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Preface 

Nonlinear partial differential equations (PDEs) is a vast area. and practition- 
ers include applied mathematicians. analysts. and others in the pure and ap- 
plied sciences. This introductory text on nonlinear partial differential equations 
evolved from a graduate course I have taught for many years at the University 
of Nebraska at  Lincoln. It emerged as a pedagogical effort to  introduce. at a 
fairly elementary level. nonlinear PDEs in a format and style that is accessible 
to students with diverse backgrounds and interests. The audience has been a 
mixture of graduate students from mathematics. physics, and engineering. The 
prerequisites include an elementary course in PDEs emphasizing Fourier series 
and separation of variables. and an elementary course in ordinary differential 
equations. 

There is enough independence among the chapters to  allow the instructor 
considerable flexibility in choosing topics for a course. The text may be used 
for a second course in partial differential equations. a first course in nonlinear 
PDEs, a course in PDEs in the biological sciences. or an advanced course in 
applied mathematics or mathematical modeling. The range of applications in- 
clude biology. chemistry. gas dynamics, porous media. combustion. traffic flow. 
water waves. plug flow reactors. heat transfer. and other topics of interest in 
applied mathematics. 

There are three major changes from the first edition, which appeared in 
1993. Because the original chapter on chemically reacting fluids was highly 
specialized for an introductory text. it has been removed from the new edi- 
tion. Additionally. because of the surge of interest in mathematical biology. 
considerable material on that topic has been added; this includes linear and 
nonlinear age structure. spatial effects. and pattern formation. Finally. the text 
has been reorganized with the chapters on hyperbolic equations separated from 
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the chapters on diffusion processes. rat,her than int,ermixirig them. 
The references have been updated and. as in the previous edition. are se- 

lected to suit, t,he needs of an introductory text. point'ing the reader to parallel 
treatments and resources for further study. Finally, many new exercises have 
been added. The exercises are intermediate-level and are designed to build t,he 
students' problem solving techniques beyond what is experienced in a beginning 
course. 

Chapter 1 develops a perspective on how to understand problems involving 
PDEs and horn the subject, interrelakes wit'li physical phenomena. The subject 
is developed from the basic conservation law. which, when appended to consti- 
tutive relations, gives rise to the fundamental models of diffusion. advection, 
and reaction. There is emphasis on understanding that nonlinear hyperbolic 
and parabolic PDEs describe evolutionary processes: a solution is a signal that 
is propagated int,o a spacetime domain from the boundaries of that domain. 
Also. there is focus on the structure of the various equations arid what the terms 
describe physically. Chapters 2-3 deal with wave propagation and hyperbolic 
problems. In Chapter 2 we assume that the equations have smooth solutions 
and we develop algoritlinis to solve the equat,ions analytically. In Chapter 3 we 
study discontinuous solutions and shock format,ion. and we introduce the con- 
cept of a weak solution. In keeping with our strategy of thinking about initial 
waveforms evolving in time. we focus on the initial 1-alue problem rather than 
the general Cauchy problem. The idea of characteristics is central and forms 
the thread that, weaves through t,hese two chapters. Next. Chapter 4 introduces 
the shallow-water equations as the prototype of a hyperbolic system. arid those 
equations are taken t'o illustrate basic concepts associat,ed wit,h hyperbolic sys- 
t e m :  characteristics. Riemann's method. the hodograph transformation. and 
asyrnpt'otic behavior. Also. the general classification of systems of first-order 
PDEs is developed. and weakly nonlinear methods of analysis are described: 
the latter are illustrated by a derivation of Burgers' equation. 

Chapters 1-4 can form t,he basis of a one-semester course focusing on wave 
propagation. characteristics, and hyperbolic equations. 

Chapter 5 introduces diffusion processes. After establishing a probabilist,ic 
basis for diffusion, we examine methods that are useful in studying the solution 
structure of diffusion problems. including phase plane analysis. similarity meth- 
ods. and asymptotic expansions. The prototype equations for reaction-diffusion 
and advection-diffusion. Fisher's equation and Burgers' equation. respectively. 
are studied in detail with emphasis 011 traveling wave solutions. the st,abilit,y 
of those solutions. arid the asymptotic behavior of solutions. The Appendix 
to  Chapt,er 5 reviews phase plane analysis. In Chapter 6 we discuss systems 
of reaction-diffusion equations, emphasizing applications and model building, 
especially in t,he biological sciences. \Ye expend some effort addressing theoret- 
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ical concepts such as existence, uniqueness, comparison and maximum princi- 
ples. energy estimates, blowup. and invariant sets: a key application includes 
pattern forniation. Finally, elliptic equations are introduced in Chapter  7 as a 
asymptotic limit of reaction-diffusion equations: nonlinear eigenvalue problems, 
stability. and bifurcation phenomena forin the core of this chapter. 

