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Nanostructure Fabrication





CHAPTER 1

Nanofabrication Techniques

JOSEPH W. FREEMAN, LEE D. WRIGHT, CATO T. LAURENCIN, and SUBHABRATA

BHATTACHARYYA

1.1 INTRODUCTION

Interest in the study and production of nanoscaled structures is increasing. The
incredibly small sizes of nanoscaled devices and functionality of nanoscaled
materials allow them to potentially change every aspect of human life. This
technology is used to build the semiconductors in our computers; nanoscaled
materials are studied for drug delivery, DNA analysis, use in cardiac stents, and
other medical purposes. Layers of molecules can be placed on machine parts to
protect them from wear or aid in lubrication; monolayers of molecules can be
added to windows to eliminate glare. Although we are already greatly affected by
this technology, new advances in nanofabrication are still being made.

Microelectromechanical systems (MEMS) and nanoelectromechanical
systems (NEMS) have the potential to perform tasks and study the human
body (BioMEMS and BioNEMS) at the molecular level. BioMEMS have
existed for decades and were first used in neuroscience. In the 1970s, Otto
Prohaska developed the first planar microarray sensor to measure extracellular
nerve activity [1]. Prohaska and his group developed probes used for research
in nerve cell interactions and pathological cell activities in the cortical section
of the brain [1]. In the future, NEMS and other nanoscaled structures may be
able to perform more advanced tasks. This technology may allow us to cure
diseases or heal tissues at the molecular level. Computers may be even more
powerful, while taking up less space.

Many of the fabrication methods for nanoscaled devices used today are
actually based on previously conceived methods. Others take advantage of new
technologies to make nanoscaled structures. Still others combine several
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different methods to produce new technologies. This section will describe
several technologies commonly used in nanofabrication. These methods
produce a large variety of structures from fibers, to columns, to layers of
materials that are a single molecule thick.

1.2 PHOTOLITHOGRAPHY

Originally, lithography was a printing method invented in 1798 by Alois
Senefelder in Germany. At that time, there were only two printing techniques:
relief printing and intaglio printing [2]. In relief printing, a raised surface is
inked and an image is taken from this surface by placing it in contact with
paper or cloth. The intaglio process relies on marks engraved onto a plate to
retain the ink [2]. Lithography is based on the immiscibility of oil and water.
Designs are drawn or painted with an oil-based substance (greasy ink or
crayons) on specially prepared limestone. The stone is moistened with water,
which the stone accepts in areas not covered by the crayon. An oily ink,
applied with a roller, adheres only to the drawing and is repelled by the wet
parts of the stone. The print is then made by pressing paper against the inked
drawing.

Optical lithography began in the early 1970s when Rick Dill developed a set
of mathematical equations to describe the process of lithography [3]. These
equations published in the ‘‘Dill papers’’ marked the first time that lithography
was described as a science and not an art. The first lithography modeling
program SAMPLE was developed in 1979 by Andy Neureuther (who worked
for a year with Rick Dill) and Bill Oldman [3].

Photolithography is a technique used to transfer shapes and designs onto a
surface of photoresist materials. Over the years, this process has been refined
and miniaturized; microlithography is currently used to produce items such as
semiconductors for computers and an array of different biosensors. To date,
photolithography has become one of the most successful technologies in the
field of microfabrication [4]. It has been used regularly in the semiconductor
industry since the late 1950s; a great deal of integrated circuits have been
manufactured by this technology [4]. Photolithography involves several
generalized steps, cleaning of the substrate, application of the photoresist
material, soft baking, exposure, developing, and hard baking [5]. Each step will
be explained briefly below.

1.2.1 Cleaning of the Substrate

During substrate preparation, the material onto which the pattern will be
developed is cleaned to remove anything that could interfere with the
lithography process including particulate matter and impurities. After cleaning,
the substrate is dried, usually in an oven, to remove all water [3].
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