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PREFACE

When I was a graduate student in the Department of Chemistry at the University
of Pittsburgh, I took organic chemistry courses taught by Professors Craig S.
Wilcox and Dennis P. Curran. One of the most amazing topics that I learned
about from their lectures was stereoselective synthesis in organic chemistry.

Stereochemistry is a concept of paramount importance in chemistry. Stereo-
selective reactions, be they diastereoselective or enantioselective, are therefore
a valuable tool in producing compounds of the desired stereochemistry. Every
stereoselective reaction has an energetically preferred transition state that can
explain the formation of the major stereoisomer. A reasonable transition state
is very important not only in rationalizing the experimental results, but also in
further advancing the chemical system that one is studying.

Since the seminal proposal in 1957 by Howard E. Zimmerman and Marjorie
D. Traxler regarding the stereoselective Ivanov reaction, six-membered chairlike
transition states have been recognized as one of the most convincing methods used
in organic chemistry to describe the course of reactions that have a well-organized
molecular ensemble geometry. In this book I describe organic reactions that go
through well-defined six-membered transition states. The reactions are classi-
fied into four categories: [3,3]-sigmatropic rearrangements, aldol reactions, metal
allylation reactions, and stereoselective reductions. Each chapter begins with a
section on general considerations in which I gather all the computational stud-
ies known to me that support the proposal of a six-membered transition state.
Each reaction has a brief introduction, a description of the six-membered chair-
like transition state, and applications selected from natural product synthesis. In
presenting reactions and transition states, I have tried to deliver the arguments
and conclusions exactly the way they are outlined in the original references.
When questions arise or further information on a transition state is sought, read-
ers are strongly encouraged to study the references listed at the end of each
section.

This book will serve as a starting point in learning the amazing features of
six-membered chairlike transition states in stereoselective organic reactions. With
this book, I hope that students and practitioners alike will be able to propose
reasonable transition states for the description of newly discovered stereoselective
reactions.

Comments and suggestions from readers are always welcome. I can be reached
by email at bizibeaver@yahoo.com.

ix
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INTRODUCTION

In 1957, Zimmerman and Traxler published their study on the reaction of benzalde-
hyde with the magnesium enolate of phenylacetic acid: namely, the Ivanov reac-
tion1 (Scheme I). The major product from the reaction is an anti - or threo-isomer
of 2,3-diphenyl-3-hydroxypropionic acid, and the minor product is a syn- or ery-
thro-isomer.2 Although in 1957 the Ivanov reaction had been known for quite some
time, no reasonable proposal had been put forward to explain the stereochemical
outcome observed for the reaction. In explaining the ratio of the two stereoiso-
mers, the authors made a seminal proposal that the condensation reaction would go
through a six-membered transition state (Scheme II). The coordination of benzalde-
hyde carbonyl group with magnesium brings the two reactants in close contact in
both chairlike transition state A and boatlike transition state B. The authors specu-
lated that the particular spatial arrangement of the four substituents in the transition
state could determine the stereochemistry of the products. For the Ivanov reaction
of benzaldehyde, transition state A would be favored over B because transition state
A involves a lower-energy approach to bonding than that of the alternative tran-
sition state B, which experiences an energetically unfavorable gauche interaction
between the two phenyl substituents1 (Scheme III).
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Due to its simplicity and outstanding prediction power, the Zimmerman–Traxler
transition state has frequently been used in explaining the stereochemical outcome
of certain stereoselective reactions. The characteristics of the Zimmerman– Traxler
transition state can be summarized as follows:

1. The transition state is for a six-atom system and thus is six-membered.
2. The transition state involves six electrons and thus exhibits the aromatic char-

acter of benzene.3

3. A chairlike transition state is favored over a boatlike transition state. There
are, however, exceptions.
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TABLE 1 Conformational Energies of Monosubstituted
Cyclohexanes

∆G25

R

R
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0.55
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19 :1

19:1

42:1

>99:1
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4 INTRODUCTION

4. When two chairlike transition states compete, the transition state in which
a bulky substituent occupies an equatorial position is favored over the state
that has the same substituent in an axial position. The free-energy difference
between the two potential transition states can be approximated by using the
∆G or A-values of the monosubstituted cyclohexanes4 (Table 1).