Chapter 1, along with Chapters 5-8. can form the basis of a one-semester 
course in diffusion and reaction-diffusion processes. with emphasis on PDEs in 
mathematical biology. 

I want to acknowledge many users of the first edition who suggested im- 
pro.\ ements, corrections. and new topics. Their excitement for a second edition. 
along with the unwavering encouragement of my editor Susanne Steitz-Filler at 
JYiley. provided the stimulus to actually complete it. M y  own interest in nonlin- 
ear PDEs was spawned over many years by collaboration with those with whom 
I have had the privilege of working: Kane Yee at Kansas State. John Bdzil at 
Los Alamos. *4sh Kapila at Rensselaer Polytechnic Institute. and several of my 
colleagues at Nebraska (Professors Steve Cohn. Steve Dunbar. Tony Joern in 
biology. Glenn Ledder. Tom Shores. Vital! Zlotnik in geology, and my former 
student Bill \Volesensky. now at the College of Saint Rlary). Readers of this 
text \\-ill see the influence of the classic books of G. B. IVhitham (Lznear  and 
Nonlznear Waues) and J. Smoller (Shock  W a v e s  and  Reactaon-Dzffuszon Equa- 
tzons). R. Courant and K. 0. Friedrichs (Supersonzc Flow and  Shock W a v e s ) .  
and the text on mathematical biology by J. D. Murray (Mathematzeal  Bzology). 
Finally, I express niy gratitude to the National Science Foundation and to the 
Department of Energy for supporting my research efforts over the last several 
years 

J .  David Logan 
Lincoln. Kebraska 
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Introduction to Partial Differential 
Equations 

Partial differential equations (PDEs) is one of the basic areas of applied analy- 
sis, and it is difficult to imagine any area of applications where its impact is not 
felt. In recent decades there has been tremendous emphasis on understanding 
and modeling nonlinear processes; such processes are often governed by nonlin- 
ear PDEs. and the subject has become one of the most active areas in applied 
mathematics and central in modern-day mathematical research. Part  of the 
impetus for this surge has been the advent of high-speed, powerful computers. 
where computational advances have been a major driving force. 

This initial chapter focuses on developing a perspective on understanding 
problems involving PDEs and how the subject interrelates with physical phe- 
nomena. It also provides a transition from an elementary course. emphasizing 
eigenfunction expansions and linear problems. to  a more sophisticated way of 
thinking about problems that is suggestive of and consistent with the methods 
in nonlinear analysis. 

Section 1.1 summarizes some of the basic terminology of elementary PDEs, 
including ideas of classification. In Section 1.2 we begin the study of the ori- 
gins of PDEs in physical problems. This interdependence is developed from the 
basic, one-dimensional conservation law. In Section 1.3 we show how consti- 
tutive relations can be appended to the conservation law to obtain equations 
that model the fundamental processes of diffusion, advection or transport. and 
reaction. Some of the common equations. such as the diffusion equation. Burg- 
ers’ equation, Fisher’s equation. and the porous media equation, are obtained 

A n  Introductzon to Nonlznear Partzal Dzfferentzal Equatzons, Second Edztaon 
By J. David Logan 
Copyright @ 2008 John &?ley & Sons. Inc. 



2 1. Introduction t o  Partial Differential Equations 

as models of these processes. In Section 1.4 we introduce initial and boundary 
value problems to see how auxiliary data specialize the problems. Finally. in 
Section 1.5 we discuss wave propagation in order to  fix the notion of how evo- 
lution equations carry boundary and initial signals into the domain of interest. 
iTJe also introduce some common techniques for determining solutions of a cer- 
tain form (e.g., traveling wave solutions). The ideas presented in this chapter 
are intended to build an understanding of evolutionary processes so that the 
fundamental concepts of hyperbolic problems and characteristics, as well as 
diffusion problems, can be examined in later chapters with a firmer base. 

