastic Composites Using a Sink/Float Method, 216
ASTM Tests Recommended for Determination of the Specific Gravity (Density), 218
ASTM D 6111 “Standard Test Method for Bulk Density and Specific Gravity of Plastic Lumber and Shapes by Displacement”, 218
ASTM D 792 “Standard Test Method for Density and Specific Gravity (Relative Density) of Plastics by Displacement”, 219
References, 224

7. **Flexural Strength (MOR) and Flexural Modulus (MOE) of Composite Materials and Profiles** 225

Introduction, 225

 - Basic Definitions and Equations, 225
 - Moment of Inertia, 228
 - Bending Moment, 231

ASTM Recommendations, 234

Flexural Strength of Composite Deck Boards, 244

 - English Units and SI Units, 244
 - Center Point Load, or Concentrated Load (3-pt Load), 244
 - Third-Point Load (4-pt. Load, or 1/3-Span Load), 247
 - Flexural Strength of Composite Deck Boards, 248
 - Flexural Strength of Materials Versus Profiles, 251
 - Flexural Strength for the Same Material but for Different Profiles, 252
Comparison of Center-Point Load and Third-Point Load, 252
Quarter-Point Load (4-pt Load, 1/4-Point Load), 253
Uniformly Distributed Load, 255
Effect of Temperature on Flexural Strength of Composite Materials, 256
Effect of Commercial HDPE Materials on Flexural Strength of Composite Deck Boards, 257
Effect of Density (Specific Gravity) of Composite Materials on Flexural Strength, 258
Flexural Strength of Neat HDPE and Other Plastics, and Comparisons with that for WPCs, 258
Effect of Plastic Content on Flexural Strength of Composite Materials, 259
A Deck Board Used as a Stair Tread, 259

Flexural Modulus of Composite Deck Boards, 264
Center-Point Load, or Concentrated Load (3-pt Load), 264
Third-Point Load (4-pt. Load, or 1/3-Span Load), 265
Flexural Modulus of Composite Deck Boards, 266
Flexural Modulus of Materials Versus Profiles, 267
Flexural Modulus for the Same Material but for Different Profiles: Solid and Hollow Deck Boards, 267
Comparison of Center-Point Load and Third-Point Load, 270
Quarter-Point Load (4-pt Load, 1/4-Point Load), 270
Uniformly Distributed Load, 272
Snow on a Deck, 272

Strength, 272
Deflection, 273

Effect of Temperature on Flexural Modulus of Composite Materials, 274
Effect of Commercial HDPE on Flexural Modulus of Composite Deck Boards, 275
Effect of Density (Specific Gravity) on Flexural Modulus, 276
Effect of Plastic Content on Flexural Modulus of Composite Materials, 276

Flexural Modulus of Neat HDPE and Other Plastics and Comparisons with that for WPCs, 278
A Deck Board Used as a Stair Tread: A Critical Role of Flexural Modulus, 280

Deflection of Composite Materials: Case Studies, 281
Deflection and Bending Moment of a Soundwall Under Windloads, 281
Deflection of a Fence Board, 287

Deflection of WPC Joists, 288
Deflection of a Deck Under a Hot Tub, 289
Deflection of a Hollow Deck Board Filled with Hot Water, 290
Deflection and Creep of Composite Deck Boards, 291

Guardrail Systems, 302

Composite (and PVC) Railing Systems for Which ICC-ES Reports were
Issued Until November 2006, 307

Combined Flexural and Shear Strength: a “Shotgun” Test, 311
Mathematical Modeling of WPCs and the Real World, 312

Verification of the Mathematical Model with Actual Conventional
and Modified Composite Boards, 315

Weight, 315
Flexural Strength, 317
Flexural Modulus, 317
Impact Resistance, 317

References, 318

8. Compressive and Tensile Strength and Modulus of Composite
Profiles

Introduction, 319
Basic Definitions and Equations, 320
ASTM Recommendations, 320

of Plastics”, 320
ASTM D 5083 “Test Methods for Tensile Properties of Reinforced
Thermosetting Plastics Using Straight-Sided Specimens”, 323
Plastics”, 324
Unreinforced and Reinforced Plastic Lumbers”, 325

Tensile Strength of Composite Materials, 326
Compressive Strength of Composite Materials: Examples, 328
Tensile Modulus of Elasticity of Composite Materials, 329
Compressive Modulus of Composite Materials, 331
References, 332

