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Preface 

Forecasting is an important part of decision malung, and many of our 
decisions are based on predictions of future unknown events. Many books 
on forecasting and time series analysis have been published recently. Somc 
of them are introductory and just describe the various methods heuristically. 
Certain others are very theoretical and focus on only a few selected topics. 

This book is about the statistical methods and models that can be used to 
produce short-term forecasts. Our objective is to provide an intermediate- 
level discussion of a variety of statistical forecasting methods and models, to 
explain their interconnections, and to bridge the gap between theory and 
practice. 

Forecast systems are introduced in Chapter 1. Various aspects of regres- 
sion models are discussed in Chapter 2, and special problems that occur 
when fitting regression models to time series data are considered. Chapters 3 
and 4 apply the regression and smoothing approach to predict a single time 
series. A brief introduction to seasonal adjustment methods is also given. 
Parametric models for nonseasonal and seasonal time series are explained in 
Chapters 5 and 6. Procedures for building such models and generating 
forecasts are discussed. Chapter 7 describes the relationships between the 
forecasts produced from exponential smoothing and those produced from 
parametric time series models. Several advanced topics, such as transfer 
function modeling, state space models, Kalman filtering, Bayesian forecast- 
ing, and methods for forecast evaluation, comparison, and control are given 
in Chapter 8. Exercises are provided in the back of the book for each 
chapter . 

This book evolved from lecture notes for an MBA forecasting course and 
from notes for advanced undergraduate and beginning graduate statistics 
courses we have taught at the University of Waterloo and at the University 
of Iowa. It is oriented toward advanced undergraduate and beginning 
graduate students in statistics, business, engineering, and the social sciences. 
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A calculus background, some familiarity with matrix algebra, and an 
intermediate course in mathematical statistics are sufficient prerequisites. 

Most business schools require their doctoral students to take courses in 
regression, forecasting, and time series analysis, and most offer courses 
in forecasting as an elective for MBA students. Courses in regression and in 
applied time series at the advanced undergraduate and beginning graduate 
level are also part of most statistics programs. This book can be used in 
several ways. It can serve as a text for a two-semester sequence in regression, 
forecasting, and time series analysis for Ph.D. business students, for MBA 
students with an area of concentration in quantitative methods, and for 
advanced undergraduate or beginning graduate students in applied statis- 
tics. It can also be used as a text for a one-semester course in forecasting 
(emphasis on Chapters 3 to 7), for a one-semester course in applied time 
series analysis (Chapters 5 to 8), or for a one-semester course in regression 
analysis (Chapter 2, and parts of Chapters 3 and 4). In addition, the book 
should be useful for the professional forecast practitioner. 

We are grateful to a number of friends who helped in the preparation of 
this book. We are glad to record our thanks to Steve Brier, Bob Hog& Paul 
Horn, and K. Vijayan, who commented on various parts of the manuscript. 
Any errors and omissions in this book are, of course, ours. We appreciate 
the patience and careful typing of the secretarial staff at the College of 
Business Administration, University of Iowa and of Marion Kaufman and 
Lynda Hohner at the Department of Statistics, University of Waterloo. We 
are thankful for the many suggestions we received from our students in 
forecasting, regression, and time series courses. We are also grateful to the 
Biometrika trustees for permission to reprint condensed and adapted ver- 
sions of Tables 8, 12 and 18 from Biometrika Tables for Statisticians, edited 
by E .  S. Pearson and H. 0. Hartley. 

We are greatly indebted to George Box who taught us time series analysis 
while we were graduate students at the University of Wisconsin. We wish to 
thank him for his guidance and for the wisdom which he shared so freely. It 
is also a pleasure to acknowledge George Tiao for his warm encouragement. 
His enthusiasm and enlightenment has been a constant source of inspira- 
tion. 

We could not possibly discuss every issue in statistical forecasting. 
However, we hope that this volume provides the background that will allow 
the reader to adapt the methods included here to his or her particular needs. 

