SEVEN-MEMBERED HETEROCYCLIC COMPOUNDS CONTAINING OXYGEN AND SULFUR

This is the twenty-sixth volume in the series THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS
This Page Intentionally Left Blank
The Chemistry of Heterocyclic Compounds

The chemistry of heterocyclic compounds is one of the most complex branches of organic chemistry. It is equally interesting for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocyclic compounds.

A field of such importance and intrinsic difficulty should be made as readily accessible as possible, and the lack of a modern detailed and comprehensive presentation of heterocyclic chemistry is therefore keenly felt. It is the intention of the present series to fill this gap by expert presentations of the various branches of heterocyclic chemistry. The subdivisions have been designed to cover the field in its entirety by monographs which reflect the importance and the interrelations of the various compounds, and accommodate the specific interests of the authors.

In order to continue to make heterocyclic chemistry as readily accessible as possible new editions are planned for those areas where the respective volumes in the first edition have become obsolete by overwhelming progress. If, however, the changes are not too great so that the first editions can be brought up-to-date by supplementary volumes, supplements to the respective volumes will be published in the first edition.

ARNOLD WEISSBERGER

Research Laboratories
Eastman Kodak Company
Rochester, New York

EDWARD C. TAYLOR

Princeton University
Princeton, New Jersey
Preface

The field of heterocyclic chemistry has undergone many significant developments during recent times, both in theory and at the more practical levels of laboratory synthesis and commercial application. Not the least among these developments has been a rapidly growing interest on the part of chemists throughout the world in the chemistry of heterocyclic systems other than the classically popular five- and six-membered varieties.

In recognition of the impact made upon the chemical literature by this trend, there appeared in 1964 in the Heterocyclic Compounds Series a two-part volume which contained upward of 4000 references and dealt entirely with three- and four-membered rings. After the publication of this volume, it became apparent that heterocyclic systems containing more than six members had suffered the same neglect as their small-ring counterparts, and that a survey of such systems was very clearly justified. In the present volume a start in this direction will be made by giving an account of the current state of knowledge concerning seven-membered oxygen-containing rings (oxepins) and sulfur-containing rings (thiepins). Nitrogen-containing seven-membered rings (azepines) and mixed heteroatomic seven-membered rings (oxathiepins, oxazepines, thiazepines, etc.) will form the subject of subsequent volumes to be published at a later date.

The unique physical and chemical properties conferred upon the oxepin ring by its valence tautomeric character, which is reminiscent of cyclo-octatetraene, have engendered considerable theoretical excitement. Particularly elegant contributions have been made in this area by Vogel and his collaborators, as indicated in Chapter I. Other noteworthy recent studies—only a few of the many that have been published during the past decade—are those of van Tamelen and Carty, and of Paquette and co-workers, on the photochemical synthesis and photochemically induced rearrangement of oxepins; of Rhoads and Cockroft on the synthesis of 2,5-dihydrooxepin by thermolytic rearrangement of cis-2-vinylcyclopropanecarboxaldehyde; and of Schweizer and Parham, as well as Ando and co-workers, on the thermal isomerization of 2-oxanorcaranes to 2,3-dihydrooxepins. The important investigations of these workers, and others too numerous to mention here, attest to the fact that heterocyclic chemistry has come of age.

Like the monocyclic oxepins, condensed oxepins have received extensive
attention during recent years. Of the many known systems composed of two rings (Chapter II), the isomeric 1-benzoxepins, 2-benzoxepins, and 3-benzoxepins have been studied most thoroughly. Again, only a few outstanding investigations can be cited here. They include the work of Vogel and co-workers, as well as Sondheimer and Shani, on the synthesis of 1-benzoxepin by valence tautomerization of 9,10-oxidonaphthalene; of Schweizer and co-workers on the synthesis of 1-benzoxepin and 2,3-dihydro-1-benzoxepin via several ingenious applications of the Wittig reaction; and of Dimroth and co-workers, as well as Jorgenson and more recently Ziegler and Hammond, on the preparation and chemical transformations of 3-benzoxepins.

Condensed oxepin systems composed of three rings (Chapter III) and more than three rings (Chapter IV) bear witness to the seemingly limitless variety of chemical structures that can be generated in the laboratory through the creative efforts of imaginative and perseverant synthetic organic chemists. No fewer than sixty different systems containing three or more rings are reviewed (excluding those derived from, or related to, complex natural products, which are treated in separate chapters), and their number is multiplying at an astonishing rate. Work of fundamental theoretical importance which has been done with polycyclic oxepins includes, for example, the classic preparation and characterization by Linstead and Doering of the six possible stereoisomeric perhydrodiphenic anhydrides (dodecahydro-dibenz[c,e]oxepin-5,7-diones), and elegant spectroscopic studies by Mislow and co-workers with optically active, sterically-hindered 5,7-dihydro-dibenz[c,e]oxepins of the bridged biphenyl type. Far from being merely of routine interest, these investigations have played a significant role in the formulation of modern conformational theory.

Oxepin chemistry is not devoid of important practical aspects, as evidenced by the eminent position enjoyed in the polymer field by two members of the oxepin family, the 1,3-dioxepins (Chapter V) and ε-caprolactones. The latter class of compounds, whose commercial importance is reflected in a voluminous patent literature, was to have been reviewed in a separate chapter, together with the chemistry of adipic anhydrides. Regrettably, illness has prevented the author of this chapter from completing his task in time for publication in the present volume. If possible, this material will appear at a later date as part of the Heterocyclic Compounds Series.