9. Linear Shrinkage of Extruded Wood–Plastic Composites

Introduction, 333
Origin of Shrinkage, 333
Size of Shrinkage, 336
Effect of Density (Specific Gravity) of WPC on Its Shrinkage, 337
Effect of Extrusion Regime on Shrinkage, 338
Annealing of Composite Boards, 338
10. Temperature Driven Expansion–Contraction of Composite Deck Boards: Linear Coefficient of Thermal Expansion–Contraction

Introduction, 356
Linear Coefficient of Expansion–Contraction, 357
Some Reservations in Applicability of Coefficients of Expansion–Contraction, 358
ASTM Tests Recommended for Determination of the Linear Coefficient of Thermal Expansion–Contraction, 359
ASTM D 696 “Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between $-30^\circ C$ and $30^\circ C$ with a Vitreous Silica Dilatometer”, 359
ASTM D 6341 “Standard Test Method for Determination of the Linear Coefficient of Thermal Expansion of Plastic Lumber and Plastic Lumber Shapes Between -30 and $140^\circ F (-34.4$ and $60^\circ C)$”, 361
ASTM E 228 “Standard Test Method for Linear Thermal Expansion of Solid Materials with a Vitreous Silica Dilatometer”, (Withdrawn), 361

Linear Coefficient of Thermal Expansion–Contraction for Wood–Plastic Composites. Effect of Fillers and Coupling Agents, 362
References, 368

11. Slip Resistance and Coefficient of Friction of Composite Deck Boards

Introduction, 369
Definitions, 369
Explanations and Some Examples, 371
Slip Resistance of Plastics, 371
Slip Resistance of Wood Decks, 373
Slip Resistance of Wood–Plastic Composite Decks, 373
ASTM Tests Recommended for Determining Static Coefficient of Friction, 376
ASTM D 2047 “Standard Test Method for Static Coefficient of Friction of Polish-Coated Floor Surfaces as Measured by the James Machine”, 376
ASTM F 1679 “Standard Test Method for Using a Variable Incidence Tribometer (VIT)”, 376

Slip Resistance Using an Inclined-Plane Method, 378
12. Water Absorption by Composite Materials and Related Effects

Introduction, 383
“Near-Surface” Versus “Into the Bulk” Distribution of Absorbed Water in Composite Materials, 384
Effect of Mineral Fillers on Water Absorption, 385
Swelling (Dimensional Instability), Pressure Development, and Buckling, 386
Short- and Long-Term Water Absorption, 396
ASTM Recommendations, 399

ASTM D 2842 “Test Methods for Water Absorption of Rigid Cellular Plastics”, 402
ASTM D 6662 “Standard Specification for Polyolefin-Based Plastic Lumber Decking Boards” 402

Effect of Cellulose Content in Composite Materials on Water Absorption, 403
Effect of Board Density (Specific Gravity) on Water Absorption, 403
Moisture Content of Wood and Wood–Plastic Composites, 405
Effect of Water Absorption on Flexural Strength and Modulus, 406
Freeze–Thaw Resistance, 407

Effect of Board Density on Freeze–Thaw Resistance — A Case Study, 407
Effect of Board Density and Weathering on Freeze–Thaw Resistance—A Case Study, 408
Effect of Multiple Freeze–Thaw Cycles, 409

Comparison of Water Absorption of Some Composite Deck Boards Available in the Market, 409
References, 411

Introduction, 412

Microbial Effects on Wood–Plastic Composites, 412
Mold and Spores, 413
Moisture and Ventilation: Critical Moisture Content, 413
Wood Decay Fungi, 414
Biocides and “Mold Resistance”, 415

Preservatives for Wood Lumber, 416
CCA, 416
ACQ, 417
PCP (The U.S. EPA Data), 417
Creosote (The U.S. EDA Data), 417

Microorganisms Active in Degradation and Staining of Composite Materials, 418
Molds, 418
Black Mold, 424
Black Algae, 426
Case Study 1: Staining with a Microbial Pigment, 427
Case Study 2: Deck as a Mold Incubator, 428
Case Study 3: Black Mold due to Low Density of a Composite Material and High Moisture, 429

Microbial Infestation of Wood–Plastic Composite Materials, 430
Requirements for Microbial Growth on Wood and Wood–Plastic Composites, 430

Sensitivity and Resistance of Composite Materials to Microbial Degradation: Examples, 431
ASTM Tests for Microbial Growth and Degradation of Wood–Plastic Composites, 434

ASTM D 1413 “Standard Test Method for Wood Preservatives by Laboratory Soil-Block Cultures”, 434
Examples: Wood, 436
Examples: Wood–Plastic Composites, 436

