THE WORKING BACK
A Systems View

WILLIAM S. MARRAS, Ph. D.
Professor
The Ohio State University
THE WORKING BACK
WILLIAM S. MARRAS, Ph. D.

Professor

The Ohio State University
CONTENTS

ACKNOWLEDGMENTS ix

CHAPTER 1 INTRODUCTION 1

1.1 Audience for the Book 3
1.2 Apolitical Causality Assessment 4
1.3 A Systems View of Low Back Pain Causality 4
1.4 The Reality of Work 5
1.5 How Might the Different Aspects of Work Be Associated with Back Pain 6
1.6 Organization of the Book 8

CHAPTER 2 BACK PAIN MAGNITUDE AND POTENTIAL RISK FACTORS 11

2.1 What is Back Pain? 11
2.2 How Common is Back Pain? 11
2.3 Back Pain at Work 12
2.4 Epidemiology of Work Risk Factors 13
2.5 Epidemiology of Physical Risk Factors 16
2.6 Epidemiology of Individual (Personal) Risk Factors 18
2.6.1 Age 18
2.6.2 Gender 18
2.6.3 Anthropometry 19
2.6.4 Fitness/Strength 20
2.6.5 Alcohol 20
2.6.6 Smoking 21
2.6.7 Heredity/Genetics 21
2.6.8 Social Class and Psychological Factors 21
2.7 Epidemiology of Work-Related Psychosocial/Organizational Factors 22
2.8 Potential Interaction of Physical and Psychosocial Factors 23

Key Points 25

CHAPTER 3 FUNCTION, STRUCTURE, AND SUPPORT OF THE BACK 29

3.1 Body Coordinates 29
3.2 Bony Structures of the Spine 29
3.3 The Disc (and the Spinal Joint) 31
3.4 Functional Spinal Unit 31
3.5 Spine Support 32
3.6 Ligaments 32
3.7 Muscles 35
3.8 Fascia 35
3.9 Nerves 37
3.10 Blood Vessels 39
3.11 End Plates and Nutrition 40
3.12 Facets 40
3.13 The System 41

Key Points 41

CHAPTER 4 THE PROCESS OF PAIN 43

4.1 What is Pain? 43
4.2 Origins of Pain 44
4.3 Pain Transmission 44
4.4 The Pain Process 46
4.5 The Inflammatory Process (Cytokines) 48
4.6 Peripheral Nervous System Sensitization 50
4.7 Neuropathic Pain: The Cytokine Cascade and Nerve Sensitization 51
4.8 Pain Mechanisms of the Central Nervous System 51
4.9 Role of the Environment in Central Sensitization 52
4.10 Implications for Low Back Pain 53
4.11 Nerves at Risk of Sensitization 53
4.12 Tissues at Risk of Sensitization 53
4.13 Disk and Nerve Roots 54
4.14 Facet Joints 54
4.15 Muscular-Based Pain 55
4.16 Lumbar Nerve Roots 56
4.17 Relationship between Tissue Loading and Pain 56
4.18 Conclusions 56

Key Points 56

CHAPTER 5 POTENTIAL PATHWAYS TO BACK PAIN 60

5.1 Views of Back Pain Causality 60
5.2 A Unifying Model of Low Back Pain Pathways 63
5.3 The Support Structure Disruption Pathways 65
  5.3.1 Support Structure Tolerance 66
5.4 Disc Tolerance Summary 73
5.5 Pain Tolerance 74
5.6 The Muscle Function Disruption Pathway 74
5.7 The Role of Individual Differences in the Pain Pathways 79
5.8 System Feedback 81
5.9 Summary 81
Key Points 82

CHAPTER 6  THE ASSESSMENT OF BIOMECHANICAL FORCES ACTING ON THE LOW BACK 87

6.1 Biomechanical Concepts Applicable to the Back 88
  6.1.1 Load Tolerance 88
  6.1.2 Moments and Levers 89
  6.1.3 External Versus Internal Loading 90
6.2 How can we Modify Internal Spine Loads? 92
  6.2.1 Biomechanical Arrangement of the Musculoskeletal Lever System 92
  6.2.2 Length–Strength Relationship 92
  6.2.3 The Impact of Velocity on Muscle Force 93
  6.2.4 Temporal Relationships 94
6.3 Incorporating Spine Load Reductions into the Work System 95
6.4 Loading of the Lumbar Spine 95
6.5 Spine Load Assessments 96
6.6 Models of Spine Load 97
6.7 Biologically Driven Modeling of Spine Loading 100
6.8 Stability-Driven Spine Loading Models 106
  6.8.1 Predictions of Muscle (Motor) Control within Torso 108
6.9 What Drives Motor Control?
  The Mental Model 110
6.10 Summary 112
Key Points 112

CHAPTER 7  THE INFLUENCE OF PHYSICAL WORK FACTORS ON MUSCLE ACTIVITIES AND SPINE LOADS 117

7.1 Introduction 117
7.2 Industrial Quantitative Surveillance of Physical Exposure 118
7.3 Strength Capacity Assessments of Work Load 119
  7.3.1 Static Analyses of Work Load 120
7.4 Dynamic Analyses of Work Load 121
7.5 Surveillance Conclusions 127
7.6 Spine Loading and Task Performance 127
7.7 Spine Loading and Primary Physical Workplace Factors 128
  7.7.1 Moment Exposure 128
7.8 Role of Trunk Muscle Cocontraction in Spine Loading 129
7.9 Trunk Motion 130
7.10 Nonsagittal Plane Loading 133
  7.10.1 Lateral Motion 134
  7.10.2 Twisting Motion 136
  7.10.3 Task Asymmetry 138
  7.10.4 Lift Height 139
  7.10.5 One-Handed Versus Two-Handed Lifting 142
7.11 Lifting Versus Lowering 146
  7.11.1 Cumulative Exposure 147
7.12 Duration of Exposure to Lifting Tasks 148
7.13 Worker Experience, Task Frequency, and Moment Exposure 150
7.14 Spine Loading Associated with Modification of Physical Workplace Factors 154
  7.14.1 Handles 154
7.15 Lifting While Supporting the Body 156
7.16 Team Lifting 158
7.17 Pushing and Pulling 160
7.18 Seated and Constrained Work Postures 164
7.19 Physical Work Factor Summary 166
7.20 Summary 169
Key Points 170