B. ABRAHAM 
J. LEDOLTER 

Waterloo, Ontario 
Iowa City, Iowa 
June I983 
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C H A P T E R  1 

Introduction and Summary 

Webster’s dictionary defines forecasting as an activity “ to calculate or 
predict some future event or condition, usually as a result of rational study 
or analysis of pertinent data.” 

1.1. IMPORTANCE OF GOOD FORECASTS 

The ability to form good forecasts has been highly valued throughout 
history. Even today various types of fortune-tellers claim to have the power 
to predict future events. Frequently their predictions turn out to be false. 
However, occasionally their predictions come true; apparently often enough 
to secure a living for these forecasters. 

We all make forecasts, although we may not recognize them as forecasts. 
For example, a person waiting for a bus or parents expecting a telephone 
call from their children may not consider themselves forecasters. However, 
from past experience and from reading the bus schedule, the person waiting 
for the bus expects it to arrive at a certain time or within a certain time 
interval. Parents who have usually received calls from their children every 
weekend expect to receive one during the coming weekend also. 

These people form expectations, and they make forecasts. So does a bank 
manager who predicts the cash flow for the next quarter, or a control 
engineer who adjusts certain input variables to maintain the future value of 
some output variable as close as possible to a specified target, or a company 
manager who predicts sales or estimates the number of man-hours required 
to meet a given production schedule. All make statements about future 
events, patterning the forecasts closely on previous occurrences and assum- 
ing that the future will be similar to the past. 

Since future events involve uncertainty, the forecasts are usually not 
perfect. The objective of forecasting is to reduce the forecast error: to 

1 



2 INTRODUCTION AND SUMMARY 

produce forecasts that are seldom incorrect and that have small forecast 
errors. In business, industry, and government, policymakers must anticipate 
the future behavior of many critical variables before they make decisions. 
Their decisions depend on forecasts, and they expect these forecasts to be 
accurate; a forecast system is needed to make such predictions. Each 
situation that requires a forecast comes with its own unique set of problems, 
and the solutions to one are by no means the solutions in another situation. 
However, certain general principles are common to most forecasting prob- 
lems and should be incorporated into any forecast system. 

1.2. CLASSIFICATION OF FORECAST METHODS 

Forecast methods may be broadly classified into qualitative and quantitative 
techniques. Qualitative or subjective forecast methods are intuitive, largely 
educated guesses that may or may not depend on past data. Usually these 
forecasts cannot be reproduced by someone else, since the forecaster does 
not specify explicitly how the available information is incorporated into the 
forecast. Even though subjective forecasting is a nonrigorous approach, it 
may be quite appropriate and the only reasonable method in certain 
situations. 

Forecasts that are based on mathematical or statistical models are called 
quantitatioe. Once the underlying model or technique has been chosen, the 
corresponding forecasts are determined automatically; they are fully repro- 
ducible by any forecaster. Quantitative methods or models can be further 
classified as deterministic or probabilistic (also known as stochastic or 
statistical). 

In deterministic models the relationship between the variable of interest, 
Y, and the explanatory or predictor variables XI, .  . . , X p  is determined 
exactly: 

Y = f ( X , ,  ..., X,;P ,,.- (1.1) 

The functionfand the coefficients PI, .  . . , P,,, are known with certainty. The 
traditional “laws” in the physical sciences are examples of such determinis- 
tic relationships. 

In the social sciences, however, the relationships are usually stochastic. 
Measurement errors and variability from other uncontrolled variables intro- 
duce random (stochastic) components. This leads to probabilistic or stochus- 
tic models of the form 