1.1 Partial Differential Equations 

1.1.1 Equations and Solutions 

A partzal dafferentzal equataon is an equation involving an unknown function of 
several variables and its partial derivatives. To fix the notion. a second-order 
PDE an two zndependent vartables is an equation of the form 

G ( z . t ,  u.u,. U ~ . Z L , , . U ~ ~ ? U , ~ )  = 0. ( ~ . t )  E D. (1.1.1) 

where. as indicated. the independent variables x and t lie in some given domain 
D in R2.  By a solutzon to  (1.1.1) we mean a twice continuously differentiable 
function u = u(x .  t )  defined on D that. when substituted into (1.1.1). reduces 
it to an identity on D.  The function u(z ,  t )  is assumed to be twice continuously 
differentiable. so that it makes sense to calculate its first and second derivatives 
and substitute them into the equation: a smooth solution like this is called a 
classzcal solutzon or genuzne solutzon. Later we extend the notion of solution 
to  include functions that may have discontinuities, or discontinuities in their 
derivatives: such functions are called weak solutzons. The xt domain D where 
the problem is defined is referred to as a spacetzme domaan, and PDEs that 
include time t as one of the independent variables are called evolutzon equa- 
tions. When the two independent variables are both spatial variables, say. z 

and y rather than x and t .  the PDE is an equzlzbrzum or steady-state equation. 
Evolution equations govern time-dependent processes, and equilibrium equa- 
tions often govern physical processes after the transients caused by initial or 
boundary conditions die away. 

Graphically. a solution u = u ( x . t )  of (1.1.1) is a smooth surface in three- 
dimensional xtu space lying over the domain D in the xt plane, as shown 
in Figure 1.1. An alternative representation is a plot in the xu-plane of the 
function u = u(x .  t o )  for some fixed time t = t o  (see Figures 1.1 and 1.2). Such 
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X 

Figure 1.1 Solution surface u = u(z . t )  in xtu space. also showing a time 
snapshot or wave profile u(2. t o )  at time t o .  The functions f 3  g .  and h represent 
values of u on the boundary of the domain. which are often prescribed as initial 
and boundary conditions. 

Figure 1.2 Time snapshot u(z .  t o )  at  t = t o  graphed in xu space. Often several 
snapshots for different times t are graphed on the same set of xu coordinates 
to indicate how the wave profiles are evolving in time. 

representations are called t i m e  snapshots  or wave profiles of the solution: time 
snapshots are profiles in space of the solution u = u ( z . t )  frozen at  a fixed 
time t o ?  or. stated differently, slices of the solution surface at  a fixed time to. 
Occasionally. several time snapshots are plotted simultaneously on the same 
set of xu axes to indicate how profiles change. It is also helpful on occasion to  
think of a solution in abstract terms. For example, suppose that u = u ( z . t )  
is a solution of a PDE for z E R and 0 5 t 5 T .  Then for each t .  u ( z , t )  is a 
function of J: (a profile), and it generally belongs to  some space of functions X. 
To fix the idea, suppose that X is the set of all twice continuously differentiable 
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functions on R that approach zero at infinity. Then the solution can be regarded 
as a mapping from the time interval [O.T] into the function space X; that is. 
to each t in [O.T] we associate a function u ( . . t ) ,  which is the wave profile a t  
time t .  

A PDE has infinitely many solutions, depending on arbitrary functions. For 
example. the wave equatzon 

utt - c 2 u,, = 0 (1.1.2) 

has a general solution that is the superposition (sum) of a right traveling wave 
F ( x  - c t )  of speed c and a left traveling wave G ( x  + ct)  of speed c; that  is, 

U(X. t )  = F ( x  - c t )  + G ( x  + ct)  (1.1.3) 

for any twice continuously differentiable functions F and G. (See the Exercises 
at the end of this section.) We contrast the situation in ordinary differen- 
tial equations. where solutions depend on arbitrary constants: there, initial or 
boundary conditions fix the arbitrary constants and select a unique solution. 
For PDEs this occurs as well: initial and boundary conditions are usually im- 
posed and select one of the infinitude of solutions. These auxiliary or subsidiary 
conditions are suggested by the underlying physical problem from which the 
PDE arises. or by the type of PDE. A condition on u or its derivatives given 
at  t = 0 along some segment of the x axis is called an znztzal condztzon. while 
a condition along any other curve in the xt plane is called a boundary condz- 
taon. PDEs with auxiliary conditions are called znztzal value problems.  boundary 
value problems. or anztzal-boundary value problems.  depending on the type of 
subsidiary conditions that are specified. 