ASTM D 2017 “Standard Method of Accelerated Laboratory Test of Natural Decay Resistance of Woods” (Discontinued), 438
ASTM E 2180 “Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials”, 438

Effects of Formulation on Sensitivity and Resistance of Wood–Plastic Composites to Microbial Degradation, 440
Biocides Used (Actually or Under Consideration) in Wood–Plastic Composites, 440
Zinc Borate, (e.g., Borogard [U.S. Borax], Fiberguard [Royce International]), 440
Barium Metaborate, Busan, 444
Folpet, Fungitrol 11, Intercide TMP (carboximide), 444
Chlorothalonil (tetrachloroisophthalonitrile), Nuocide 960, 449
OBPA, Intercide ABF (10,10’- Oxybisphenoxyarsine), Vinizene BP 5–5, 449
IPBC, Polyphase®, Troy®, Intercide IBF (2-iodo-2-propynyl-n- butylcarbamate, 3-iodo-2-propynyl-n-butylcarbamate), 451
OIT, DCOIT, Octhilinone, Micro-Chek, Intercide OBF (2-n-Octyl-4- isothiazolin-3-one), 451
Zinc Pyrithione, Zinc Omadine, Intercide ZNP, Zinc Derivative of Mercaptopyridine 1-oxide, 452
Thiabendazole, Irgaguard F3000, 2-(4-Thiazolyl)-1H-benzimidazole, 4-(2-Benzimidazolyl)thiazole, Thiabendazole, MK-360, TBZ, 453

Biocides: Accelerated Laboratory Data and the Real World, 453
References, 459

Introduction, 461
Flammability of Wood, 462
Ignition of Composite Materials, 463
Flame Spread Indexes and Fire Rating of Composite Materials, 464
Effect of Mineral Fillers on Flammability, 467
Smoke and Toxic Gases, and Smoke Development Index, 467
Flame Retardants for Plastics and Composite Materials, 468

Flame Retardants in Plastics, 471
Restrictions or Prohibitions of Some Brominated Flame Retardants, 471
Chlorine-Containing Flame Retardants, 472
ATH (Aluminum Trihydrate) and MDH (Magnesium Hydroxide), 473
ATH Dehydration: A Quantitative Approach, 474
Flame Retardants with Wood–Plastic Composites, 476
Nanoparticles as Flame Retardants, 476

ASTM Recommendations, 477

ASTM D 635 “Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position”, 478
15. **Thermo- and Photooxidative Degradation and Lifetime of Composite Building Materials**

Introduction. Lifetime of Plastics and Plastic-based Composites: Examples, 493
Thermooxidation, Photooxidation, Oxidative Degradation, and Product Crumbling and Failure, 496
Factors Accelerating the Oxidative Degradation of Composites, 502

- Density (Specific Gravity) of the Composite, 503
- Temperature, 508
- The Physical and the Chemical Structure of the Polymer, 514
- History of Plastic (Virgin, Recycled), 516
- The Type and Amount of Cellulose Fiber, 516
- The Type and Amount of Mineral Fillers, 517
- The Presence of Stress, 517
- The Presence of Metal Catalysts, 522
- The Presence of Moisture, 524
- Antioxidants and Their Amounts, 526
- Solar Radiation (UV Light), 531
- Amount of Added Regrinds, If Any, 540

ASTM Recommendations, 541
ASTM Tests for Oxidative Induction Time, 541

ASTM Tests for Determination of Phenolic Antioxidants in Plastics, 546

ASTM D 3012 “Standard Test Method for Thermal-Oxidative Stability of Polypropylene Using a Specimen Rotator Within an Oven”, 549

Surface Temperature of Composite Decking and Railing Systems, 550
Life Span of Zero-Antioxidant GeoDeck Decks in Various Areas of the United States, 556
The OIT and Lifetime of Composite Deck Boards, 564
Durability (in Terms of Oxidative Degradation) of Wood-Plastic Composite Deck Boards Available in the Current Market, 565
Oxidative Degradation and Crumbling of GeoDeck Deck Boards: History of the Case and Correction of the Problem, 567
Density, Porosity, and Mechanical Properties of GeoDeck before the Problem had Emerged, 567
Emerging of the Problem, 569
Density (Specific Gravity) of GeoDeck Boards in Pre-October 2003, 569
Correction of the Crumbling Problem, 570
Antioxidant Level, 570
Density, 571
The OIT Procedure: Proxy of Lifetime at Accelerated Oxidation, 571
Accelerated (Artificial) Weathering, 572
Air-Flow Oven, 573