Y = f( xI,. . . , x,; P I , .  . . , &) + noise ( 1 4 
where the noise or error component is a realization from a certain proba- 
bility distribution. 
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Frequently the functional form f and the coefficients are not known and 
have to be determined from past data. Usually the data occur in time-ordered 
sequences referred to as time series. Statistical models in which the available 
observations are used to determine the model form are also called empiricul 
and are the main subject of this book. In particular, we discuss regression 
and single-variable prediction methods. In single-variable forecasting, we use 
the past history of the series, let’s say t,, where t is the time index, and 
extrapolate it into the future. For example, we may study the features in a 
series of monthly Canadian consumer price indices and extrapolate the 
pattern over the coming months. Smoothing methods or parametric time 
series models may be used for this purpose. In regression forecasting, we 
make use of the relationships between the variable to be forecast and the 
other variables that explain its variation. For example, we may forecast 
monthly beer sales from the price of beer, consumers’ disposable income. 
and seasonal temperature; or predict the sales of a cereal product by its 
price (relative to the industry), its advertising, and the availability of its 
coupons. The standard regression models measure instantaneous effects. 
However, there are often lag effects, where the variable of interest depends 
on present and past values of the independent (i.e., predictor) variables. 
Such relationships can be studied by combining regression and time series 
models. 

1.3. CONCEPTUAL FRAMEWORK OF A FORECAST SYSTEM 

In this book we focus our attention exclusively on quantitative forecast 
methods. In general, a quantitative forecast system consists of two major 
components, as illustrated in Figure 1.1. At the first stage, the model-build- 
ing stage, a forecasting model is constructed from pertinent data and 
available theory. In some instances, theory (for example, economic theory) 
may suggest particular models; in other cases, such theory may not exist or 
may be incomplete, and historical data must be used to specify an ap- 
propriate model. The tentatively entertained model usually contains un- 
known parameters; an estimation approach, such as least squares, can be 
used to determine these constants. Finally, the forecaster must check the 
adequacy of the fitted model. It could be inadequate for a number of 
reasons; for example, it could include inappropriate variables or it could 
have misspecified the functional relationship. If the model is unsatisfactory, 
it has to be respecified, and the iterative cycle of model specification-esti- 
mation-diagnostic checking must be repeated until a satisfactory model is 
found. 

At the second stage, the forecasting stage, the final model is used to 
obtain the forecasts. Since these forecasts depend on the specified model. 
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Model-Building Phase I Forecasting Phase 
I 

Model Model * 
specification estimation 

c 

previous studies 

Diagnostic I 
checking I 

adequate? I 
1 

Forecast 
* Is the model generation 

I 
I 
I 

I I 

(+) I 
I 
I 
I observation 
I 
I 

Figure 1.1. Conceptual framework of a forecasting system. 

one has to make sure that the model and its parameters stay constant during 
the forecast period. The stability of the forecast model can be assessed by 
checlung the forecasts against the new observations. Forecast errors can be 
calculated, and possible changes in the model can be detected. For example, 
particular functions of these forecast errors can indicate a bias in the 
forecasts (i-e., consistent over- or underpredictions). The most recent ob- 
servation can also be used to update the forecasts. Since observations are 
recorded sequentially in time, updating procedures that can be applied 
routinely and that avoid the computation of each forecast from first 
principles are very desirable. 

1.4. CHOICE OF A PARTICULAR FORECAST MODEL 

Among many other forecast criteria, the choice of the forecast model or 
technique depends on (1) what degree of accuracy is required, (2) what the 
forecast h o ~ o n  is, (3) how high a cost for producing the forecasts can be 
tolerated, (4) what degree of complexity is required, and ( 5 )  what data are 
available. 

Sometimes only crude forecasts are needed; in other instances great 
accuracy is essential. In some applications, inaccuracy can be very costly; 
for example, inaccurate forecasts of an economic indicator could force the 
Federal Reserve Board to boost its lending rate, thus creating a chain of 
undesirable events. However, increasing the accuracy usually raises substan- 
tially the costs of data acquisition, computer time, and personnel. If a small 
loss in accuracy is not too critical, and if it lowers costs substantially, the 
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simpler but less accurate model may be preferable to the more accurate but 
more complex one. 

The forecast horizon is also essential, since the methods that produce 
short-term and long-term forecasts differ. For example, a manufacturer may 
wish to predict the sales of a product for the next 3 months, while an electric 
utility may wish to predict the demand for electricity over the next 25 years. 