Seven-membered oxygen heterocycles also occupy a prominent place in the chemistry of natural products. In the terpene field (Chapter VI), a number of polycyclic ε-lactones of plant origin have been described, one well-known example being the bitter principle limonin. In addition, many oxepins are encountered in the terpene literature, as well as among steroids (Chapter VII), in the form of ε-lactones derived from six-membered ketone rings via Baeyer-Villiger oxidation. Many of these oxidative degradation products have
performed key roles in the structural elucidation of the parent terpene or steroid. In the domain of sugar chemistry (Chapter VIII), numerous 1,6-anhydrohexoses and 2,7-anhydroheptuloses are known which can be viewed as bridged oxepin derivatives, the naturally occurring compound sedoheptulosan being a familiar example of the latter category. Finally, oxepins are encountered even among alkaloids (Chapter IX), the best-known being strychnine and cularine.

Less widely studied but nonetheless of considerable theoretical and practical interest are the monocyclic seven-membered sulfur heterocycles (Chapter X) and their condensed systems (Chapter XI). Although thiepin itself apparently lacks the relative stability of oxepin and has thus far successfully eluded synthesis, the sulfone of thiepin has recently been prepared and subjected to thorough physicochemical investigation by Mock and co-workers. Sulfoxides and sulfones of reduced thiepins and dithiepins have been examined in some detail by a number of workers because of the insight which these compounds might afford into the stereochemical and conformational aspects of sulfur d-orbitals. Among the condensed thiepins, 1-, 2-, and 3-benzothiepins, as well as their sulfoxides and sulfones, have been accorded much attention in the past few years. Sulfur extrusion reactions have been of particular interest as evidenced by the continuing studies in this area by Traynelis and co-workers, among others. Also of great interest are the recently described syntheses by Schlessinger and Ponticello of thieno-[3,4-d]thiepin and furo[3,4-d]thiepin, and of the corresponding sulfoxides and sulfones. These studies, and other which are undoubtedly in progress as this is being written, are unfolding many of the most exciting new horizons in sulfur chemistry.

I acknowledge with admiration and gratitude the efforts of the eight expert authors who collaborated so patiently with me in the preparation of this volume. I also wish to give heartfelt thanks to Dr. Arnold Weissberger and Dr. Edward C. Taylor for their stimulating encouragement throughout the planning and execution of this work, and to the publishers and their staff for their efficient handling of the project at every stage. Finally, special thanks are due to my own family for their devoted support from the outset of this long and very arduous endeavor.

ANDRE ROSOWSKY

Laboratories of Organic Chemistry
Children's Cancer Research Foundation
Boston, Massachusetts
October 1971
This Page Intentionally Left Blank
Contents

I. Oxepins and Reduced Oxepins 1

A. Oxepins 1

1. Theoretical Interest, 1
2. Preparation, 2
3. Physical Properties, 7
 a. Infrared Absorption, 7
 b. Ultraviolet Absorption, 7
 c. Nuclear Magnetic Resonance, 8
 d. Thermodynamic Properties, 10
4. Chemical Reactions, 10
 a. Addendum, 12

B. Dihydrooxepins 14

1. Introduction, 14
2. Preparation, 15
3. Physical Properties, 23
 a. Infrared Absorption, 23
 b. Ultraviolet Absorption, 23
 c. Nuclear Magnetic Resonance, 23
4. Chemical Reactions, 24

C. Tetrahydrooxepins 26

1. Introduction, 26
2. Preparation, 26
3. Physical Properties, 30
 a. Infrared Absorption, 30
 b. Nuclear Magnetic Resonance, 30
4. Chemical Reactions, 30

D. Hexahydrooxepins (oxepans) 34

1. Preparation, 34
 a. Hexamethylene Oxide, 34
b. Substituted Oxepans, 36
 (1) Ring Closure Reactions, 36
 (2) Ring Expansion Reactions, 36
 (3) Two-Component Reactions, 37
2. Physical Properties of Hexamethylene Oxide, 38
3. Chemical Reactions of Hexamethylene Oxide, 39
4. Preparation and Reactions of Cyclic Acetals, Ketals, and Related Compounds, 40

E. TABLES

F. REFERENCES

II. Oxepin Ring Systems Containing Two Rings 51

A. FUSED RINGS SYSTEMS 51

1. 2-Oxabicyclo[5.1.0]octanes, 51
2. 2-Oxabicyclo[5.2.0]nonanes, 52
3. 2H-Cyclopent[b]oxepins, 53
4. 2H-Cyclopent[d]oxepins, 54
5. Furo[3,4-b]oxepins, 54
6. Furo[3,4-d]oxepins, 56
7. 2H-Oxepino[2,3-b]pyrroles, 57
8. Thieno[3,4-d]oxepins, 57
9. 1-Benzoxepins, 58
 b. Synthesis and Chemical Reactions of Dihydro-1-benzoxepins, 60
 c. Synthesis and Chemical Reactions of Tetrahydro-1-benzoxepins, 65
 d. Synthesis and Chemical Reactions of Other Reduced 1-Benzoxepins, 84
 e. Physicochemical Properties of 2,3,4,5-Tetrahydro-1-benzoxepins, 84
10. 2-Benzoxepins, 86
11. 3-Benzoxepins, 93

B. SPIRANS 102

1. 1,7-Dioxaspiro[5.6]dodecanes, 102
2. 1,4,6-Trioxaspiro[4.6]undecanes, 102
C. BRIDGED SYSTEMS