Example. The initial value problem for the wave equation is 

Utf, - c 2 u,, = 0. 2 E R. t > 0. (1.1.4) 

u(x. 0 )  = f (x), Ut(.. 0) = g(x). z E R, (1.1.5) 

where f and g are given twice continuously differentiable functions on R. The 
unique solution is given by (see Exercise 2) 

1 
2 

u(x. t )  = - [ f ( x  - c t )  + f(. + ct)] + - (1.1.6) 

which is D ‘  Alembert’s f o rmula .  So, in this example we think of the auxiliary 
data (1.1.5) as selecting one of the infinitude of solutions given by (1.1.3). Kote 
that the solution at (x. t )  depends only on the initial data (1.1.5) in the interval 
[ z - c t , x + c t ] .  0 
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Statements regarding the single second-order PDE (1.1.1) can be general- 
ized in various directions. Higher-order equations (as well as first-order equa- 
tions). several independent variables. and several unknown functions (governed 
by systems of PDEs) are all possibilities. 

1.1.2 Classification 

PDEs are classified into different types. depending on either the type of phys- 
ical phenomena from which they arise or a mathematical basis. As the reader 
has learned from previous experience, there are three fundamental types of 
equations: those that govern diffusion processes, those that govern wave propa- 
gation. and those that govern equilibrium phenomena. Equations of mixed type 
also occur. We consider a single. second order PDE of the for 

U ( X .  t ) ~ , ,  + 2 b ( ~ .  t)u,t + C ( X .  t)ut* = d ( x .  t ,  U .  u,. u t )?  ( ~ . t )  E D ,  (1.1.7) 

where a ,  b. and c are continuous functions on D ,  and not all of a ,  b. and c 
vanish simultaneously at some point of D .  The function d on the right side is 
assumed to be continuous as well. Classification is based on the combination 
of the second-order derivatives in the equation. If we define the dzscrzmznant 
A by A = b2 - a c ,  then (1.1.7) is hyperbolzc if A > 0, parabolac if A = 0, and 
ellaptzc if A < 0. 

Hyperbolic and parabolic equations are evolution equations that govern 
wave propagation and diffusion processes, respectively, and elliptic equations 
are associated with equilibrium or steady-state processes. In the latter case. we 
use 2 and y as independent variables rather than x and t .  There is also a close 
relationship between the classification and the kinds of initial and boundary 
conditions that may be imposed on a PDE to obtain a well-posed mathematical 
problem. or one that is physically relevant. Because classification is based on 
the highest-order derivatives in (1.1.7). or the prznczpal part  of the equation, 
and because A depends on x and t .  equations may change type as x and t vary 
throughout the domain. 

Now we demonstrate that equation (1.1.7) can be transformed t o  certain 
simpler, or canonzcal. forms. depending on the classification. by a change of 
independent variables 

[ = [ ( x ,  t ) .  7 = q(2. t ) .  (1.1.8) 

S;Te now perform this calculation. with the view of actually trying to determine 
(1.1.8) such that (1.1.7) reduces to a simpler form in the [q coordinate system. 
The transformation (1.13) is assumed to be invertible. which requires that the 
Jacobian J = &rjt - ttrj, be nonzero in any region where the transformation 
is applied. A straightforward application of the chain rule, which the reader 
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can verify, shows that the left side of (1.1.7) becomes. under the change of 
independent variables (1.1.8) 

au,, + 2bu,t + cutt + . . = AuCC + 2BuC, + Cu,, + . . . , (1.1.9) 

where the three dots denote terms with lower-order derivatives. and where 

Notice that the expressions for A and C have the same form, namely 

aoz + 2bdzp t  + CQ:. 

and are independent. 

end. set 
In the hyperbolzc case me can choose ( and r j  such that A = C = 0. To this 

aoz + 2 b 0 , ~ t  + co; = 0. (1.1 . l o )  

Because the discriminant A is positive, we can write (1.1.10) as (assume that 
a is not zero) 