A forecaster should try building simple models, which are easy to 
understand, use, and explain. An elaborate model may lead to more 
accurate forecasts but may be more costly and difficult to implement. 
Ockham’s razor, also known as the principle of parsimony, says that in a 
choice among competing models, other things being equal, the simplest is 
preferable. 

Another important consideration in the choice of an appropriate forecast 
method is the availability of suitable data; one cannot expect to construct 
accurate empirical forecast models from a limited and incomplete data base. 

1.5. FORECAST CRITERIA 

The most important criterion for choosing a forecast method is its accuracy, 
or how closely the forecast predicts the actual event. Let us denote the 
actual observation at time t with z, and its forecast, which uses the 
information up to and including time t - 1, with z,- ,(l). Then the objective 
is to find a forecast such that the future forecast error z, - Z , - ~ ( I )  is as 
small as possible. However, note that this is a future forecast error and, 
since z, has not yet been observed, its value is unknown; we can talk only 
about its expected value, conditional on the observed history up to and 
including time t - 1. If both negative (overprediction) and positive (under- 
prediction) forecast errors are equally undesirable, it would make sense to 
choose the forecast such that the mean absolute error Elz ,  - z,- I (  1)1, or the 
mean square error E [ z ,  - z,-,(1)l2 is minimized. The forecasts that mini- 
mize the mean square error are called minimum mean square error ( M M S E  j 
forecasts. The mean square error criterion is used here since it leads to 
simpler mathematical solutions. 

1.6. OUTLINE OF THE BOOK 

This book is about the statistical methods and models that can be used to 
produce short-term forecasts. It consists of four major parts: regression, 
smoothing methods, time series models, and selected special topics. 



6 INTRODUCTION AND SUMMARY 

In Chapter 2 we discuss the regression model, which describes the 
relationship between a dependent or response variable and a set of indepen- 
dent or predictor variables. We discuss how regression models are built 
from historical data, how their parameters are estimated, and how they can 
be used for forecasting. We describe the matrix representation of regression 
models and cover such topics as transformations, multicollinearity, and the 
special problems that occur in fitting regression models to time series data. 
We discuss how to detect serial correlation in the errors, the consequences 
of such correlation, and generalizations of regression models that take 
account of this correlation explicitly. 

In Chapters 3 through 7 we discuss how to forecast a single time series, 
without information from other, possibly related, series. In Chapter 3 we 
review regression and smoothing as methods of forecasting nonseasonal 
time series. Nonseasonal series are characterized by time trends and uncor- 
related error or noise components. The trend component is usually a 
polynomial in time; constant, linear, and quadratic trends are special cases. 

In models with stable, nonchanging trend components and uncorrelated 
errors, the parameters can be estimated by least squares. If the trend 
components change with time, discounted least squares, also known as 
general exponential smoothing, can be used to estimate the parameters and 
derive future forecasts. There the influence of the observations on the 
parameter estimates diminishes with the age of the observations. Special 
cases lead to simple, double, and triple exponential smoothing and are 
discussed in detail. 

In Chapter 4 we apply the regression and smoothing methods to forecast 
seasonal series. Seasonal time series are decomposed into trend, seasonal, 
and error components. The seasonal component is expressed as a sum of 
either trigonometric functions or seasonal indicators. We describe the 
regression approach for series with stable trend and seasonal components, 
and discuss general exponential smoothing and Winters’ additive and multi- 
plicative methods for series with time-changing components. In addition, 
seasonal adjustment is introduced, with emphasis on the Census X-1 1 
method. 