Addendum: Test Method for Oxidative Induction Time of Filled Composite Materials by Differential Scanning Calorimetry, 574
Case Studies, 576
GeoDeck Decks in Arizona, 576
GeoDeck Decks in Massachusetts, 576

GeoDeck Voluntary Recall, 581
Problem GeoDeck Decks: Installation Time and Warranty Claims, 582
References, 584

16. Photooxidation and Fading of Composite Building Materials 585

Introduction, 585
How Fading is Measured, 586
Fading: Some Introductory Definitions, 588
CONTENTS

Accelerated and Natural Weathering of Wood-Plastic Composite Materials and a Correlation (or a Lack of It) Between Them: The Acceleration Factor, 590
Fading of Commercial Wood-Plastic Composite Materials, 596
Fading of Composite Deck Boards Versus Their Crumbling Due to Oxidation, 600
Factors Accelerating or Slowing Down Fading of Composites, 601

Density (Specific Gravity) of the Composite, 601
Temperature, 602
UV Absorbers and Their Amounts, 602
Pigments and Their Amounts, 603
Antioxidants and Their Amounts, 605
History of Plastics (Virgin, Recycled), 605
Effect of Moisture in the Composite, 605
The Type and Amount of Cellulose Fiber, 606
Extruded Versus Injection-Molded Wood-Plastic Composite Materials, 606

ASTM Recommendations, 607
ASTM D 2565 “Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications”, 607
ASTM D 1435 “Standard Practice for Outdoor Weathering of Plastics”, 608
ASTM D 4329 “Practice for Fluorescent UV Exposure of Plastics”, 608
ASTM D 4364 “Practice for Performing Outdoor Accelerated Weathering Tests of Plastics Using Concentrated Sunlight”, 609
ASTM D 4459 “Practice for Xenon-Arc Exposure of Plastics Intended for Indoor Applications”, 609
ASTM D 5071 “Practice for Exposure of Photodegradable Plastics in a Xenon-Arc Apparatus”, 610
ASTM D 5208 “Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics”, 610
ASTM D 5272 “Practice for Outdoor Exposure Testing of Photodegradable Plastics”, 611
ASTM G 155 “Standard Practice for Operating Xenon-Arc Light Apparatus for Exposure of Nonmetallic Materials”, 611

Addendum, 612
References, 616

17. Rheology and a Selection of Incoming Plastics for Composite Materials

Introduction: Rheology of Neat and Filled Plastics, Composite Materials, and Regrinds, 617
Basic Definitions and Equations, 618

Shear Rate, Shear Stress, Shear Viscosity, Dynamic Viscosity, Apparent Viscosity, Limiting Viscosity, 618

Shear-Thinning Effect and the Power Law Equation, 620

Volumetric Flow Rate and a Pressure Gradient Along the Capillary, 623

Wall Slip Phenomenon, 625

The Rabinowitsch Correction, 626

ASTM Recommendations in the Area of Capillary Rheometry, 627

ASTM Recommendations in the Area of Rotational Rheometry, 630

Common Observations, 633

Neat Plastics, 633

Molecular Weight of Polyethylenes and Viscosity of Their Hot Melts, 633

Effect of Temperature on Viscosity, 633

The Power-Law Index of Some Neat Plastics, 635

The Power-Law Index and Molecular Weight Distribution, 636

Composite Materials, 636

Rheology ofFilled Plastics and Wood Plastic Composites, 636

Filler Increases the Dynamic Viscosity, 637

Viscosity and the Power-Law Index of Wood-Plastic Composites Materials, 638

Steady Shear Viscosity and Dynamic Viscosity Data, 639

Capillary Rheometer and an Extruder: Are They in Agreement?, 643

Extrudate Swell, 643

Almost Uncharted Areas of Composite and Plastic Rheology, 644

Effect of Particle Size of Filler on Rheology of Wood-Plastic Composites, 644
This book is by no means a comprehensive review of wood-plastic composites. Such an imaginary gigantic volume, or, rather, a set of volumes would be extremely boring, overloaded with little and unnecessary details, and would largely duplicate a great many books and papers on plastics, particularly in descriptions of compounders, extruders, downstream equipment, and other machinery.