To determine d. we regard it as defining loci (curves) in the xt plane via the 
equation O(X. t )  = const. The differentials dx  and dt along one of these curves 
satisfy the relation p,dx + Qtd t  = 0 or d t /dx  = -Q,/&. Therefore 

(1.1.11) 

is a differential equation whose solutions determine the curves d(x, t )  = const. 
On choosing the + and - signs in ( l . l . l l) ,  respectively, we obtain { ( z . t )  and 
q(2 . t )  as integral curves of (1.1.11). making A = C = 0. Consequently. if 
(1.1.7) is hyperbolic, it can be reduced to  the canonzeal hyperbolzc f o r m  

UEv + ' . . = 0, 

where the three dots denote terms involving lower-order derivatives (we leave 
it as an exercise to show that B is nonzero in this case). 

The differential equations (1.1.1 1) are called the characterzstac equatzons 
associated with (1.1.7). and the two sets of solution curves [(x. t )  = const and 
rj(x. t )  = const are called the characterzstzc curves. or just the characterzstzcs: [ 
and r j  are called characterzstzc coordanates. In summary, in the hyperbolic case 
there are two real families of characteristics that provide a coordinate system 
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where the equation reduces to a simpler form. Characteristics are the funda- 
mental concept in the analysis of hyperbolic problems because characteristic 
coordinates form a natural curvilinear coordinate system in which to examine 
these problems. In some cases. PDEs simplify to ODES along the characteristic 
curves. 

In the parabolic case (b2 - a c  = 0 )  there is just one family of characteristic 
curves. defined by 

Thus we may choose E = {(x~ t )  as an integral curve of this equation to  make 
A = 0. Then. if = q(x,t) is chosen as any smooth function independent of 
E (i.e.. so that the Jacobian is nonzero). one can easily determine that B = 0 
automatically. giving the parabolzc canonzcal form 

UEE + ' ' . = 0. 

Characteristics rarely play a role in parabolic problems. 
In the elliptic case (b2 - ac < 0) there are no real characteristics and, as in 

the parabolic case. characteristics play no role in elliptic problems. However, it 
is still possible to eliminate the mixed derivative term in (1.1.7) to obtain an 
elliptic canonical form. The procedure is to determine complex characteristics 
by solving (l.l .ll)% and then take real and imaginary parts to  determine a 
transformation (1.1.8) that makes A = C and B = 0 in (1.1.9). We leave it as 
an exercise to show that the transformation is given by 

Then the elliptic canonical form is 

u,, + ua3 + ' .  . = 0. 

where the Laplacian operator becomes the principal part. 

Example. It is easy to see that the characteristic curves for the wave equa- 
tion (1.1.2). which is hyperbolic, are the straight lines x - ct = const and 
x + ct = const. These are shown in Figure 1.3. In this case the characteristic 
coordinates are given by < = x - c t  and 17 = x+ct. In these coordinates the wave 
equation transforms to  ucr, = 0. We regard characteristics as curves in space- 
time moving with speeds c and -c. and from the general solution (1.1.3) we 
observe that signals are propagated along these curves. In hyperbolic problems. 
in general, the characteristics are curves in spacetime along which signals are 
transmitted. 0 
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x t ct = const x - ct = const 

Figure 1.3 Characteristic diagram for the wave equation showing the forward 
and backward characteristics x - ct = const and x + ct = const. 

If the coefficients a ,  b. and c of the second-order derivatives in equa- 
tion (1.1.7) depend on x. t ,  and u.  then (1.1.7) is called a quaszlznear equa- 
tion. In this case we make the same classification as above. depending on the 
sign of the discriminant A: now the type of the equation depends not only on 
the spacetime domain but also on the solution u itself. The canonical forms 
listed above are no longer valid in this case. and the characteristics defined 
by (1.1.11) cannot be determined a priori since a .  b. and c depend on u. the 
unknown solution itself. Therefore. there is a significant increase in difficulty 
when the principal part of the equation is nonlinear. 