1. 2-Oxabicyclo[3.2.2]nonanes, 103
2. 3-Oxabicyclo[3.2.2]nonanes, 104
3. 9-Oxabicyclo[3.3.2]decanes, 105
4. 11-Oxabicyclo[4.4.1]undecanes, 105
 a. Partly or Fully Saturated Derivatives, 106
 b. 1,6-Oxido[10]annulenes, 111
5. 3-Oxa-6,7-dithiabicyclo[3.2.2]nonanes, 116

D. TABLES

E. REFERENCES

III. Oxepin Ring Systems Containing Three Rings

A. FUSED RING SYSTEMS

2. 8H-1,3-Dioxolo[4,5-h][3]benzoxepins, 137
3. Dibenz[b,d]oxepins, 137
5. Dibenz[b,f]oxepins, 154
6. Dibenz[c,e]oxepins, 176
 a. Dibenz[c,e]oxepin-5,7-diones (Diphenic Anhydrides), 176
 (1) Synthesis, 176
 (2) Reactions, 186
 b. Dibenz[c,e]oxepin-5(7H)-ones, 200
 c. Dibenz[c,e]oxepins, 206
 (1) Synthesis, 206
 (2) Physical Properties, 211
 (3) Chemical Reactions, 213
7. Naphth[1,2-b]oxepins, 215
8. Naphth[1,2-c]oxepins, 217
10. Naphth[2,3-b]oxepins, 220
11. Naphth[2,3-d]oxepins, 222
12. 1H-Naphth[1,8-cd]oxepins, 222
14. 4H-Pyrano[3,2-h][1]benzoxepins, 223
15. 6H-Oxepino[3,2-c][1,2]benzothiazines, 224
B. BRIDGED AND SPIRAN RING SYSTEMS

1. Spiro[naphthalene-1(2H),4'-oxepanes], 227
2. 1,5-Ethano-3-benzoxepins, 228
3. 5a,9a-[2]Buteno-3-benzoxepins, 229
4. 15,16-Dioxatricyclo[8.4.1.13,8]hexadecanes, 229
5. 3,6-Methano-1,4-benzodioxocins, 232
6. 3,6-Methano-1,4-benzoxazocins, 232
7. 2H-Spiro[1-benzoxepino-5,2'-dioxoles], 233

C. TABLES

D. REFERENCES

IV. Oxepin Ring Systems Containing More Than Three Rings

A. TETRACYCLIC SYSTEMS

1. Fused Ring Systems, 259
 a. 1H-Dibenzo[b,f]cyclopentoxepins, 259
 b. 4H-Fluorenolo[4,5-cde]oxepins, 260
 c. 4H-Isobenzofuro[1,7-cd][2]benzoxepins, 260
 d. Benzofuro[3,2-c][1]benzoxepins, 261
 e. Benzo[d]dioxolo[4,5-h][2]benzoxepins, 262
 f. 1H-Benzothieno[2,3-c][1]benzoxepins, 262
 g. 5H-Pyrido[2',3':5,6]oxepino[2,3-b]indoles, 263
 h. 4,9-Dioxo-1,7-diazacyclohepta[def]fluorenes, 265
 i. Tribenz[b,d,f]oxepins, 265
 k. Benzo[c]naphth[2,3-e]oxepins, 267
 l. Benzo[c]naphth[1,2-b]oxepins, 268
 m. Benzo[e]naphth[2,1-b]oxepins, 269
 n. Phenanthro[4,5-bcd]oxepins, 270
 o. Phenanthro[4,5-cde]oxepins, 271
 p. Phenanthro[9,10-d]oxepins, 273
 r. 1H-Benz[6,7]oxepino[2,3,4-ij]isoquinolines, 274
 s. Dibenzo[2,3:6,7]oxepino[4,5-d]pyrimidines, 278
 u. [2]Benzoxepino[6,5,4-cde]cinnolines, 280
 v. 4H,6H-[2]Benzoxepino[6,5,4-def][2]benzoxepins, 281
 w. 4H,6H-[2]Benzothiepino[6,5,4-def][2]benzoxepins, 283
 x. 6H-[1]Benzoxepino[5,4-b][1,5]benzodiazepines, 285
Contents

2. Bridged and Spiran Ring Systems, 285
 a. 4,4'(5H,5'SH)-Spirob[1-benzoexepins], 285
 b. 9,10-Methanoxymethanoanthracenes, 286
 c. 10,9-(Epoxyethano)anthracenes, 288
 d. 4,6-Ethano(and etheno)dibenz[b,f]oxepins, 289

B. PENTACYCLIC SYSTEMS
 1. Fused Ring Systems, 290
 b. Oxepino[3,4-b:6,5-b']bisbenzofurans, 291
 c. Oxepino[4,5-b:2,3-e']bisbenzofurans, 292
 e. Dinaphth[2,3-c:2',3'-e']oxepins, 293
 f. Dinaphth[2,1-c:1',2'-e']oxepins, 294
 g. Benzo[c]phenanthro[2,3-e]oxepins, 295
 h. Oxepino[3,4-b:5,6-b']diquinolines, 296
 i. 2H-Benzo[8,9]phenanthro[4,5-bcd]oxepins, 297
 j. 7H,15H-Bisoxepino[3',4':4,5]pyrrolo[1,2-a:1',2'-d']pyrazines, 297
 k. 2H,10H-Oxepino[3,4-f:5,6-f']bis[1,3]benzodioxoles, 298

2. Bridged and Spiran Ring Systems, 300
 a. 4,6-(Methanoxymethoxy)cycloprop[f]isobenzofurans, 300
 b. 5-Oxapentacyclo[5.4.0.0^2.10.0^6.9.0^6.11]undecanes, 300