A stochastic modeling or time series analysis approach to forecast a 
single time series is given in Chapters 5 and 6. In Chapter 5 we discuss the 
class of autoregressioe integrated mooing average ( ARIMA) models, which 
can represent many stationary and nonstationary stochastic processes. A 
stationary stochastic process is characterized by its mean, its variance, and 
its autocorrelation function. Transformations, in particular successive dif- 
ferences, transform nonstationary series with changing means into sta- 
tionary series. The patterns in the autocorrelation functions implied by 
specific ARIMA models are analyzed in detail; to simplify the model- 
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specification we also introduce partial autocorrelations and describe their 
patterns. We explain Box and Jenkins’ (1976) three-stage iterative model- 
building strategy, which consists of model specification, parameter estima- 
tion, and diagnostic checking. We show how forecasts from ARIMA models 
can be derived; how minimum mean square error forecasts and correspond- 
ing prediction intervals can be easily calculated; and how the implied 
forecast functions, which consist of exponential and polynomial functions 
of the forecast horizon, adapt as new observations are observed. 

The class of ARIMA models is extended to include seasonal time series 
models. Multiplicative seasonal ARIMA models are described in Chapter 6, 
and their implied autocorrelation and partial autocorrelation functions are 
discussed. The minimum mean square error forecasts from such models are 
illustrated with several examples. The forecast functions include polynomial 
trends and trigonometric seasonal components that, unlike those in the 
seasonal regression model described in Chapter 4, adapt as new observa- 
tions become available. 

In Chapter 7 we discuss the relationships between the forecasts from 
exponential smoothing and the forecasts derived from ARIMA time series 
models. We show that the time series approach actually includes general 
exponential smoothing as a special case; exponential smoothing forecast 
procedures are implied by certain restricted ARIMA models. Implications 
of these relationships for the forecast practitioner are discussed. 

In Chapter 8 we introduce several more advanced forecast techniques. 
We describe transfer function models, which relate an output series to 
present and past values of an input series; intenention time series modeling, 
which can be used to assess the effect of an exogenous intervention; 
Bayesian forecasting and Kalman filtering; time series models with time-vary- 
ing coefficients; adaptive filtering; and post-sample forecast evaluation and 
tracking signals. 

Throughout the book we emphasize a model-based approach to forecast- 
ing. We discuss how models are built to generate forecasts, and match 
commonly used forecast procedures to models within which they generate 
optimal forecasts. We stress the importance of checking the adequacy of a 
model before using it for forecasting. An appropriate forecast system has to 
produce uncorrelated one-step-ahead forecast errors, since correlations 
among these forecast errors would indicate that there is information in the 
data that has not yet been used. 

Many actual examples are presented in the book. The data sets are real 
and have been obtained from published articles and consulting projects. 
Exercises are given in the back of the book for each chapter. 



C H A P T E R 2  

The Regression Model 
and Its Application 
in Forecasting 

Regression analysis is concerned with modeling the relationships among 
variables. It quantifies how a response (or dependent) variable is related to a 
set of explanatory (independent, predictor) variables. For example, a 
manager might be interested in knowing how the sales of a particular 
product are related to its price, the prices of competitive products, and the 
amount spent for advertising. Or an economist might be interested in 
knowing how a change in per capita income affects consumption, how a 
price change in gasoline affects gasoline demand, or how the gross national 
product is related to government spending. Engineers might be interested in 
knowing how the yield of a particular chemical process depends on reaction 
time, temperature, and the type of catalyst used. 

If the true relationships among the variables were known exactly, the 
investigator (manager, economist, engineer) would be in a position to 
understand, predict, and control the response. For example, the economist 
could predict gasoline sales for any fixed price (forecasting) or could choose 
the price to keep the gasoline sales at a fixed level (control). 

The true relationships among the studied variables, however, will rarely 
be known, and one must rely on empirical evidence to develop approxima- 
tions. In addition, the responses will vary, even if the experiment is repeated 
under apparently identical conditions. This variation that occurs from one 
repetition to the next is called noise, experimental variation, experimental 
error, or merely error. The variation can come from many sources; i t  is 
usually due to measurement error and variation in other, uncontrollable 

8 
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variables. To take explicit account of it, we have to consider probabilistic 
(or statistical) models. 