There are other ways to  approach the classification problem. In the pre- 
ceding discussion the focus was on determining transformations under which 
a simplification occurs. In Section 6.1 we take a different perspective and ask 
whether it is possible to determine the solution u near a curve where the values 
of u and its first derivatives are known. That discussion is accessible to the 
reader at the present juncture, if desired. Yet another view of classification is 
presented in Chapter 4. where hyperbolic systems are discussed. Finally. from a 
physical perspective, we observe later in this chapter that hyperbolic problems 
are associated with wave propagation: parabolic problems, with diffusion; and 
elliptic problems. with equilibria. 

1.1.3 Linear versus Nonlinear 

The most important classification criterion is to distinguish PDEs as linear or 
nonlznear. Roughly, a homogeneous PDE is linear if the sum of two solutions is 
a solution, and a constant multiple of a solutions is a solution. Otherwise. it is 
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nonlinear. The division of PDEs into these two categories is a significant one. 
The mathematical methods devised to deal with these two classes of equations 
are often entirely different, and the behavior of solutions differs substantially. 
One underlying cause is the fact that the solution space to a linear, homoge- 
neous PDE is a vector space, and the linear structure of that  space can be 
used with advantage in constructing solutions with desired properties that  can 
meet diverse boundary and initial conditions. Such is not the case for nonlinear 
equations. 

It is easy to find examples where nonlinear PDEs exhibit behavior with 
no linear counterpart. One is the breakdown of solutions and the formation of 
singularities. such as shock waves. A second is the existence of solitions, which 
are solutions to  nonlinear dispersion equations. These solitary wave solutions 
maintain their shapes through collisions, in much the same was as linear equa- 
tions do, even though the interactions are not linear. Nonlinear equations have 
come to the forefront because, basically. the world is nonlinear! 

Nore formally. linearity and nonlinearity are usually defined in terms of the 
properties of the operator that  defines the PDE itself. Let us assume that the 
PDE (1.1.1) can be written in the form 

Lu = F,  (1.1.12) 

where F = F ( z . t )  and L is an operator that  contains all the operations (dif- 
ferentiation. multiplication, composition, etc.) that  act on u = u(z . t )  . For 
example, the wave equation utt - u,, = 0 can be written Lu = 0. where L is 
the partial differential operator 8; - 82. In (1.1.12) we reiterate that all terms 
involving the unknown function u are on the left side of the equation and are 
contained in the expression Lu; the right side of (1.1.12) contains in F only 
expressions involving the independent variables z and t .  If F = 0, then (1.1.12) 
is said to  be homogeneous; otherwise. it is nonhomogeneous. We say that an 
operator L is lznear if it is additive and if constants factor out of the operator, 
that is, (1) L(u  + v)  = Lu + Lv, and (2) L(cu) = cLu. where u and v are func- 
tions (in the domain of the operator) and c is any constant. The PDE (1.1.12) 
is lznear if L is a linear operator: otherwise, the PDE is nonlznear. 

Example. The equation Lu = ut + uu, = 0 is nonlinear because. for example. 
L(cu) = cut + c2uu,. which does not equal cLu = c(ut + uu,). 0 

Conditions (1) and (2) stated above imply that a linear homogeneous equa- 
tion Lu = 0 has the property that if u1. u2.. . . , u, are n solutions. the linear 
combinat ion 

u = C l U l  + c2u2 + ’ .  . + C,U, 



10 1. Introduction t o  Partial Differential Equations 

is also a solution for any choice of the constants c1, c2, . . . , en. This fact is called 
the superposztaon pranczple for linear equations. For nonlinear equations we can- 
not superimpose solutions in this manner. The superposition principle can often 
be extended to  infinite sums for linear problems. provided that convergence re- 
quirements are met. Superposition for linear equations allows one to construct. 
from a given set of solutions, another solution that meets initial or boundary 
requirements by choosing the constants c1. c2, . . . judiciously. This observation 
is the basis for the Fourier method. or eigenfunction expansion method, for 
linear. homogeneous boundary value problems, and we review this procedure 
at the end of the section. Moreover. superposition can often be extended to a 
family of solutions depending on a continuum of values of a parameter. More 
precisely. if u = u(x. t :  k )  is a family of solutions of a linear homogeneous PDE 
for all values of k in some interval of real numbers I .  one can superimpose these 
solutions formally using integration by defining 

where c = c ( k )  is a function of the parameter k .  Under certain conditions that 
must be established, the superposition u ( z . t )  may again be a solution. As in 
the finite case, there is flexibility in selecting c ( k )  to meet boundary or initial 
conditions. In fact, this procedure is the vehicle for transform methods for 
solving linear PDEs (Laplace transforms. Fourier transforms, etc.). We review 
this technique below. Finally. for a homogeneous, linear PDE the real and 
imaginary parts of a complex solution are both solutions. This is easily seen 
from the calculation 

L(v  + zm) = Lv + ZLW = 0 + 0 = 0. 

where the real-valued functions c and w satisfy Lv = 0 and Lw = 0. None 
of these methods based on superposition are applicable to  nonlinear problems. 
and other methods must be sought. In summary, there is a profound difference 
between properties and solution methods for linear and nonlinear problems. 

If most solution methods for linear problems are inapplicable to nonlinear 
equations, what methods can be developed? We mention a few. 

1. Perturbation Methods. Perturbation methods are applicable to  problems 
where a small or large parameter can be identified. In this case an approx- 
imate solution is sought as a series expansion in the parameter. 

2 .  Samalarzty Methods. The similarity method is based on the PDE and its 
auxiliary conditions being invariant under a family of transformations de- 
pending on a small parameter. The invariance transformation allows one 
to identify a canonical change of variables that reduces the PDE to an 
ordinary differential equation (ODE). or reduces the order of the PDE. 



1.1 Partial Differential Equations 11 

3. Characterastzc Methods. Nonlinear hyperbolic equations, which are associ- 
ated with wave propagation, can be analyzed with success in characteristic 
coordinates (i.e.. coordinates in spacetime along which the waves or signals 
propagate). 

4. Transformataons. Sometimes it is possible to identify transformations that 
change a given nonlinear equation into a simpler equation that can be 
solved. 

5. Numeracal Methods. Fast, large-scale computers have given tremendous im- 
petus to  the development and analysis of numerical algorithms to solve 
nonlinear problems and. in fact. have been a stimulus to to  the analysis of 
nonlinear equations. 

6 .  Travelzng Wave Solutaons. Seeking solutions with special properties is a key 
technique. For example. traveling waves are solutions to  evolution prob- 
lems that represent fixed waveforms moving in time. The assumption of 
a traveling wave profile to  a PDE sometimes reduces it to  an ODE, often 
facilitating the analysis and solution. Traveling wave solutions form one 
type of similarity solution. 

7.  Steady State Solutaons and Thew Stabalzty. Many PDEs have steady-state, 
or time-independent. solutions. Studying these equilibrium solutions and 
their stability is an important activity in many areas of application. 

8. Ad HOC Methods. The mathematical and applied science literature is replete 
with articles illustrating special methods that analyze a certain type of 
nonlinear PDE. or restricted classes of nonlinear PDEs. 

These methods are primarily solution methods. which represent one aspect 
of the subject of nonlinear PDEs. Other basic issues are questions of existence 
and uniqueness of solutions, the regularity (smoothness) of solutions. and the 
investigation of stability properties of solutions. These and other theoretical 
questions have spawned investigations based on modern topological and alge- 
braic concepts. and the subject of nonlinear PDEs has evolved into one of the 
most diverse, active areas of applied analysis. 

1.1.4 Linear Equations 

In this subsection we review, through examples, two techniques from elementary 
PDEs that illustrate the use of the superposition principles mentioned above. 
These calculations arise later in analyzing the local stability of equilibrium 
solutions to nonlinear problems. 
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Example. (Separatzon of Varzables) Consider the following problem for u = 

u(z ,  t )  on the bounded interval I : 0 5 z 5 1 with t > 0. that is 

u+. = Au. 0 < x < 1. t > 0. (1.1.13) 

u(0, t )  = u(1.t)  = 0, t > 0, (1.1.14) 

u(z.O) = f ( x ) .  0 5 z 5 1, (1.1.15) 

where A is a linear, spatial differential operator of the form 

Au = - ( p ~ z ) z  + qu. 