In the following four chapters, readers will find some of the most frequently
cited and most synthetically relevant examples of the Zimmerman–Traxler or
six-membered transition state. In presenting reactions that go through a six-
membered chairlike transition state, I pay special attention to including com-
putational studies, in an effort to prove the existence of a six-membered chairlike
transition state. Although not all six-membered transition states have been studied
computationally, recent interest in using computers in studies of stereoselective
reactions would certainly confirm the legitimacy of Zimmerman–Traxler transi-
tion states for many more reactions.5

Before we embark on our journey into the world of six-membered transition
states, I would like to speak briefly about one reaction, to illustrate how a tran-
sition state is drawn throughout the book. The enzyme-catalyzed transformation
of chorsimate (2) to prephenate (3) is a classic example of a [3,3]-sigmatropic
Claisen rearrangement6 (Scheme IV). As an old bond is being broken and at
the same time a new bond is formed in the transition state, the transition state
for the Claisen rearrangement of chorismate to prephenate would look more like
transistion state A than like B. Still, for the convenience of following the bond
connection event clearly, I prefer to draw the transition state like B.

REFERENCES

1. Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79 , 1920.

2. For definitions of syn and anti , see Masamune, S.; Ali, S. A.; Snitman, D. L.; Garvey,
D. S. Angew. Chem. Int. Ed. 1980, 19 , 557.

3. (a) Day, A. C. J. Am. Chem. Soc. 1975, 97 , 2431; (b) Carey, F. A.; Sundberg, R. J.,
Advanced Organic Chemistry , Part A, 3rd ed.; Plenum Press: New York, 1990; Chap.
11.

4. Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds ;
Wiley: New York, 1994; Chap. 11.

5. Lipkowitz, K. B.; Kozlowski, M. C. Synlett 2003, 1547.

6. (a) Andrews, P. R.; Haddon, R. C. Aust. J. Chem. 1979, 32 , 1921; (b) Copley, S. D.;
Knowles, J. R. J. Am. Chem. Soc. 1985, 107 , 5306.



1 [3,3]-Sigmatropic Rearrangements

GENERAL CONSIDERATIONS

The Claisen and Cope rearrangements are two of the best known sigmatropic rear-
rangements in organic chemistry1 (Scheme 1.I). As the rearrangement involves six
electrons in a six-atom system, these two reactions serve as excellent examples of
the ubiquitous existence of a six-membered transition state in organic chemistry.

In 1912, Ludwig Claisen discovered that the allyl ether 1 of ethyl acetoacetate
underwent a reaction to afford 2 upon heating in the presence of ammonium
chloride2 (Scheme 1.II). Similarly, the allyl naphthyl ether 3 transformed into
1-allyl-2-naphthol (4) in 82% yield at 210

◦
C. The reaction, now known as the

Claisen rearrangement , is general for a variety of aliphatic and aromatic ethers
and is recognized as one of the most synthetically useful reactions in organic
chemistry.3

The Claisen rearrangement is a thermally induced [3,3]-sigmatropic rearrange-
ment of allyl vinyl ethers to form γ,δ-unsaturated carbonyl compounds.4 Due
to the concerted nature and synthetic utilities of the Claisen rearrangement,
much effort has been devoted to understanding the mechanism of the reaction.5

Although the extent of delocalization of the six electrons involved in the transition
state may depend on the nature of the substrates, it is believed that the rearrange-
ment goes through a six-membered aromatic transition state6 (Scheme 1.III).

To uncover the transition-state structures for Claisen rearrangement of the
parent allyl vinyl ether,7 Vance et al. performed ab initio quantum mechanical
calculations8 (Scheme 1.IV). When the transition structures were calculated using
the 6-31G* basis set, the partially formed C1 –C6 bond length is 2.26 Å and the
partially broken C4 –O bond length is 1.92 Å in chairlike transition structure A.
These two bond lengths were confirmed by Meyer et al. in a later study employing
different-level calculations.9 Another important finding in Vance et al.’s study is
that chairlike transition structure A is more stable than boatlike structure B, by 6.6
kcal/mol. The conclusion thus supports the proposals of chairlike transition struc-
tures for the stereoselectivities observed for the Claisen rearrangement reactions
of substituted molecules.

Six-Membered Transition States in Organic Synthesis, By Jaemoon Yang
Copyright  2008 John Wiley & Sons, Inc.
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6 [3,3]-SIGMATROPIC REARRANGEMENTS
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GENERAL CONSIDERATIONS 7

One classic example that confirms the preference of Claisen rearrangement
for a chairlike transition state was provided by Hansen and others. In 1968, they
investigated the Claisen rearrangement of the crotyl propenyl ethers 5a and 5b
to examine the stereochemistry of the rearrangement in the gas phase at 160

◦
C10

(Scheme 1.V). Both the E ,E - and Z ,Z -isomers rearrange to afford a syn-isomer as
the major product. The stereochemical outcome of the reaction can be explained
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8 [3,3]-SIGMATROPIC REARRANGEMENTS

in terms of a six-membered transition state10 (Scheme 1.VI). Between the two
transition states for 5a, chairlike transition state A is favored over boatlike state
B to afford a syn-isomer as the major product. Chairlike transition state C can
explain the formation of the syn-isomer that is enantiomeric to 6-syn . Other
indirect evidence for the existence of a chairlike transition state is the fact that the
E ,E -isomer 5a reacts nine times faster than the Z ,Z -isomer 5b. This difference
in the reaction rate can be understood by examining transition states A and C:
Transition state C for 5b is of higher energy than transition state A for 5a, due
presumably to the 1,3-diaxial interactions arising from the axial methyl groups
in transition state C.
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Although a chairlike transition state is favored for the Claisen rearrangement
reactions of acyclic substrates, this is not always the case with cyclic systems.
For example, Bartlett and Ireland independently studied the rearrangement reac-
tions of cyclohexenyl silylketeneacetals and found that there was competition
between the chairlike and boatlike transition states11 (Scheme 1.VII). Clearly,
the E -isomer 7E gives 8a via a chairlike transition state, whereas the Z -isomer
7Z affords the same product (8a) via a boatlike transition state.

To quantitatively understand the preference for the chairlike and boatlike
transition states of the Claisen rearrangement, Houk et al. carried out a compu-
tational study12 (Scheme 1.VIII). In the theoretical treatment two methyl acetals,
7Z (OMe) and 7E (OMe), were used as a model system instead of the tert-butyl-
dimethylsilyl (TBS) ketene acetal. Calculations locate four transition states for
the rearrangement of 7Z (OMe), among which boatlike transition state A is of
the lowest energy that leads to the formation of the major isomer observed
experimentally. Chairlike transition state B is disfavored, due to steric repulsion
between the axial hydrogen of the cyclohexenyl unit and the methoxy substituent
of the alkene.

For the reaction of 7E (OMe), chairlike transition state A is favored over
boatlike transition state B12 (Scheme 1.IX). These computational results provide
a solid theoretical rationalization of the original proposal by Bartlett and Ireland
that the boatlike transition state is favored for the Claisen rearrangement of 7Z ,
and the chairlike transition state is preferred for 7E .

Another important [3,3]-sigmatropic rearrangement is the Cope rearrange-
ment , a carbon analog of the Claisen rearrangement. At the eighth National
Organic Chemistry Symposium in 1939, Arthur C. Cope and Elizabeth M. Hardy
presented their exciting discovery of this new reaction in which an allyl group
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migrated in a three-carbon system13 (Scheme 1.X). The discovery of the reaction
was made possible by careful analysis of the product (10) that formed during
vacuum distillation of the diene 9.

The Cope rearrangement, which is the conversion of a 1,5-hexadiene deriva-
tive to an isomeric 1,5-hexadiene by the [3,3]-sigmatropic mechanism, has been
studied extensively.14 As is the case for the Claisen rearrangement, the Cope
rearrangement prefers to go through a six-membered chairlike transition state.
Shea et al. demonstrated elegantly the preference for the chairlike over the boat-
like transition state by carrying out Cope rearrangements of racemic (11a) and
meso (11b) naphthalenes15 (Scheme 1.XI). It was determined that the racemic
1,5-diene 11a underwent Cope rearrangement 7 million times faster than the meso
diene 11b. The energy difference between transition states A and B is calculated
to be 14.9 kcal/mol.
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