My initial goal was to present a series of assays in the field of wood-plastic composites, which were supposed to bridge a gap between the laboratory-based research and testing and the real world, real decks, and real railing systems made of wood-plastic composite (WPC) materials. I was fortunate to spend a number of—I hope—productive years being a head of Research and Development division and Vice President, R&D of a company which first had a name Thermo Fibergen, then Kadant Composites, and then LDI Composites, manufacturing GeoDeck WPC decking and railing systems. We have gone both through the highs of our professional achievements, such as when our product was awarded the “Best Buy” status by a major U.S. magazine, and through the lows, when several years ago we voluntarily recalled many trackloads of suspect composite boards from distributors of our product. We have a thing or two to say about wood-plastic composites, about a road to success and a road to failure.

A manufacturing company like ours generates a wealth of knowledge, particularly when works along with many other experts in the field. We have all four great components in our work in order to absorb, digest, and generate knowledge: we research and develop WPC composites in the lab, we manufacture them, sell them, and install them in the real world. And, as a reward, we have a feedback from the field, on how our product performs. If an academic researcher, reading it, is jealous,
I can understand this. I myself was an academic researcher most of my life, including many good years at Harvard University.

So, having an academic experience in the fields of chemistry and biochemistry, and then having acquired an experience in engineering, strain and stress, material science, and, first and foremost, in keeping focus on priorities of the market, hence, on priorities of manufacturing, troubleshooting and problemsolving, and translation of these priorities back into research and development, I decided to share these experiences with a wider audience. A wider, compared with the audience I rather frequently meet at professional meetings, conferences, symposia in the area.

This book is focused on “substance,” that is, on wood-plastic composites and their properties, their behavior, rather than on means to manufacture them. I have soberly decided not to describe machinery, “hardware” in WPC manufacturing, because there are countless volumes in which the machinery is described in detail. Generally, as I see it, there is no principal difference between that machinery in the plastic industry and that of wood-plastic composites. Who thinks otherwise, seven feet under the keel and a favorable wind, and welcome to write a textbook or a monograph on the subject.

The choice of chapters for the book was very simple—all the seventeen topics were those which were of a great interest to colleagues of mine and myself when we were working on wood-plastic composites. All these topics seriously determine aesthetics, properties, performance, durability of wood-plastic composite products, and/or processability of the material.

By the time the book was submitted for publication, there was not a single volume on the market which would have the subject covered. The material is either scattered in multiple proceedings of WPC and related conferences and symposia, or published as separate papers in professional and semiprofessional editions. Hence, this might be the first try to collect the topics under a single cover, and I am fully responsible for it.

As a reader would notice, many features of wood-plastic composites are illustrated with GeoDeck decking and railing products. This is not a sales pitch but a reality because, as one knows, manufacturing companies very seldom publish data on their products, particularly in comparison with the competition. I have collected as many data published on commercial WPC as I could, including data provided by the manufacturer in their commercial literature and on their websites, and they are described in this book. We generated other data in our laboratory, using commercially available wood-plastic composite products. In many cases, when publication of data could have hurt the image of the manufacturer, I did not indicate the brand name and hid it under a number. I testify that the purpose of the book is not to show which material and product is better (there is no a universally better WPC product compared to competition), but to show a range of properties and explain why such a range exists.

The book would not appear without close cooperation with my co-workers who are too many to name them all. I would like to specially thank here Alan James, Dr. Tatyana Samoylova, David Leeman, Dr. Yiannis Monovoukas, Jonathan Painter, Steve Anderson, Mikiko Kubala, Matt Beachler, Brian Betz, Brent Gwatney, Lanny
Jass, John Long, Burl Boone, Tim Lusk, all from LDI composites. In the process of writing the book I have discussed the material with a good number of experts in the wood-plastic composite area; many of them have read separate chapters and were making suggestions, corrections, and sharing with me their data for inclusion into the book. Their contributions are referenced in the respective chapters. I truly appreciate inputs of the following individuals to this book: Velichko Hristov (McMaster University), Yash P. Khanna (Imerys), Rick Mann (KibbeChem), Thomas Kelley (Dover Chemical Corporation), Zhenghong Tao (University of Massachusetts, Lowell), David Dean (DuPont Packaging & Industrial Polymers), William Sigworth (Chemtura), Jonas Burke (Ferro), Shawn Mealey (Dow Corning).

Last, but not least, I must thank my wife Gail, who had to tolerate my spending so many days, evenings and weekends, not to forget whole vacation time spans spent between as close to Boston as in Berkshires and as far away as in Tahiti and Bora-Bora, cloistered with computers, books, and papers in order to prepare this book.

Anatole A. Klyosov
December 20, 2006