The functions p = p ( z )  and q = q(x) are given. with p of one sign on 1. and 
p ,  p ' .  and q continuous on I .  Problems of this type are solved by Fourier's 
method. or the method of eigenfunction expansions. The idea is to  construct 
infinitely many solutions that satisfy the PDE and the boundary conditions. 
equations (1.1.13) and (1.1.14)% and then superimpose them. rigging up the 
constants so that the initial condition (1.1.15) is satisfied. This technique is 
called separatzon of varaables, based on an assumption that the solution has 
the form u(x. t )  = g(t)y(z) .  where g and y are to be determined. When we 
substitute this form into the PDE and rearrange terms we obtain 

- 9/ - - Ay 
9 Y  

where the left side depends only on t and the right side depends only on x. A 
function o f t  can equal a function of x for all z and t only if both are equal to  
a constant. say, -A. called the separataon constant. Therefore 

and we obtain two ODES, one for g and one for y: 

9' = -Xg, -Ay = Xy. 

We say that the equation separates. If we substitute the assumed form of u 
into the boundary conditions (1.1.14). then we obtain 

y(0) = y(1) = 0. 

The temporal equation is easily solved to get g(t)  = cecxt ,  where c is an 
arbitrary constant. The spatial equation along with its homogeneous (zero) 
boundary conditions give a boundary value problem (BVP) for y: 

-Ay = Xy, O < X < I ,  

y(0) = y(1) = 0. 

(1.1.16) 

(1.1.17) 
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This BVP for y ,  which is differential eigenvalue problem called a Sturm- 
Lzouvalle problem. has the property there are infinitely many real. discrete 
values of the separation constant A. say, A = A,, n = 1 . 2 .  .... for which there 
are corresponding solutions y = y,(z). n = 1 . 2 .  .... The A, are called the ezgen- 
values for the problem and the corresponding solutions y = yn(z)  are called the 
ezgenfunctzons. The eigenvalues have the property that they are ordered and 
IAnl + m as n + cx;. Therefore we have obtained a countably infinite number 
of solutions to  the PDE that satisfy the boundary conditions: 

Xow. here is where superposition is used. We add up these solutions and pick 
the constants c, so that the initial condition (1.1.15) is satisfied, thus obtaining 
the solution to the problem; that is, we form 

n=l  

Formally applying the initial condition gives 

(1.1.18) 
n = l  

The right side is an expansion of the initial condition f in terms of the eigen- 
functions yn. and we can use it to determine the coefficients en. This calculation 
is enabled by a very important property of the eigenfunctions. namely, orthog- 
onality. If we define the inner product of two functions 0 and y by 

f' 

then we say Q and y are orthogonal if (4. $) = 0. The set of eigenfunctions yn 
of the Sturm-Liouville problem (1.1.16)-(1.1.17) are mutually orthogonal, or 

Therefore, if we multiply (1.1.18) by a fixed but arbitrary ym and formally 
integrate over the interval I ,  we then obtain 

n=l 

Because of orthogonality. the infinite series on the right side collapses to the 
single term c,(ym? y,). Therefore the coefficient c, is given by 
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This relation is true for any m. and so the coefficients c, are 

n = 1.2. ... ( f .  Y n )  

(Yn.  Yn) 
c, = ~ (1.1.19) 

Therefore, we have obtained the solution of (1.1.13)-(1.1.15) in the form of a 
series representation. or eigenfunction expansion, 

The preceding calculation took a lot for granted. but it can be shown rigorously 
that the steps are valid. 17 

An expansion of a function f(x) in terms of the eigenfunctions yn(x). as in 
(1.1.18). is called the generalized Fourzer serzes for f .  and the coefficients c,, 
given by (1.1.19), are the Fourzer coeficients. It can be shown that that the 
series converges in the mean-square sense: 

Pointwise and uniform convergence theorems require suitable smoothness con- 
ditions on the function f .  

The method of separation of variables is successful under general boundary 
conditions of the form 

C Y U ( O . ~ ) + ~ U , ( O . ~ )  = O .  y ~ ( l . t ) + d u , ( l . t )  = 0 ,  

where a ,  3, y, and 6 are given constants. Of course. the interval over which 
the problem is defined may be any bounded interval a 5 x 5 b; we chose 
a = 0 and b = 1 for simplicitl- of illustration. The method may be extended 
to problems over higher-dimensional. bounded, spatial domains, as well as to  
nonhomogeneous problems. For example, if the PDE in (1.1.13)-(1.1.15) is 
replaced by the nonhomogeneous equation 

U t  = AU + F ( x , t ) ,  0 < z < 1. t > 0. 

we can expand the nonhomogeneous term F as a Fourier series of the eigen- 
functions for the homogenous problem. or 

n=l 