In t h s  chapter we introduce one such probabilistic model, namely the 
regression model. We discuss how to construct such a model from empirical 
data and how to use it in forecasting. In our discussion, we emphasize 
general principles of statistical model building, such as the specification of 
models, the estimation of unknown coefficients (parameters), and diagnostic 
procedures to check the adequacy of the considered model. 

2.1. THE REGRESSION MODEL 

Let us study the relationship between a dependent variable Y and p 
independent variables X , ,  X 2 ,  ..., X p .  An index t is introduced to denote 
the dependent variable at time t (or for subject 1 )  by y, and the p 
independent variables by x,,, x I 2 , .  . . , x l p .  For observations that occur in 
natural time order, the index t stands for time. In situations where there is 
no such ordering, t is just an arbitrary index. For example, in cross-sectional 
data, where we get observations on different subjects (companies, counties, 
etc.), the particular ordering has no meaning. 

In its most general form, the regression model can be written as 

where f ( x , ;  8) is a mathematical function of the p independent variables 
x, = (x, ,,..., x,,,)’ and unknown parameters f3 = (/? ,,..., &>’. In the fol- 
lowing discussion we assume that, apart from the unknown parameters, the 
functional form of the model is known. 

The model in (2.1) is probabilistic, since the error term E ,  is a random 
variable. It is assumed that: 

1. Its mean, E ( E , )  = 0, and its variance, I/(&,) = u2, are constant and 
do not depend on t .  

2. The errors E, are uncorrelated; that is, COV(E,,  = E(E,E,  - k )  = 0 
for all t and k f 0. 

3. The errors come from a normal distribution. Then assumption 2 
implies independence among the errors. 

Due to the random nature of the error terms E ~ ,  the dependent variable J*! 

itself is a random variable. The model in Equation (2.1) can therefore also 
be expressed in terms of the conditional distribution of y, given x ,  = 
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( X , ~ , .  . . , x f p ) ' .  In this context the assumptions can be rewritten: 

THE REGRESSION MODEL AND ITS APPLICATION IN FORECASTING 

1. The conditional mean, E ( y , l x , )  = f ( x , ;  p), depends on the indepen- 
dent variables x ,  and the parameters 8, and the variance V( y ,  Ix , )  = 

u 2  is independent of x ,  and time. 
2. The dependent variables y, and for different time periods (or 

subjects) are uncorrelated: 

3. Conditional on x , ,  y ,  follows a normal distribution with mean 
f(x,; B) and variance 0'; this is denoted by N ( f ( x , ;  B), a'). 

These assumptions imply that the mean of the conditional distribution of y ,  
is a function of the independent variables x , .  This relationship, however, is 
not deterministic, as for each fixed x ,  the corresponding y, will scatter 
around its mean. The variation of this scatter does not depend on t or on the 
levels of the independent variables. Furthermore, the error E, cannot be 
predicted from other errors. 

In our discussion we assume that the independent variables are fixed and 
nonstochastic. This simplifies the derivations in this chapter. However, most 
results also hold if the predictor variables are random. 

Several special cases of the general regression model are given below: 

1. y ,  = Po + E ,  (constant mean model) 

2. y, = Po + P,x, + E ,  

3. y, = Poexp(Plx,) + E ,  (exponential growth model) 

4. y, = Po + P,x, + p,x: + E ,  

5. y ,  = Po + PlxI l  + P2xf2 + E ,  

variables) 

6- yI = Po + PIX,I + P 2 ~ 1 2  + PIIX:I + P 2 2 ~ : 2  + P I z X , I X , Z  + E l  

(quadratic model with two independent variables) 

(simple linear regression model) 

(quadratic model) 
(linear model with two independent 

In Figure 2.1 we have plotted E ( y , J x , )  = f ( x , ;  8)  for the models given 
above. An individual y, will vary around its mean function according to a 
normal distribution with constant variance 0 2 .  This is illustrated in Figure 
2.1 for model 2. 

2.1.1. Linear and Nonlinear Models 

All models except the third are linear in the parameters, which means that 
the derivatives of f ( x , ;  B) with respect to the parameters in f3 do not depend 