C. HEXACYCLIC SYSTEMS
 301
 1. Acenaphtho[1,2-d]dibenz[b,f]oxepins, 301
 2. Piceno[6,7-cde]oxepins, 302
 3. 16H - Dibenzo[b, h][2]benzoexepino[3, 4, 5 - de][1, 6]naphthyridines, 303
 5. Spiro[dibenzo[c,e]oxepin-5,9'-fluorenes], 304
 6. Spiro[dibenzo[c,e]oxepin-5,9'-xanthenes], 305

D. HEPTACYCLIC SYSTEMS
 306
 1. Difluoreno[1,2-c:2',1'-e]oxepins, 306
 2. Dianthra[1,2-c:2',1'-e]oxepins, 306
 3. Dianthra[9,1-bc:1',9'-ef]oxepins, 307
 5. Diphenanthro[9,10-b:9',10'-f]oxepins, 309
 6. Diphenanthro[9,10-c:9',10'-e]oxepins, 310
Contents

8. $8H, 16H$-7a,15a-Epidithio-$7H, 15H$-Bisoxepino[3',4':4,5]-pyrrolo[1,2-a:1',2'-d]pyrazines, 311

E. SYSTEMS CONTAINING MORE THAN SEVEN RINGS 312

1. Acenaphtho[1,2-d]dinaphth[2,1-b:1'2'-f]oxepins, 312
2. Dinaphtho[2,1-e:2',1'-e]phenanthro[10,1-bc:9,8-b',c']bisoxepins, 313
3. 5,20:14,19-Bis(epoxymethano)-6,15-ethanonaphtho[2,3-c]-pentaphenes, 314

F. REFERENCES 316

V. DIOXEPINS AND TIOXEPINS 319

A. MONOCYCLIC DIOXEPINS 319

1. History, Structures, and Nomenclature, 319
2. Methods of Preparation of 1,3-Dioxepins, 320
 a. Reaction of cis-2-Butene-1,4-diol with Aldehydes, 320
 b. Reaction of cis-2-Butene-1,4-diol with Ketones, 321
 c. Reaction of cis-2-Butene-1,4-diol with Acetals or Ketals, 321
 d. Reaction of cis-2-Butene-1,4-diol with an Aldehyde and an Acetal or Ketal, 323
 e. Reaction of cis-2-Butene-1,4-diol with a Ketone and an Acetal or Ketal, 324
 f. Reaction of cis-2-Butene-1,4-diol with Trialkyl Orthoformates, 325
 g. Dehydration of an Aldehyde 4-Hydroxy-2-buten-1-yl Hemiacetal, 325
 h. Reaction of cis-2-Butene-1,4-diol with Acetylenes, 326
 i. Reaction of cis-2-Butene-1,4-diol with Vinyl Ethers, 327
 j. Dehydrohalogenation of Halogenated 1,3-Dioxepanes, 327
 k. Miscellaneous Reactions, 328
3. Types of 1,3-Dioxepins, 328
 a. Alkyl- and Aryl-Substituted 1,3-Dioxepins, 328
 b. Bis(1,3-dioxepins), 329
 c. 2-Alkenyl- and 2-Alkadienyl-4,7-dihydro-1,3-dioxepins, 330
 d. 2-(Cyclohexen-1-yl)-4,7-dihydro-1,3-dioxepins, 331
 e. Spiro Derivatives, 331
Contents

f. Halogenated 1,3-Dioxepins, 332

h. Ether Derivatives, 333

i. Keto-Substituted 1,3-Dioxepins, 333

j. 2-Fury1 and 2-Pyranyl-4,7-dihydro-1,3-dioxepins, 334

k. Esters of 4,7-Dihydro-1,3-dioxepin-2-alkylcarboxylic Acids, 334

l. Miscellaneous Derivatives, 335

4. Identification of 1,3-Dioxepins, 335

5. Reactions of 1,3-Dioxepins, 335

a. Halogen Addition to the Double Bond, 335

b. Hydrogenation of the Double Bond, 336

c. Reactions with Acids, 336

d. Diels-Alder Reactions, 337

(1) Condensation with Cyclopentadienes, 337

(2) 6,9-Methano-2,4-benzodioxepin Derivatives, 337

e. Polymerizations, 337

6. Physical Properties of 1,3-Dioxepins, 338

B. CONDENSED DIOXEPINS

1. Benzodioxepins, 338

a. Nomenclature and Structures, 338

b. 2H-1,3-Benzodioxepins, 339

c. 5H-1,4-Benzodioxepins, 339

(1) Derivatives Found in Nature, 339

(2) Methods of Preparation, 340

(3) 5H-1,4-Benzodioxepin-(x)-ones, 340

(4) 5H-1,4-Benzodioxepin-(x,y)-diones, 341

(5) Physical Properties, 343

d. 2H-1,5-Benzodioxepins, 343

(1) Alkyl Derivatives, 343

(2) Aldehydes, 344

(3) Ketones, 344

(4) Alcohols, 345

(5) Halide Derivatives, 345

(6) Amines, 346

(7) Amides, 347

(8) Esters, 348

(9) Phenols, 348

(10) Miscellaneous Derivatives, 349

(11) 1,5-Benzodioxepin-3-ones, 349

(12) Derivatives of 2H-1,5-Benzodioxepin-4-ones, 350
(13) 1,5-Benzodioxepin-2,4-diones, 351
(14) Physical Properties of 3,4-Dihydro-2H-1,5-benzodioxepins, 351

e. 1H-2,3-Benzodioxepins, 351
 (1) 1H-2,3-Benzodioxepin Derivatives, 351
 (2) 1H-2,3-Benzodioxepin-1-ol Derivatives, 351
 (3) 1,4-Epoxy-1H-2,3-benzodioxepins, 352
 (4) 1,4-Epoxy-1H-2,3-benzodioxepin-5-one Derivatives, 356
 (5) Physical Properties of 1H-2,3-Benzodioxepins, 356

f. 3H-2,4-Benzodioxepins, 356
 (1) Methods of Preparation, 356
 (2) Physical Properties, 357