CHAPTER 8  PSYCHOSOCIAL AND ORGANIZATIONAL FACTOR INFLUENCE ON SPINE LOADING 174

8.1 Introduction 174
8.2 Psychosocial and Organizational Interactions 175
8.3 Biomechanical Responses to Psychosocial Environment 176
8.4 Biomechanical Responses to Mental Stress at Work 178
8.5 Expectation 182
8.6 Conclusions 183
Key Points 183
### CHAPTER 9  INDIVIDUAL FACTORS ROLE IN SPINE LOADING  
187

9.1 Introduction 187  
9.2 Gender 187  
9.2.1 Personality 193  
9.3 Experience 196  
9.4 Conclusions 198  

Key Points 198

### CHAPTER 10  PHYSICAL, INDIVIDUAL, AND PSYCHOSOCIAL/ORGANIZATIONAL RISK FACTOR INTERACTIONS  
200

10.1 When Risk Factors Collide 200  
10.2 The Magnitude of Influence of the Three Risk Factor Categories 201  
10.3 Can Risk Factor Interactions be Predicted? 206  
10.4 Conclusions 207  

Key Points 208

### CHAPTER 11  ENGINEERING CONTROLS TO MEDIATE BACK PAIN AT WORK: TOOLS FOR THE ASSESSMENT OF PHYSICAL FACTOR IMPACT ON SPINE LOADS AND INTERVENTION EFFECTIVENESS  
210

11.1 Introduction 210  
11.2 Static Strength Prediction Programs 211  
11.3 Psychophysical Tolerance Limits 212  
11.4 Job Demand Index 214  
11.5 NIOSH Lifting Guide and Revised Equation 214  
11.5.1 The 1981 Lifting Guide 214  
11.5.2 The 1993 Revised Equation 216  
11.6 Video-Based Biomechanical Models 218  
11.7 Lumbar Motion Monitor Risk Assessment 219  
11.8 Lifting Threshold Limit Values (TLVs) 222  
11.9 Workplace Assessment Comparisons 226  
11.10 Conclusions 229  

Key Points 229

### CHAPTER 12  ADMINISTRATIVE CONTROLS FOR THE WORKPLACE: PSYCHOSOCIAL AND ORGANIZATIONAL INTERVENTIONS  
232

12.1 Implementing Psychosocial and Organizational Change 232  
12.2 Elements of the Process 234  

12.3 Traditional Administrative Controls 236  
12.3.1 Worker Selection 236  
12.3.2 Worker Rotation 236  
12.3.3 Training 237  
12.3.4 Stretching Programs 237  
12.3.5 Back Belts 238  
12.4 Summary 239  

Key Points 240

### CHAPTER 13  INTEGRATING RISK INTERVENTIONS INTO THE WORKPLACE  
242

13.1 Introduction 242  
13.2 Systems Intervention 242  
13.3 Examples of Intervention Effectiveness 243  
13.3.1 Patient Handling Interventions 243  
13.3.2 Types of Physical Interventions 246  
13.4 Implementing Both Physical and Psychosocial Interventions 247  
13.4.1 Distribution Center Interventions 248  
13.5 Summary 248  

Key Points 249

### CHAPTER 14  UNDERSTANDING RECURRENT LOW BACK PAIN AND IMPLICATIONS FOR RETURN TO WORK  
251

14.1 Introduction 251  
14.2 The Natural History of Low Back Pain Recovery 252  
14.3 How can One Quantify the Extent of Low Back Pain? 253  
14.3.1 Impairment Assessment 254  
14.3.2 Effort Sincerity 267  
14.4 Spine Loading of those Experiencing Low Back Pain 272  
14.6 Lifting Exposure Limits for Workers with LBP 285  
14.7 Recurrence of LBP and Work 286  
14.8 A Return-to-Work Strategy 292  
14.9 Conclusions 292  

Key Points 293

### CHAPTER 15  CONCLUSIONS  
298

15.1 Summary 301

INDEX 303
ACKNOWLEDGMENTS

THIS BOOK represents a compilation of learning and discovery about low back pain over the past quarter of a century. Much of this discovery was inspired by numerous individuals and groups both within and outside the scientific community who have helped me transition my thinking from a traditional biomechanical approach to more of a systems view of causality. I am, therefore, indebted to many who helped make this project possible. First, I must thank my family (Jillian and Alex) and my friends who inspired (and tolerated me) during the lengthy process of digesting and interpreting the volumes of information considered for this book. I would like to thank my late father, Steven W. Marras, who instilled in me the value of science and the scientific process. I am grateful to Dr. Stuart McGill, my friend, colleague, and fishing buddy for encouraging me to “tell my story.” Second, I owe a large debt of gratitude to my current and former students who actively participated in many of the studies mentioned in this book, including Drs. Steven Lavender, Carolyn Sommerich, Gary Mirka, Kevin Granata, Sue Ferguson, Sudhakar Rajulu, Fadi Fathallah, Gary Allread, Kermit Davis, J-Y Kim, Mike Jorgensen, and Sean Gallagher as well as my current colleagues and students who have continued this pursuit including Greg Knapik, Gang Yang, Riley Splittoesser, Lee Mazurek and Kim Vandlen. My colleagues within the field have also played a large part in my thinking about low back pain causality. I am grateful to - Drs. Don Chaffin, Eb Kroemer, Al King, and Tom Rockwell for helping me to shape my thinking. It is also important that I recognize members of the medical and surgical community who have helped me appreciate how biomechanical concepts could integrate with clinical issues. My thinking has been stimulated by many prominent surgeons and physicians including Drs. Alf Nachmeson, Gunnar Anderson, Tapio Videman, John Frymoyer, Purnendu Gupta, Josue Gabriel, and Ehud Mendel. Third, a project like this would not be possible without technical and administrative support. I am deeply appreciative of the efforts of Ms. Candi McCain for her coordination of the manuscript and figures and the efforts of Mr. Ben Ramsey who produced some of the artwork for this book. Finally, I must thank the Ohio State University and the Department of Integrated Systems Engineering for providing me the environment and time to work on this project.
CHAPTER 1

INTRODUCTION

This chapter begins with a discussion indicating that much is unknown about low back pain causality, especially its relationship to work. This chapter is intended to calibrate readers’ expectations so that they understand the difficulties in making definitive statements about low back pain causality due to work. Second, an argument is made for why we must view the body of knowledge as a series of puzzle pieces that must be put together to form a “picture” or system. This section indicates that this will be done in a relatively nontechnical manner and the audience for the book is identified. Third, a discussion indicates that there are several work (physical, psychosocial, and organizational) factors as well as nonwork (genetic) factors that constitute the “puzzle pieces.” Workers are exposed to these factors regularly and the key to understanding is to determine how these factors interact and lead to back pain. Fourth, a high level conceptual model is proposed that suggests how physical and nonphysical work factors might interact with personal factors to affect the forces that are experienced by the spine subsequent back pain. Finally, the organization of the book is discussed and the reader is reminded that the book will provide a framework for how one should think about low back pain causality. The objective of the book is to place the reader in a position to reason through various workplace design issues as opposed to providing a “cookbook” formula for low back pain prevention.