2. Dibenzodioxepins, 357
 a. History, Structures, and Nomenclature, 357
 b. Derivatives Found in Nature, 358
 c. Preparation of 11H-Dibenzo[b,e][1,4]dioxepin, 360
 d. 11H-Dibenzo[b,e][1,4]dioxepin-11-ones, 360
 (1) Methods of Preparation, 360
 (2) Reactions, 361
 e. Preparation of 6H-Dibenzo[d,f][1,3]dioxepin Derivatives, 364
 f. Dibenzo[d,f][1,3]dioxepin-6-ones and Ketone Derivatives of 6H-Dibenzo[d,f][1,3]dioxepin, 366
 g. 6,6′-Spirobi(dibenzo[d,f][1,3]dioxepin), 369
 h. Physical Properties of Dibenzodioxepins, 369

3. Naphthodioxepins, 370
 a. Nomenclature and Structures, 370
 b. Preparation, 370

4. Dinaphthodioxepins, 371
 a. Nomenclature and Structures, 371
 b. Preparation, 371

5. Other Dioxepin Systems Containing Two or More Rings, 372
 a. History, Types, Nomenclature, and Structures, 372
 b. 1,5-Dihydro-3H-[1,3]dioxepino[5,6-c]pyridines, 373
 c. 3,4-Dihydro-2H-[1,4]dioxepino[2,3-g]isoquinolines, 375
 d. Physical Properties, 376

C. TRIOXEPINS 377
 1. Types and Nomenclature, 377
 2. 2H,4H-1,3,5-Benzotrioxepins, 378
 3. 2,5-Epoxy-2H,4H-1,3,4-benzotrioxepins, 378
VI. Terpene Oxepins

A. INTRODUCTION

B. ε-LACTONES AND ε-LACTOLS

1. Naturally Occurring ε-Lactones, 412
 a. Structure, 413
 b. Derivatives and Ring A Reactions, 416
 c. Biogenesis, 420
2. ε-Lactones Originating by Peroxy Acid Oxidation, 425
 a. Classical Investigations, 425
 b. Examples, 426
 c. Special Aspects, 427
3. Miscellaneously Derived ε-Lactones and ε-Lactols, 430

C. ANHYDRIDES

D. MISCELLANEOUS OXEPINS

E. TABLES

F. REFERENCES

VII. Steroidal Oxepins

A. INTRODUCTION

B. NOMENCLATURE

C. RING A OXEPINS

D. RING B OXEPINS

E. RING C OXEPINS

F. TABLES

G. REFERENCES
B. OXEPINS DERIVED FROM HEXOSES

1. 1,6-Anhydro-β-D-allopyranoses, 522
2. 1,6-Anhydro-β-D-altropyranoses, 523
3. 1,6-Anhydro-3-deoxy-β-D-arabinohexopyranoses, 526
4. 1,6-Anhydro-β-D-galactopyranoses, 526
5. 1,6-Anhydro-β-D-galactofuranoses, 529
6. 1,6-Anhydro-β-D-glucopyranoses, 530
 a. Methods of Preparation, 530
 b. Proof of Structure, 531
 c. Reactions and Derivatives, 532
 d. Mechanism of Formation, 534
 e. Polymerization, 535
7. 1,6-Anhydro-β-D-glucofuranoses, 535
8. 1,6-Anhydro-β-D-gulopyranoses, 536
9. 1,6-Anhydro-β-D-idopyranoses, 537
10. 1,6-Anhydro-β-D-mannopyranoses, 538
11. 1,6-Anhydro-3-deoxy-β-D-ribohexopyranoses, 540
12. 1,6-Anhydro-β-D-talopyranoses, 541

C. OXEPINS DERIVED FROM HEPTOSES

1. 2,7-Anhydro-β-D-altroheptulopyranoses, 543
2. 2,7-Anhydro-β-D-altroheptulofuranoses, 546
3. 2,7-Anhydro-α-L-galactoheptulopyranoses, 547
4. 2,7-Anhydro-α-L-galactoheptulofuranoses, 548
5. 2,7-Anhydro-β-D-glucoheptulopyranoses, 548
6. 1,6-Anhydro-D-gluc-o-β-D-idohoheptopyranose, 549
7. 1,6-Anhydro-D-glycero-β-D-guloheptopyranoses, 549
8. 1,6-Anhydro-D-glycero-β-D-idohoheptopyranoses, 550
9. 2,7-Anhydro-β-L-guloheptulopyranoses, 551
10. 2,7-Anhydro-β-D-idohoheptulopyranose, 552
11. 2,7-Anhydro-β-D-mannoheptulopyranoses, 552

D. OXEPINS DERIVED FROM SUGARS AND ALDEHYDES

1. Formaldehyde Derivatives, 553
2. Acetaldehyde and Higher Aldehyde Derivatives, 555

E. OXEPINS RELATED TO SUGARS

F. REFERENCES
IX. Alkaloids Containing a Seven-Membered Oxygen Ring

A. INTRODUCTION

B. THE STRYCHNINE GROUP

1. General Background, 561
2. Opening of the Oxepin Ring, 562
3. Congeners of Strychnine, 565

C. THE CULARINE GROUP

D. INSULARINE AND INSULANOLINE

E. REFERENCES

X. Monocyclic Seven-Membered Rings Containing Sulfur

A. INTRODUCTION

B. RINGS CONTAINING ONE SULFUR ATOM (THIEPINS AND DERIVATIVES)

1. Thiepins and Derivatives, 574
2. Dihydrothiepins and Derivatives, 576
3. Tetrahydrothiepins and Derivatives, 579
4. Thiapanes, 580
 a. Occurrence, 580
 b. Preparation and Properties, 581
 c. Reactions, 583
5. Thiepanones and Derivatives, 586
 a. 2-Thiepanones (ε-Thiocaprolactones), 586
 b. 3-Thiepanones, 587
 c. 4-Thiepanones, 588
 (1) Preparation, 588
 (2) Reactions, 590
6. Thioseptanoses, 596

C. RINGS CONTAINING TWO SULFUR ATOMS (DITHIEPINS AND DERIVATIVES)

1. 1,2-Dithiepins and Derivatives, 598
 a. Physical Properties, 599
 b. Preparation, 602
 c. Reactions, 607
2. 1,3-Dithiepins and Derivatives, 612
 a. 1,3-Dithiepin, 612
 b. Dihydro-1,3-dithiepins, 613
c. 1,3-Dithiepanes, 614
 (1) Physical Properties, 614
 (2) Preparation, 616
3. 1,4-Dithiepins and Derivatives, 617
 a. 1,4-Dithiepin, 617
 b. Dihydro-1,4-dithiepins, 617
 c. 1,4-Dithiepanes, 619
 (1) 1,4-Dithiepane and Derivatives, 619
 (2) 1,4-Dithiepan-6-ol and Derivatives, 619
 (3) 1,4-Dithiepan-6-one and Derivatives, 621
 (a) Preparation, 621
 (b) Reactions, 621
D. RINGS CONTAINING THREE SULFUR ATOMS (TRITHIEPINS AND DERIVA-
 623
 1. 1,2,3-Trithiepins and Derivatives, 623
 2. 1,2,5-Trithiepins and Derivatives, 625
 a. Preparation and Structure, 625
 b. Stereochemistry, 631
 c. Reactions, 632
 d. Uses, 633
 3. 1,3,5-Trithiepins and Derivatives, 634
E. RINGS CONTAINING FOUR OR MORE SULFUR ATOMS (TETRATHIEPINS,
 634
 PENTATHIEPINS, HEXATHIEPINS, S7, AND DERIVATIVES)
 1. Tetrathiepins and Derivatives, 634
 2. Pentathiepins and Derivatives, 638
 3. Hexathiepanes and S7, 643
F. TABLES
 646
G. REFERENCES
 661
XI. Condensed Thiepins
 667
A. INTRODUCTION
 667
B. 2H-CYCLOPENTA[b]THIEPINS
 668
C. 1-BENZOThIEPINS
 668
 1. 1-Benzothiepin and Derivatives, 668
 2. 1-Benzothiepin-1-oxide and Derivatives, 677
 3. 1-Benzothiepin-1,1-dioxide Derivatives, 679
 4. Dihydro-1-benzothiepin and Derivatives, 681
<table>
<thead>
<tr>
<th>Contents</th>
<th>xxiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. 3,4-Dihydro-1-benzothiepin-5(2H)-one and Derivatives, 689</td>
<td></td>
</tr>
<tr>
<td>6. 1-Benzothiepin-3,5(2H,4H)-dione and Derivatives, 701</td>
<td></td>
</tr>
<tr>
<td>7. 2,3,4,5-Tetrahydro-1-benzothiepin and Derivatives, 703</td>
<td></td>
</tr>
<tr>
<td>8. 2,3,4,5-Tetrahydro-1-benzothiepin-1,1-dioxide and Derivatives, 706</td>
<td></td>
</tr>
<tr>
<td>D. 2-BENZOTHIEPINS</td>
<td>709</td>
</tr>
<tr>
<td>E. 3-BENZOTHIEPINS</td>
<td>714</td>
</tr>
<tr>
<td>1. 3-Benzothiepins and Derivatives, 714</td>
<td></td>
</tr>
<tr>
<td>2. 3-Benzothiepin-3,3-dioxide and Derivatives, 717</td>
<td></td>
</tr>
<tr>
<td>3. 1,2-Dihydro-3-benzothiepin-3,3-dioxide, 719</td>
<td></td>
</tr>
<tr>
<td>4. 4,5-Dihydro-3-benzothiepin-1(2H)-one, 720</td>
<td></td>
</tr>
<tr>
<td>5. 1,2,4,5-Tetrahydro-3-benzothiepin, 720</td>
<td></td>
</tr>
<tr>
<td>F. NAPHTHOTHIEPINS</td>
<td>721</td>
</tr>
<tr>
<td>1. Naphtho[m,n-b]thiepins, 721</td>
<td></td>
</tr>
<tr>
<td>2. Naphtho[m,n-d]thiepins, 724</td>
<td></td>
</tr>
<tr>
<td>3. Naphtho[1,8-c,d]thiepins, 726</td>
<td></td>
</tr>
<tr>
<td>G. DIBENZO[b,d]THIEPINS</td>
<td>727</td>
</tr>
<tr>
<td>H. DIBENZO[b,e]THIEPINS</td>
<td>729</td>
</tr>
<tr>
<td>1. Dibenzo[b,e]thiepin and Derivatives, 729</td>
<td></td>
</tr>
<tr>
<td>2. Dibenzo[b,e]thiepin-11(6H)-one and Derivatives, 734</td>
<td></td>
</tr>
<tr>
<td>3. 6,11-Dihydrodibenzo[b,e]thiepin and Derivatives, 737</td>
<td></td>
</tr>
<tr>
<td>I. DIBENZO[b, f]THIEPINS</td>
<td>739</td>
</tr>
<tr>
<td>1. Dibenzo[b, f]thiepin and Derivatives, 740</td>
<td></td>
</tr>
<tr>
<td>2. Dibenzo[b, f]thiepin-5-oxide and Derivatives, 751</td>
<td></td>
</tr>
<tr>
<td>3. Dibenzo[b, f]thiepin-5,5-dioxide and Derivatives, 751</td>
<td></td>
</tr>
<tr>
<td>4. Dibenzo[b, f]thiepin-10(11H)-one and Derivatives, 753</td>
<td></td>
</tr>
<tr>
<td>5. 10,11-Dihydrodibenzo[b, f]thiepin and Derivatives, 759</td>
<td></td>
</tr>
<tr>
<td>6. Hexahydro and Octahydrodibenzo[b, f]thiepins, 762</td>
<td></td>
</tr>
<tr>
<td>J. DIBENZO[c,e]THIEPINS</td>
<td>763</td>
</tr>
<tr>
<td>K. BENZONAPHTHOTHIEPINS</td>
<td>769</td>
</tr>
<tr>
<td>L. TRIBENZO[b,d, f]THIEPINS</td>
<td>772</td>
</tr>
<tr>
<td>M. THIENOTHIEPINS AND BENZOTHIENOTHIEPINS</td>
<td>775</td>
</tr>
<tr>
<td>1. Thieno[3,2-c]thiepins and Derivatives, 775</td>
<td></td>
</tr>
<tr>
<td>2. Thieno[2,3-d]thiepins and Derivatives, 775</td>
<td></td>
</tr>
</tbody>
</table>
3. Thieno[3,4-c]thiepins and Derivatives, 777
4. Thieno[3,4-d]thiepins and Derivatives, 777
5. Benzo[e]thieno[2,3-b]thiepins and Derivatives, 780