What causes low back pain? Does work cause low back pain or would it occur regardless of work activities? No one knows the answers to these questions beyond a shadow of a doubt. I repeat, no one knows for sure! Numerous publications have attempted to explain various causes of back pain (referred to as causal pathways) including genetics, stability, acute trauma, repetitive stress to the tissue (cumulative trauma), aging, cardiovascular problems, psychological problems, organizational and social (psychosocial) problems, among others. However, no one has been able to prove or definitively disprove any of these theories. Realistically, the causal pathways are probably more complex than any single one of these pathways suggests. In all likelihood, there are probably numerous means by which low back pain can be initiated. Furthermore, one would expect that many of these pathways develop simultaneously and perhaps even interplay with each other.

The focus of this book concerns the many factors that can contribute to low back pain. However, this book is unique because it concentrates on the factors that lead to low back pain from a multidisciplinary and interdisciplinary perspective. While thousands of books have been written about the treatment of low back pain and how to manage back pain once it occurs, this book is different in that it is concerned with the ways in which back pain can be initiated and considers the factors that are within our control to minimize the risk of an initial or recurring back problem due to work-related factors.

The Working Back: A Systems View, by Williams S. Marras
Copyright © 2008 John Wiley & Sons, Inc.
Causality of health problems, such as low back pain, in real-life situations is extremely difficult to study and prove for a variety of experimental and ethical reasons. Some suggest that causality can be proven in what are referred to as randomized controlled trials such as what is done to test the efficacy of a new drug. In a typical randomized controlled trial, a population of people with an ailment is divided into different groups. Some are randomly given the drug of interest and others are randomly given a placebo. If the improvement rate among the “drug” group is statistically better compared to that of the “placebo” group, then the drug is deemed effective.

However, causality of a back disorder is very different from treatment of a low back disorder. Causality cannot be proven in the same way as the effectiveness of a drug can be proven. The literature over the past 50 years has suggested that many factors may influence low back pain. Therefore, it is difficult to isolate the issues that increase risk. In addition, contemporary studies are indicating that many of the categories of risk factors interact strongly. Thus, it becomes even more difficult to understand how these factors react in combination with each other. Furthermore, there are several scientific, practical, and ethical problems with applying such a model to low back causality and specifically to workplace interventions in the actual workplace. For example, almost everyone works, ages, and is exposed to a variety of forces through work, sports, accidents, and so on. It, therefore, becomes nearly impossible to compare people who are exposed to these multidimensional risk factors to those who are not, as would be necessary to prove causality in a randomized controlled trial. So how does one isolate the potential effect of forces resulting from work compared to spine forces resulting from other exposures? It becomes extremely difficult and, potentially, unethical to do so.

In addition, not many employers are willing to allow their facilities to be used in long-term studies of low back pain. The priority in industry is to make money. Very few industries are amenable to exposing part of their work force to different work risk conditions to prove a scientific point. Would you allow half of your employees to be exposed to suspected risk factors while not allowing the other half? Besides, word travels quickly in work environments, and psychological effects would quickly contaminate the study.

Similar problems also exist in drug treatment studies. Since few researchers are able to accurately and quantitatively measure the extent of low back pain, how does one assure that everyone starts the study at the same state of impairment? You cannot. Instead one must recruit very large populations of patients and hope that the samples are large enough so that low back pain severity is equally likely in each group. Finally, few physicians are willing to randomize treatments among their patients. Could you imagine going to your physician to have your back pain treated and then finding out that your treatment was part of a placebo group? Recently, a study randomized surgical treatment versus conservative treatment for back pain. Those patients who agreed to the randomization of treatment were enrolled in the “randomized” study where they did not become part of an “observational” group. Different effectiveness of surgery was reported depending upon group membership (1,2). However, it was clear that those in the observational group had much more severe pain than the randomized group. This study illustrates the difficulty with randomized controlled trials.

Hence, the traditional “rules” of science are difficult to apply in this complex, multidimensional problem we call low back pain in the “real-world” environment. Since low back pain is so complex, no one study will ever prove or disprove the causal pathway. Most individual studies simply explore one or, in rare cases, the interaction between two potential causal pathways. One way to gain faith in a causal mechanism is to repeat studies several times and observe whether the studies all arrive with the same conclusions. This way of thinking (looking for many studies arriving at the same
conclusion) is called looking at the preponderance of evidence. While a preponderance of evidence assures us that a risk factor is important, this type of rationale is often unable to assess and account for the interaction of various causal factors. A major tenet of statistical reasoning states that the interaction of causal factors can be far more powerful in determining the outcome than any single causal factors. In other words, it is common for factors to combine in unique ways and dictate the effects of causal factors. Therefore, instead of looking at low back pain causality from a singular, myopic viewpoint, we will examine the potential interactions in risk factors by examining the pattern of evidence associated with work-associated low back pain. It will try and build a case for how the multidimensional components of low back pain can interact and most likely influence low back pain risk.

My experience in low back pain and work comes from 25 years of research into low back biomechanics, experience examining hundreds of jobs associated with back pain, practical experience changing the jobs, and determining what works and why it works in reducing back pain risk at work, as well as personal experience with low back pain. Thus, this book is a practical explanation of the factors that influence the low back pain experience and a discussion of what tools and ability we have to influence a certain percentage of back pain that may be due to work.

The goal of this book is to provide the reader with a functional understating of how we think back pain is influenced by various work and nonwork factors. While various assessment tools will be discussed, it should be obvious that there are no “cookbook” solutions or “magic bullets.” However, if one has a reasonable understanding of the causal pathways involved with low back pain as well as an appreciation for how these pathways can be activated by various individual and workplace exposures, then one should be armed with the knowledge to assess a given work environment and prescribe effective interventions given the situation.

1.1 AUDIENCE FOR THE BOOK

This book is intended for a diverse audience. This book is intended to interpret the science in such a way that it is understandable for people of diverse backgrounds. The key to understanding low back pain causality is to understand how the various concepts fit together and interact as opposed to understanding the sophisticated scientific techniques that form the basis of the individual studies. These scientific techniques are simply tools to mine the knowledge that is inherent to the study. Thus, instead of delving into the minute details of the various studies, an attempt will be made to show how the major contributions of various studies fit together to form a pattern or picture of how low back pain might occur.

Hence, this book is intended for a broad audience consisting of anyone interested in low back pain causality. The book should be of interest to several groups including

1. those who either design work, dictate work processes and schedules, or perform the work that might lead to low back pain;
2. those who attempt to determine how return to work will influence the risk of low back pain recurrence or exacerbation;
3. those suffering from low back pain who are interested in the mechanisms behind low back pain; and
4. researchers who are interested in a more global view of how low back pain might be associated with work.
1.2 APOLITICAL CAUSALITY ASSESSMENT

Besides being difficult to explore from a scientific inquiry perspective, the low back pain causality controversy is also clouded by political and monetary incentives. Low back pain can be very expensive and can cost companies and medical providers millions of dollars. Low back treatment is also big business with surgical supply companies charging huge amounts for equipment, implants, and treatment procedures for low back pain. Since large amounts of money are at stake, workers’ compensation insurance and legal issues can become the objective of a workplace risk assessment instead of attempts to resolve and mediate the risk of low back pain associated with a job task. In addition, once monetary incentives are in place, compensation rather than resolution of the back pain can become the objective (3,4). This makes some suspicious that those suffering from low back pain are malingering or striving for secondary (often monetary) gain. The suspicious nature of a work investigation can further escalate the level of distrust among the worker and further magnify the emotional component of the pain and serve to further enhance the pain. Hence, the low back pain business is costly for all involved.

The costly nature of the work-related low back pain environment provides an opportunity for low back pain experts to cash in on their opinions. Experts claiming that the work task was a likely cause of a low back disorder can secure a lifetime settlement for a worker. Likewise, experts who contend that there is no relationship between work and low back pain can potentially save a company millions of dollars in workers’ compensation costs. Either way, when large sums of money are involved there are always incentives for bias on the part of the experts. In addition, national politics have also been entangled in the debate. Large corporations and unions have a great deal of money at stake and both groups place political pressure on elected representatives to “spin” the science in a direction that benefits their cause. Thus, rulemaking is often influenced by politics more than scientific integrity (5).

This book will strive to set aside political and monetary incentives, cut through the literature base that is motivated by such concerns, and provide a realistic view of how the various bodies of knowledge regarding low back pain causality might fit together to form a logical explanation of how low back pain occurs under work conditions. As we will soon see, there is evidence to support the contention that there are numerous pathways to low back pain. The work task might be simply the initiating event in a long chain of events leading to low back pain and the work can either mediate or enhance the problem.

1.3 A SYSTEMS VIEW OF LOW BACK PAIN CAUSALITY

While many of the studies that form the underlying logic in this book involve complex methodologies and techniques, the basic concepts underlying the ideas are fairly straightforward. The point of the book is to show how various influences or risk factors might be considered collectively, or in combination, to influence the risk of low back pain at work. The idea here is to assess how the multiple dimensions of risk can interact and combine to set the stage for low back pain to occur. One can consider this type of thinking as a jigsaw puzzle with the different pieces of the puzzle representing the different aspects of risk. When pieces of the puzzle are viewed in their correct orientation and in perspective, the overall picture, or in this case, causality pathway becomes clearer. It is the goal of this book to show how the pieces of the puzzle or the pattern of evidence fit together so that we might better understand low back pain causality at work.
1.4 THE REALITY OF WORK

To be realistic, the pattern of evidence associated with exposure to physical work must consider not only the effects of exposure to physical work characteristics also the effects of many other factors that might exacerbate or mediate the influence of physical work characteristics. The effects of exposure to the organizational stress issues associated with work as well as the unique characteristics of the individual worker and their individual response to physical and psychological stresses should be considered. This book is about considering how these factors can interact in a systematic manner.

Individual characteristics of the worker may mediate or accentuate the intensity of the load imposed upon a tissue due to work and may also play a role in how the worker’s tissues are able to tolerate the tissue load. To make matters worse, it is possible that this relationship can change over time. Age, conditioning, genetics, lifestyle habits, psychological state, personality, and the current state of tissue degeneration can all influence the rate at which tissue is stressed and how the body tissues handle the stress. The ability of the body to induce forces upon a tissue as well as the ability of the body to withstand tissue load have all been well documented in the literature (6), but their interactive influence of loads in combination with psychological stress and individual variation in responses has not been well documented in the literature and is not well understood.

The influence of time can also profoundly affect the influence of physical loads imposed on the body. The ability of the body to withstand physical loading can change dramatically over time. Cumulative loading and adaptation to loading can alter our interpretation of risk depending upon the magnitude of the accumulated load, the temporal nature of the cumulative exposure, and the ability of the body to compensate for the tissue insult.

Factors such as physical factors, psychosocial factors, and organizational factors can all play a role in defining risk. Traditionally, it has been the physical workplace factors that have been explored and associated with increased tissue loading, particularly when the biomechanical characteristics of the work were properly and specifically addressed (6). However, there continues to be controversy as to the contributions of psychosocial factors and organizational factors. Some have argued that increases in low back pain reporting can be explained through work dissatisfaction, organizational factors, or the availability of compensation (7). However, most studies have not considered the explanatory power of these factors relative to that of the load–tolerance relationship. Some of the classic psychosocial studies, when re-examined, have been found to explain a very small percentage of variability in low back pain reporting (8). Analyses have shown that when biomechanical evaluations are considered collectively along with psychosocial evaluations, the explanatory power associated with the psychosocial studies is greatly reduced (9). More recent findings have also shown that psychosocial factors have an interactive effect with biomechanical loading (10) and that individual factors, such as personality, can explain much of the variation in the magnitude of the loading forces experienced across individuals (11).

Collectively, this pattern of evidence suggests that no single factor fully explains the presence or absence of cumulative trauma and its association with low back pain. Furthermore, it is also clear that researchers often find only what they are looking for. If one does not bother to properly measure the influence of a potential risk factor, they certainly will not find a significant association with that factor, and they are therefore, not justified in suggesting there is no causality associated with a factor they did not properly explore.

Traditionally, the literature has taken the approach of examining single-risk factors in isolation, in trying to explain back pain. Large bodies of literature exist that argue for the
influence of each type of risk factor independently. However, if we consider the components of the system, it is likely that physical factors, individual characteristics, organizational factors, and psychosocial factors all influence the load–tolerance relationship that is at the core of cumulative trauma. The evidence suggests that cumulative exposure to loads when combined with other risk factors can contribute to low back disorders above and beyond the influence of aging or genetics alone. However, the magnitude of the effect of cumulative trauma above and beyond aging and genetics is not well understood. In addition, it is not known how cumulative trauma responds in conjunction with other risk factors.

The pattern of evidence suggests that we must consider how the system behaves in order to appreciate the influence of any one or any combination of risk factors in the etiology of low back pain. Instead of continuing to explore low back pain causality within the confines of specific disciplines (e.g., biomechanics, psychosocial, physiology, genetics, etc.), we must more fully explore the interactions between these disciplines as proposed in Fig. 1.1. The pattern of evidence suggests that the explanatory power inherent to the interaction between these disciplines may very well overpower the influence of any main effects. Thus, in order to understand the amount of variability that is accounted for by any one of the risk factors we must also understand the nature of the interactions between the risk factors. The research community has already begun to quantify the degree of interaction between many of these risk factors, yet much more work is required before we fully understand these interactions. These interactions represent the current research “gaps” as well as opportunities for future research direction.

When considering the pattern of evidence for low back pain, if all the components of plausibility are considered in perspective, a picture emerges that logically supports the relative influence of various risk factors associated with the etiology of low back disorder.

### 1.5 HOW MIGHT THE DIFFERENT ASPECTS OF WORK BE ASSOCIATED WITH BACK PAIN

How could a conceptual model be developed that can integrate the different bodies of literature associated with low back pain occurrences? This issue was debated by the National Research Council and the Institute of Medicine within the National Academy of Sciences in two studies exploring the work relatedness of musculoskeletal disorders (6,12). In these studies, the literature was thoroughly evaluated and explored and a unifying model was developed based upon the interaction of potential causal factors suggested by Fig. 1.1. This model is further expanded in Fig. 1.2. This model suggests a pain pathway that is shown in the right hand box labeled “PERSON” in Fig. 1.2. The PERSON box indicates the possible

![Diagram of risk factors]

**Figure 1.1** Interaction between various dimensions of risk factors contributing to cumulative trauma and low back pain.
work-related pathways and processes that could occur within the person including the biomechanical load–tolerance relationship and the factors that may mediate this relationship (e.g., individual factors and adaptation). This pathway suggests that at the heart of this system, work-related low back pain must be initiated by a biomechanical response (forces) to one of many (physical, psychological, psychosocial, etc.) conditions found in the workplace that is capable of exceeding a tissue tolerance. The biomechanical load “box” indicates that physical force and motion factors must be of sufficient magnitude to cause the body to develop sufficient internal (to the body) forces upon the spinal tissues. These can often be magnified by muscle coactivation, hence, biomechanical analyses must be sensitive enough to consider this means of loading in order to accurately consider work-related spinal tissue loading.

Forces or loads imposed on the back are compared to internal (tissue) tolerances within the back. Tolerances can take many forms in this model including tolerances relative to the structural strength of the tissues including endplate strength, disc fiber strength, ligament strength, muscle tolerance, and so on that result in tissue strain. Another form of tolerance that must be considered is biochemical tolerance. Structural tolerances are most likely preceded by biochemical reactions. For example, cytokines are strong initiators of inflammatory responses that can be upregulated by repetitive insult to a tissue. In addition, as we will see, these responses can be mediated or exacerbated by physiologic adaptation, former experiences that alter muscle recruitment, and cognitive factors. Hence, “internal tolerance” in this model can include many forms of tolerance.

The next block in this sequence suggests that pain can result from these tolerances being exceeded. The inflammatory responses, tissue damage, and so on can lead to pain-sensitive tissues (nociceptors) being activated, which initiates the sequence of pain. It should also be noted that arrows flow in both directions in these last two boxes. This indicates that the individual tolerances and pain experiences can be either exacerbated once exposed or may help adaptation. In either case, significant feedback loops can complicate the sequence of events.

The model in Fig. 1.2 shows that the pain pathway just described can also be influenced by the specific characteristics and conditions of the individual. These conditions and characteristics include genetic factors, personality, physical capacity and conditioning,
psychological state, biochemical response, cardiovascular response, and so on. There is strong evidence that individual factors can mediate the response of each of the components in this pain sequence.

The dotted box in the left-hand portion of the figure indicates the potential influences of the workplace. These include physical factors, organizational factors, and social influences. Note that each of these factors has the potential to influence each component of the low back pain pathway sequence and can interact with individual factors.

This model is the governing concept behind this book’s logic. The chapters that follow review the pattern of evidence that supports this means of considering low back pain causality and work. While this model suggests many complex interactions through the various “arrows,” one should not be overly concerned if this system of interactions is not clear at this stage. This book will expand upon many of these interactions and demonstrate how many of these factors can influence the system of factors that can influence low back pain perception. The important thing to realize at this stage is that there are a variety of work and nonwork factors that can play a role via this web of influences.

### 1.6 ORGANIZATION OF THE BOOK

The goal of this book is to explain the potential avenues of low back pain and show how they could be related to work exposure. Our knowledge of low back pain has advanced rapidly over the past several decades. It is unlikely that the major cause of most modern work-related low back pain is simply lifting a load that is too heavy, which causes a structure to break. While it is possible, for the majority of workers, this is probably not the mechanism of pain for most work-related low back pain. The literature now suggests that there are numerous, more complex, potential pathways of pain that may be associated with work tasks.

In order to effectively assess and design workplaces that minimize low back pain risk, one must be armed with an underpinning of causal mechanism logic so that one could understand the initiators of sequences of events that can lead to persistent low back pain. Therefore, instead of simply listing the numerous pathways to low back pain, it is important to develop an appreciation of how these pathways might interact with the physical and social work environments as well as with the individual attributes of the worker. Hence, we are talking about a *system*. It would be easy to simply list a set of rules of dos and don’ts for work. However, invariably, one will quickly run into a situation that has not been described in the “list” and in reality the work situation would probably contain several different trade-offs between risk factors. This situation would lead to a conclusion that one should automate the process. Automation is costly and is often not effective from a production efficiency standpoint. However, if one has an understanding of the spectrum of underlying mechanisms involved in low back pain, it is more likely that one can reason through the work situation and devise a feasible intervention to minimize the pain. Therefore, this book will attempt to lay the groundwork for a systems approach to understanding the causes and pathways of low back pain.

Given these goals, this book is organized in a manner that will provide the basis of understanding in the spectrum of topics that are important to understanding work-related low back pain. While each chapter is designed to be relatively independent so that it can be read by itself, maximum understanding will be gained if one considers each chapter in the context of the entire system and, thus, it is recommended that one read the entire book and build the knowledge base as one progresses from chapter to chapter.

Chapter 2 reviews the magnitude of the low back pain problem and explores factors that may contribute to low back pain from an observational (as opposed to causal) standpoint. The
chapter reviews statistics (in terms of magnitude, trends, and costs) indicating the extent to which back pain impacts society. The chapter also reviews the epidemiologic (surveillance) findings to suggest the degree to which physical, psychosocial, and individual risk factors have been associated with low back pain. Epidemiology is the science of observing trends in the workplace. It has the advantage of going beyond theoretical relationships and can show that if certain conditions are present, the probability for low back pain increases. Hence, strong relationships can be found. The disadvantage of epidemiology is that it is often difficult to isolate a specific risk factor of interest and it is often difficult to study interactions between potential risk factors. In addition, the measurement tools used in epidemiologic research are often fairly imprecise. Nonetheless, epidemiology can be a useful tool for identifying historic trends in the workplace. However, as with all scientific approaches, one must consider the limitations of the tools and view the information in perspective.

Chapter 3 will present the basics of anatomy of the low back in a functional manner. Anatomy is presented along with a description of why the anatomy is important to the functioning of the back and spine. An appreciation for anatomy is essential for the understanding of which structures could be involved in the various pathways of injury. Along the same lines, Chapter 4 reviews the mechanisms of pain transmission in the human body. The goal is to help the reader understand that pain perception is influenced not only by physical loading but also by prior (cognitive) experiences. This chapter will show how pain occurs and the roles that physical load and memory play in the pain experience. The influence of biomechanical loads imposed upon tissues and biochemical reactions is discussed in terms of their ability to initiate pain perception.

Based upon the previous three chapters, Chapter 5 articulates the various pain pathways that are possible as a function of work exposure. The chapter begins by discussing how our understanding about back pain perception has changed over the years and discusses why traditional views (suggesting that tissue damage must be present) may not be realistic. This chapter outlines the various sequences of events that we believe occur within the human during the back pain experience and, where available, thresholds for tissue damage and pain initiation are described. The chapter describes how muscle tensions within the low back can activate the various pain pathways. This chapter also establishes that understanding how work and nonwork factors influence muscle tensions is the key to understanding pain pathway initiation.

Chapter 6 provides an overview of occupational biomechanics. Biomechanical analyses are often used to assess workplaces in order to assess risk of low back pain. However, biomechanical assessments have evolved rapidly over the past few decades. This chapter reviews the progression of commonly used biomechanical assessments and concepts and will discuss state-of-the art techniques that have the ability to precisely evaluate tissue stress associated with various work-related exposures.

The results of biomechanical assessments performed on potential physical work factors will be reviewed in Chapter 7. This chapter will show how physical work factors affect both spine forces and muscle tension.

Psychosocial and organizational influences on the biomechanics of spine loading and muscle recruitment patterns are discussed in Chapter 8. Several recent studies have shown that these cognitive environment factors affect spine loading and muscle activities in much the same way as physical load exposure.

Chapter 9 reports on the biomechanical behavior of the spine that is associated with individual factors such as gender and personality. Since the systems approach must consider biomechanical effects of the unique characteristics the worker brings to the job, this chapter evaluates the extent to which tissue loads are influenced by these unique individual characteristics.
The next chapter, Chapter 10, reviews the quantitative biomechanical literature that has been able to investigate the interaction between the workplace factors, psychosocial/organizational factors, and individual factors. This chapter emphasizes that the low back pain is the result of a system of interactions that must be considered if back pain is to be controlled in the workplace.

Interventions intended to control low back pain are discussed in Chapters 11 and 12. We have no ability to control individual factors at work, so the focus in these two chapters is on what we can control from a work perspective. Chapter 11 discusses ways that one can control and intervene in the physical risk factors associated with work, whereas Chapter 12 discusses the options for controlling the psychosocial and organizational environment at work.

Chapter 13 will show case studies of how physical and psychosocial/organizational aspects the workplace have been manipulated to minimize the occurrence of low back pain and lead to optimal working health.

A major challenge to the working environment involves assimilating workers back into the workplace once low back pain has occurred. Chapter 14 will review some of the biomechanically relevant literature associated with the previously described pain pathways and secondary (recurring) low back pain. Finally, Chapter 15 consolidates the information from the previous chapters into system logic to stimulate the reader to consider whatever new (yet unexplored) factors might also influence this systems approach to understanding low back pain.

REFERENCES

CHAPTER 2

BACK PAIN MAGNITUDE AND POTENTIAL RISK FACTORS

This chapter reviews work-related low back pain statistics from an observational (as opposed to causal) standpoint. It documents the frequency of back pain occurrences in society and reviews the literature indicating associations with the presence of potential work factors. Thus, there are two main thrusts to the chapter. The first thrust reviews statistics (in terms of magnitude, trends, and costs) indicating the extent to which back pain impacts society. The second thrust reviews the epidemiologic (surveillance) findings to suggest the degree to which physical, psychosocial, and individual risk factors have been associated with low back pain.

2.1 WHAT IS BACK PAIN?

According to the American Society of Orthopaedic Surgeons (1), back problems can take many forms, including degenerative and rheumatic disorders, disk problems, and injuries such as sprains, strains, and fractures. Many of these disorders can contribute to back pain. Hence, back pain definitions cover a broad range of pain-generating sources that can encompass everything from a mild muscle strain to serious disc problems. This broad definition of low back pain also makes it difficult to study and interpret.

2.2 HOW COMMON IS BACK PAIN?

Back pain is extremely common. Some believe that because it is so common, we should be accepting low back pain as just part of life. Others believe that because of the back’s unique structure, where forces are concentrated in a small area, the spine is more vulnerable to pain and, thus, one could design activities to minimize the magnitude of the load imposed on the spine and the resultant risk of low back pain. Much of what follows in the forthcoming chapters will address these issues.

The following are some facts and figures indicating how common back pain has become. These details are presented to help place the magnitude of the low back pain problem in perspective.

- Over the course of a lifetime, up to 80% of Americans will suffer from at least one episode of back pain (2).
- Low back pain represents the second most common symptom-related reason for visits to a physician (3).
• Fifteen to twenty percent of Americans will report back pain yearly (2).
• In 1998, total health care expenditures incurred by individuals with back pain in the United States reached $90.7 billion (2).
• Those with back pain incurred health care expenditures about 60% higher than individuals without back pain (2).
• Back pain results in a loss of over 100 million workdays per year (4).
• Twenty-one percent of workers with back reports were away from work for 3–5 days, 14.3% reporting back problems lost 6–10 days of work, and 29.6% of workers reporting back pain missed 3 or more weeks away from work (5).
• In 2002, there were over 345,000 back injuries requiring time away from work (5).
• Between 20% and 35% of Americans report experiencing severe low back pain in the past 3 months. Figure 2.1 shows that low back pain reports are extremely common regardless of age, gender, race, or income level (6).
• Nearly 21 million physician visits for back pain occurred in 2003. Table 2.1 shows this breakdown according to gender and office visit category or code (1).
• Work-related low back pain represents about 20% of the Workers’ Compensation Claims yet nearly 40% of the costs (7). Thus, low back problems are disproportionately expensive.

2.3 BACK PAIN AT WORK

It should be stated up front that since most people work, workplace risk factors and individual risk factors are difficult to separate (8). However, back pain patterns can be identified through surveys of working populations. In the United States back disorders are associated with more days away from work than lost workdays attributable to any other part of the body (9). Recent studies of 17,000 men and women of a working age population in Sweden (10) indicated that 5% of workers sought care for a new (no recurring) low back pain episode over a 3-year period. They also found that many of these cases eventually became chronic.

Evaluation of data from the National Health Injury Survey (NHIS), a large sample of U.S. households, found that back pain accounts for about one quarter of the workers’ compensation claims in the United States (11). Two thirds of the low back pain cases were attributed to occupational activities. Prevalence (the percentage of a population affected with a particular condition at a given time) of lost workdays due to back pain were found to be

Figure 2.1  Age and gender of people reporting severe low back pain in past three months, 2003. (From reference 6).
4.6% (12). Certain occupations were also found to be significantly linked to greater rates of low back pain reporting. Risk appeared to be highest for construction laborers (prevalence 22.6%) and nursing aides (19.8%) (11). Figure 2.2 summarizes the findings of a National Institute for Occupational Safety and Health (NIOSH) analysis of work-related low back disorders (9). This figure indicates that the proportion of people experiencing low back pain at any one time (prevalence) was greatest in the service industry followed by the manufacturing sector. These account for nearly half of all occupationally related low back disorders. Further analysis also indicates that handling of containers as well as worker motions and positions during work were the conditions most often associated with low back reports in U.S. industry. Hence, these cross-sectional data strongly suggest that occupational factors appear to be related to risk of low back disorders.

2.4 EPIDEMIOLOGY OF WORK RISK FACTORS

Epidemiology is the science of exploring associations between risk factors and medical conditions based on observations within the population of interest. A review of previous occupationally related epidemiologic studies has demonstrated that the findings of epidemiologic studies vary greatly depending on the dependent (observed) measure of interest (e.g., discomfort versus incidence versus lost time, etc.). For example, Figure 2.3 indicates how the percentage of positive associations between risk factor categories and low back pain changes depending on whether low back pain is defined as the presence of symptoms, a self proclaimed injury, a reported incident, an incident involving lost time or an incident

### TABLE 2.1 Number of Physician Visits for Back and Low Back Pain in 2003 (From Reference 1)

<table>
<thead>
<tr>
<th>Reason for visit (reason for visit code)</th>
<th>Total no. of patients</th>
<th>No. of female patients</th>
<th>No. of male patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back symptoms (1905.0–1905.6)</td>
<td>20,845,000</td>
<td>12,425,000</td>
<td>8,420,000</td>
</tr>
<tr>
<td>Back pain (subset symptoms; 1905.1)</td>
<td>19,697,000</td>
<td>11,947,000</td>
<td>7,750,000</td>
</tr>
<tr>
<td>Low back symptoms (1910.0–1910.6)</td>
<td>10,665,000</td>
<td>6,448,000</td>
<td>4,217,000</td>
</tr>
<tr>
<td>Low back pain (subset symptoms; 1910.1)</td>
<td>10,429,000</td>
<td>6,304,000</td>
<td>4,124,000</td>
</tr>
</tbody>
</table>

Source: National Ambulatory Medical Care Survey (2003).
involving restricted time (13). Thus, depending on which measure one is studying, a very different profile of low back pain can be observed.

A potential problem with some epidemiologic studies is that the observation point of the study (discomfort versus incident versus lost time, etc.) all occur at very different times during the progression of a low back report and are influenced by the degree to which the low back pain interferes with the ability of the person to perform their job function (disability). Figure 2.4 shows how the typical sequence of low back pain events occur over time. As can be seen the different reporting measures (e.g., discomforts versus lost or restricted time) can occur at very different points in time. Differences in job demands associated with various professions can easily confound this picture. For example, a college professor may have the same level of low back impairment as a laborer; however, the professor may not perform any tasks that would exacerbate the discomfort and, thus, would never report the pain. Since the pain never interferes with the job function, this back pain would go unreported. However, a warehouse worker might be employed in a job that results in repeated exacerbation of the symptoms due to the nature of the work resulting in increased levels of pain. It would be far more likely for the low back incident to be reported as an incident or disability in this case or the worker may simply quit the job due to pain and never report it.

In most epidemiologic study designs, it is difficult to investigate the interaction among potential risk factors. This is particularly true given the variable exposures and work rotation schedules present in the modern workplace. Hence, although epidemiologic studies can provide valuable insight into which singular risk factors might be associated with risk of low back pain at work, it is difficult for these study designs to account for the more in depth interactions between classes of risk factors that might be responsible for the low back pain report. The information derived from these studies very often does not address the

Figure 2.3 Percentage of positive findings and trend lines on all epidemiologic studies for each surveillance measure and risk factor combination. Note the generally increasing percentage of positive findings as the surveillance measure moves from discomfort/symptoms to incidence. (From reference 13).
multidimensional nature of the risk and, thus, interventions based on these single risk factor studies may be insufficient to effectively control a complex, multidimensional problem such as low back pain at the worksite.

Control of low back disorder risk in the workplace requires knowledge beyond simple identification and elimination of risk factors. It requires a much deeper understanding of how risk of low back pain occurs in the work setting amongst all of the various physical and nonphysical factors actively interacting. Control requires an understanding of “how much exposure to the various risk factors is too much exposure.” In addition, one needs an understanding of how the risky exposure levels would change when risk factors are present in combination. Practically, our knowledge can only develop to this level of sophistication when we are able to quantify the means by which risk is increased. Our understanding of risk also needs to progress to the point where we can begin to understand how and why some people are at greater risk of developing low back pain when exposed to the same level of work risk as others. In other words, we need to begin to develop a better understanding so that the variability between individuals can be better understood. Only then can we answer the question: how much exposure to risk is too much exposure to risk for a given individual?

Occupational risk control requires tools that have high levels of both sensitivity and specificity. Sensitivity is a measure of how well the risk factor indeed identifies the risk for the condition of interest (low back pain). Specificity, however, is a measure of how well the measure can reject a situation where risk is not present. In other words, high levels of sensitivity would not miss many situations where risk of low back pain was present, and high levels of specificity would not sound false alarms when the risk of low back pain was not present. Measures of risk that are used to incorporate interventions for the control of occupational low back pain that are not sensitive will not be able to identify those work situations that would increase the risk to the worker. On the contrary, measures that are not specific might suggest interventions that needlessly indicate that work situations need to be changed. Given today’s highly competitive industrial society, it is important that interventions are applied only when needed and are likely to be effective. Most industries can ill
afford to incorporate control measures that do not have both high sensitivity and specificity. Such tools would waste valuable resources without justification. Recent studies have shown that our current low back pain risk control tools need to be better developed and validated so that risk can be optimally minimized (14,15).

2.5 EPIDEMIOLOGY OF PHYSICAL RISK FACTORS

Several epidemiologic reviews have identified specific individual risk factors that increase the risk of low back pain in the workplace. The NIOSH performed a critical review of the epidemiologic evidence associated with musculoskeletal disorders (16) (Table 2.2). Five categories of risk factors were evaluated. The critique concluded that strong evidence existed for an association between low back disorders and lifting/forceful movements and low back disorders and whole body vibration. Significant evidence was found for the associations between heavy physical work and awkward postures and back problems. The review concluded that evidence was insufficient to make any conclusions between static work postures and low back disorder risk. In a methodologically rigorous review, one team of researchers (17) were, in general, able to support these conclusions. They found that manual materials handling, bending and twisting, and whole-body vibration were risk factors for back pain.

While these studies have verified the existence of physical risk factors, they have been of limited usefulness in identifying the degree of exposure to a risk factor that becomes problematic (dose). In addition, we would expect that the dose would vary on the basis of different interactions with other factors.

Several studies have been carried out in search of a dose–response relationship among work risk factors and low back pain. Two studies (19,20) suggest that cumulative loading of the spine might be associated with risk of low back disorder at work. One study (21) suggested that the relationship might not be as straightforward as a linear relationship would suggest. When examining the relationship between back pain, history of physical loading, and occupation in cadaveric specimens, the study concluded that the risk relationship between low back disorder risk and loading was “J-shaped” with sedentary jobs being associated with moderate levels of risk, heavy work being associated with the greatest degree of risk, and moderate exposure to loading being associated with the lowest level of risk (Fig. 2.5). Another study (22) has recently suggested that the combination of occupational lifting, trunk flexion, and duration of the activities significantly increased risk. This study supports the idea that risk is interactive and multidimensional in nature. Another review (23) suggests little epidemiologic support for the notion that sitting at work was associated with low back pain. These findings suggest that risk is certainly not linear and is indeed complex in

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Strong evidence (+++</th>
<th>Evidence (+)</th>
<th>Insufficient evidence (+/0)</th>
<th>Evidence of no effect (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifting/Forceful movement</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awkward posture</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy physical work</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Whole body vibration</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Static work posture</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
nature. Hence, we must begin to consider the collective and interactive exposure to risk factors if low back pain is to be controlled at the worksite.

This review of the epidemiologic evidence associated with physical work factors should serve to reinforce the view of low back pain risk as a pattern of evidence or jigsaw puzzle as described in the previous chapter. If one looks at the big picture, we can see that most of the epidemiologic studies available today offer only a partial view of the risk picture since the interactions between risk factors is not well documented by these studies.

Recent rigorous epidemiologic reviews of the literature performed by the National Research Council (8) have also concluded that there is a clear relationship between back disorders and physical load imposed by manual material handling, frequent bending and twisting, physically heavy work, and whole-body vibration. The risk attributable to these risk factors is summarized in Table 2.3. This analysis indicates that the vast majority of high-quality epidemiologic studies have associated low back pain with these risk factors and up to two thirds of risk can be attributed to physical activities. Hence, it is clear that at least a portion of the risk of low back pain can be due to the nature of the work to which workers are exposed. As a result of these epidemiologic analyses, it was concluded that preventive measures may reduce the exposure to risk factors and reduce the occurrence of back problems.

The significance of considering the interaction of physical factors with other factors has also come to the attention of epidemiologic studies. The multidimensional nature of risk can be reinforced by considering the effective preventive strategies for secondary prevention of low back disorder (preventing recurrent back problems). Studies have begun to explore the interaction between low back pain, physical exposure factors, and psychosocial factors. Several studies (25–27) have noted that much of low back pain treatment for recurrence is multidimensional. Only recently have epidemiologic studies exploring the role of variables in primary prevention of work-related low back pain suggested that multiple dimensions, such as physical stressors and psychosocial factors, play a role in low back pain risk (28). A recent study has also demonstrated that the interaction of low social support at the workplace and bending at work were strongly associated with extended work absence due to low back pain (29).
2.6 EPIDEMIOLOGY OF INDIVIDUAL (PERSONAL) RISK FACTORS

One can also learn much about the factors associated with increased risk of low back pain by examining the epidemiologic literature associated with individual or personal risk factors. Several trends are apparent from this body of work. First, personal factors play a role in risk of experiencing a low back pain. It is important to separate personal factors from occupational factors so that one can distinguish risk associated with work from that associated with factors that are inexplicably bound to the individual. A review of 57 original industrial-based surveillance studies (30) indicated that personal factors were the most frequently investigated risk factor for low back pain. Of these studies, previous back injury history and income were most often associated with risk (Table 2.4). Low back disorders typically begins at a relatively young age with the highest frequency of symptoms occurring between the ages of 35 and 55, while lost workdays typically increase with increasing age (31). Gender also appears to be an interactive factor in determining who experiences low back disorders. The risk for men peaks at about 40 years of age, whereas the greatest prevalence and incidence for women occurs between the ages of 50 and 60.

2.6.1 Age

In general, the literature indicates that back pain begins early in life with symptoms occurring between the ages of 35–55 (32). Recent studies have shown a link between age and spinal instability (33) indicating that there are associations between muscle control and risk that change over time. Figure 2.6 indicates how the reporting of low back pain changes as a function of age for both males and females.

2.6.2 Gender

The literature regarding the influence of gender on low back pain reveals a mixed pattern. In general, females report more back pain than males (34) (Fig. 2.1). However, when occupation is considered, a review of the literature has concluded that there was strong evidence that males are at a higher risk of low back pain than females (35). One study concluded that females were at a higher risk of back pain in white collar work as well as blue...