N. FUROTHIEPINS

O. CYCLOALKADITHIEPINS

1. Cyclobutadithiepins. (3,5-Dithiabicyclo[5.2.0]nonanes), 785
2. Cyclopentadithiepins. (2,6-Dithiabicyclo[5.3.0]decane), 786
3. Cyclohexadithiepins. (2,6-Dithiabicyclo[5.4.0]undecane), 786

P. BENZODITHIEPINS

Q. DIBENZODITHIEPINS AND DINAPHTHODITHIEPINS

R. BENZOTRITHIEPINS

S. DINAPHTHOTRITHIEPINS

T. BENZOPENTATHIEPINS

U. PHYSIOLOGICAL ACTIVITY

V. BRIDGED SYSTEMS

1. x-Thiabicyclo[4.1.0]heptane Systems, 798
2. x-Thiabicyclo[3.2.0]heptane Systems, 800
3. x-Thiabicyclo[3.2.1]octane Systems, 801
4. x-Thiabicyclo[4.2.1]nonane Systems, 804
5. 2-Thiatricyclo[3.2.1.0^8,7]octane and Derivatives, 807
6. 6-Thiatricyclo[3.2.1.1^8,5]nonane and Derivatives, 808

W. TABLES

X. REFERENCES

INDEXES
Tables

I-1. Oxepins and Reduced Oxepins
II-1. Uv Data and Bromination Rate of 2,3,4,5-Tetrahydro-1-benzooxepins and Lower Ring Homologs
II-2. Solvolysis Kinetics of 7-Chloromethyl-2,3,4,5-tetrahydro-1-benzooxepin and Lower Ring Homologs
II-3. Uv Data and Bromination Rate of 2,3,4,5-Tetrahydro-1-benzooxepin-2-carboxylic Acid and Lower Ring Homologs
II-4. Uv Data and Molecular Geometry of 2,3,4,5-Tetrahydro-1-(N,N-dimethylamino)methyl-1-benzooxepin Methobromide and Lower Ring Homologs
II-5. 1-Benzoxepins
II-6. 2-Benzoxepins
II-7. 3-Benzoxepins
III-1. Dibenzo\{b,e\}oxepins
III-2. Dibenzo\{b,f\}oxepins
III-3. Dibenzo\{c,e\}oxepins
V-1. Reaction Products from Acetylenes and cis-2-Butene-1,4-diol
V-2. Reaction of cis-2-Butene-1,4-diol with Aldehydes
V-3. Reaction of cis-2-Butene-1,4-diol with an Acetal or Ketal and Concentrated Sulfuric Acid
V-4. Reaction of cis-2-Butene-1,4-diol with Aldehydes and Acetals or Ketals in Benzene with Concentrated Sulfuric Acid
V-5. Reaction of cis-2-Butene-1,4-diol with Ketones and Acetals or Ketals in Benzene with Concentrated Sulfuric Acid
V-6. Reaction of cis-2-Butene-1,4-diol with Ketones in Benzene
V-7. Preparation of 2-Alkenyl and 2-Alkadienyl-4,7-dihydro-1,3-dioxepins by the Reaction of cis-2-Butene-1,4-diol with Unsaturated Acetals or Ketals, Unsaturated Aldehydes and Ketones
V-8. Reaction Products from cis-2-Butene-1,4-diol and Cyclic Ketones and Ketals
<table>
<thead>
<tr>
<th>Table</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-9.</td>
<td>Reaction Products from cis-2-Butene-1,4-diol and Halo Acetals, Halo Aldehydes, or Halo Ketones and Acetals or Ketals</td>
</tr>
<tr>
<td>V-10.</td>
<td>Reaction Products from cis-2-Butene-1,4-diol and Ring-Substituted Benzaldehydes</td>
</tr>
<tr>
<td>V-11.</td>
<td>Reaction of cis-2-Butene-1,4-diol with a Trialkyl Orthoformate and Concentrated Sulfuric Acid</td>
</tr>
<tr>
<td>V-12.</td>
<td>Reaction of cis-2-Butene-1,4-diol with an Alkoxy Acetal and an Acidic Catalyst</td>
</tr>
<tr>
<td>V-13.</td>
<td>6,9-Methano-2,4-Benzodioxepin Derivatives</td>
</tr>
<tr>
<td>V-14.</td>
<td>Physical Properties of 1,3-Dioxepin</td>
</tr>
<tr>
<td>V-15.</td>
<td>Physical Properties of 5-Substituted 1,3-Dioxepins</td>
</tr>
<tr>
<td>V-16.</td>
<td>Physical Properties of 5H-1,4-Benzodioxepins</td>
</tr>
<tr>
<td>V-17.</td>
<td>2-Aminoalkyl-3,4-dihydro-2H-1,5-Benzodioxepins</td>
</tr>
<tr>
<td>V-18.</td>
<td>2-Guanidinoalkyl-2H-3,4-dihydro-1,5-Benzodioxepin Sulfates</td>
</tr>
<tr>
<td>V-19.</td>
<td>2-Guanidinoalkyl-3,4-Dihydro-2H-1,5-Benzodioxepins</td>
</tr>
<tr>
<td>V-20.</td>
<td>Amide Derivatives of 3,4-Dihydro-2H-1,5-Benzodioxepin</td>
</tr>
<tr>
<td>V-21.</td>
<td>Physical Properties of 3,4-Dihydro-2H-1,5-Benzodioxepins</td>
</tr>
<tr>
<td>V-22.</td>
<td>Physical Properties of 1H-2,3-Benzodioxepins</td>
</tr>
<tr>
<td>V-23.</td>
<td>Physical Properties of 3H-2,4-Benzodioxepins</td>
</tr>
<tr>
<td>V-24.</td>
<td>11H-Dibenzo[b,e][1,4]dioxepin-11-ones</td>
</tr>
<tr>
<td>V-25.</td>
<td>Physical Properties of Dibenzodioxepins</td>
</tr>
<tr>
<td>V-26.</td>
<td>Physical Properties of Dioxepino Derivatives</td>
</tr>
<tr>
<td>V-27.</td>
<td>2,5-Epoxy-2H,4H-1,3,4-Benzotrioxepins</td>
</tr>
<tr>
<td>VI-1.</td>
<td>Naturally Occurring Terpene Oxepins</td>
</tr>
<tr>
<td>VI-2.</td>
<td>Products of Baeyer-Villiger Oxidation of Terpene Cyclohexanones</td>
</tr>
<tr>
<td>VI-3.</td>
<td>Terpene Related Adipic Anhydrides</td>
</tr>
<tr>
<td>VII-1.</td>
<td>Melting Points and Rotations for Most of the Compounds Discussed in the Chapter as Well as Certain Additional Selected Products</td>
</tr>
<tr>
<td>X-1.</td>
<td>UV Spectra of Amino-1,2-dithiepane Hydrochlorides</td>
</tr>
<tr>
<td>X-2.</td>
<td>Reactivity of Cyclic Disulfides</td>
</tr>
<tr>
<td>X-3.</td>
<td>Monocyclic Seven-Membered Rings Containing Sulfur</td>
</tr>
<tr>
<td>XI-1.</td>
<td>Cyclopenta[b]thiepins</td>
</tr>
<tr>
<td>XI-2.</td>
<td>1-Benzothiepins</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>XI-3</td>
<td>2-Benzothiepins</td>
</tr>
<tr>
<td>XI-4</td>
<td>3-Benzothiepins</td>
</tr>
<tr>
<td>XI-5</td>
<td>Naphthothiepins</td>
</tr>
<tr>
<td>XI-6</td>
<td>Dibenzo[b,d]thiepins</td>
</tr>
<tr>
<td>XI-7</td>
<td>Dibenzo[b,e]thiepins</td>
</tr>
<tr>
<td>XI-8</td>
<td>Dibenzo[b,f]thiepins</td>
</tr>
<tr>
<td>XI-9</td>
<td>Dibenzo[c,e]thiepins</td>
</tr>
<tr>
<td>XI-10</td>
<td>Benzonaphthothiepins</td>
</tr>
<tr>
<td>XI-11</td>
<td>Tribenzo[b,d,f]thiepins</td>
</tr>
<tr>
<td>XI-12</td>
<td>Thienothiepins</td>
</tr>
<tr>
<td>XI-13</td>
<td>Furothiepins</td>
</tr>
<tr>
<td>XI-14</td>
<td>Cyclopentadithiepins</td>
</tr>
<tr>
<td>XI-15</td>
<td>Benzodithiepins</td>
</tr>
<tr>
<td>XI-16</td>
<td>Benzotrichiepins</td>
</tr>
<tr>
<td>XI-17</td>
<td>Benzopentathiepins</td>
</tr>
<tr>
<td>XI-18</td>
<td>Bridged Systems</td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank