Statistical Factor Analysis and Related Methods

Theory and Applications

ALEXANDER BASILEVSKY

Department of Mathematics & Statistics The University of Winnipeg Winnipeg, Manitoba Canada

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore

Statistical Factor Analysis and Related Methods

Statistical Factor Analysis and Related Methods

Theory and Applications

ALEXANDER BASILEVSKY

Department of Mathematics & Statistics The University of Winnipeg Winnipeg, Manitoba Canada

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Brisbane • Toronto • Singapore A NOTE TO THE READER This book has been electronically reproduced from digital information stored at John Wiley & Sons, Inc. We are pleased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings.

This text is printed on acid-free paper.

Copyright © 1994 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012

Library of Congress Cataloging in Publication Data:

Basilevsky, Alexander.

Statistical factor analysis and related methods : theory and applications / by Alexander Basilevsky. p. cm. -- Wiley series in probability and mathematical statistics. Probability and mathematical statistics) "A Wiley-Interscience publication." Includes bibliographical references and index. ISBN 0-471-57082-6 (acid-free) 1. Factor analysis. 1. Title. II. Series. QA278.5.B37 1993 519.5'354--dc20 93-2323 To my mother Olha and To the memory of my father Mykola

If one is satisfied, as he should be, with that which is to be probable, no difficulty arises in connection with those things that admit of more than one explanation in harmony with the evidence of the senses; but if one accepts one explanation and rejects another that is equally in agreement with the evidence it is clear that he is altogether rejecting science and taking refuge in myth.

- Epicurus (Letter to Pythocles, Fourth Century B.C.)

Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world. In our endeavour to understand reality we are somewhat like a man trying to understand the mechanism of a closed watch. He sees the face and the moving hands, even hears its ticking, but he has no way of opening the case. If he is ingenious he may form some picture of a mechanism which could be responsible for all the things he observes, but he may never be quite sure his picture is the only one which could explain his observations. He will never be able to compare his picture with the real mechanism and he cannot even imagine the possibility of the meaning of such a comparison.

-A. Einstein, The Evolution of Physics, 1938

Preface

More so than other classes of statistical multivariate methods, factor analysis has suffered a somewhat curious fate in the statistical literature. In spite of its popularity among research workers in virtually every scientific endeavor (e.g., see Francis, 1974), it has received little corresponding attention among mathematical statisticians, and continues to engender debate concerning its validity and appropriateness. An equivalent fate also seems to be shared by the wider class of procedures known as latent variables models. Thus although high-speed electronic computers, together with efficient numerical methods, have solved most difficulties associated with fitting and estimation, doubt at times persists about what is perceived to be an apparent subjectiveness and arbitrariness of the methods (see Chatfield and Collins, 1980, p. 88). In the words of a recent reviewer, "They have not converted me to thinking factor analysis is worth the time necessary to understand it and carry it out." (Hills, 1977.)

Paradoxically, on the more applied end of the spectrum, faced with voluminous and complex data structures, empirical workers in the sciences have increasingly turned to data reduction procedures, exploratory methods, graphical techniques, pattern recognition and other related models which directly or indirectly make use of the concept of a latent variable (for examples see Brillinger and Preisler, 1983). In particular, both formal and informal exploratory statistical analyses have recently gained some prominence under such terms as "soft modeling" (Wold, 1980) and "projection pursuit" (Huber, 1985; Friedman and Tukey, 1974). These are tasks to which factor analytic techniques are well suited. Besides being able to reduce large sets of data to more manageable proportions, factor analysis has also evolved into a useful data-analytic tool and has become an invaluable aid to other statistical models such as cluster and discriminant analysis, least squares regression, time/frequency domain stochastic processes, discrete random variables, graphical data displays, and so forth although this is not always recognized in the literature (e.g. Cooper, 1983).

Greater attention to latent variables models on the part of statisticians is now perhaps overdue. This book is an attempt to fill the gap between the mathematical and statistical theory of factor analysis and its scientific practice, in the hope of providing workers with a wider scope of the models than what at times may be perceived in the more specialized literature (e.g. Steward, 1981; Zegura, 1978; Matalas and Reicher, 1967; Rohlf and Sokal, 1962).

The main objections to factor analysis as a bona fide statistical model have stemmed from two sources-historical and methodological. Historically, factor analysis has had a dual development beginning indirectly with the work of Pearson (1898, 1901, 1927), who used what later becomes known as principal components (Hotelling, 1933) to fit "regression" planes to multivariate data when both dependent and independent variables are subject to error. Also, Fisher used the so-called singular value decomposition in the context of ANOVA (Fisher and Mackenzie, 1923). This was the beginning of what may be termed the statistical tradition of factor analysis, although it is clearly implicit in Bravais' (1846) original development of the multivariate normal distribution, as well as the mathematical theory of characteristic (eigen) roots and characteristic (eigen) vectors of linear transformations. Soon after Hotelling's work Lawley (1940) introduced the maximum likelihood factor model. It was Spearman (1904, 1913), however, who first used the term "factor analysis" in the context of psychological testing for "general intelligence" and who is generally credited (mainly in psychology) for the origins of the model. Although Spearman's method of "tetrads" represented an adaptation of correlation analysis, it bore little resemblance to what became known as factor analysis in the scientific literature. Indeed, after his death Spearman was challenged as the originator of factor analysis by the psychologist Burt, who pointed out that Spearman had not used a proper factor model, as Pearson (1901) had done. Consequently, Burt was the originator of the psychological applications of the technique (Hearnshaw, 1979). It was not until later however that factor analysis found wide application in the engineering, medical, biological, and other natural sciences and was put on a more rigorous footing by Hotelling, Lawley, Anderson, Joreskog, and others. An early exposition was also given by Kendall (1950) and Kendall and Lawley (1956). Because of the computation involved, it was only with the advent of electronic computers that factor analysis became feasible in everyday applications.

Early uses of factor analysis in psychology and related areas relied heavily on linguistic labeling and subjective interpretation (perhaps Cattell, 1949 and Eysenck, 1951 are the best known examples) and this tended to create a distinct impression among statisticians that imposing a particular set of values and terminology was part and parcel of the models. Also, questionable psychological and eugenic attempts to use factor analysis to measure innate (i.e., genetically based) "intelligence," together with Burt's fraudulent publications concerning twins (e.g., see Gould, 1981) tended to further alienate scientists and statisticians from the model. Paradoxically, the rejection has engendered its own misunderstandings and confusion amongst statisticians (e.g., see Ehrenberg, 1962; Armstrong, 1967; Hills, 1977), which seems to have prompted some authors of popular texts on multivariate analysis to warn readers of the "... many drawbacks to factor analysis" (Chatfield and Collins, 1980, p. 88). Such misunderstandings have had a further second-order impact on practitioners (e.g., Mager, 1988, p. 312).

Methodological objections to factor analysis rest essentially on two criteria. First, since factors can be subjected to secondary transformations of the coordinate axes, it is difficult to decide which set of factors is appropriate. The number of such rotational transformations (orthogonal or oblique) is infinite, and any solution chosen is, mathematically speaking, arbitrary. Second, the variables that we identify with the factors are almost never observed directly. Indeed, in many situations they are, for all practical intents and purposes, unobservable. This raises a question concerning exactly what factors do estimate, and whether the accompanying identification process is inherently subjective and unscientific. Such objections are substantial and fundamental, and should be addressed by any text that deals with latent variables models. The first objection can be met in a relatively straightforward manner, owing to its somewhat narrow technical nature, by observing that no estimator is ever definitionally unique unless restricted in some suitable manner. This is because statistical modeling of the empirical world involves not only the selection of an appropriate mathematical procedure, with all its assumptions, but also consists of a careful evaluation of the physical-empirical conditions that have given rise to, or can be identified with, the particular operative mechanism under study. It is thus not only the responsibility of mathematical theory to provide us with a unique statistical estimator, but rather the arbitrary nature of mathematical assumptions enables the investigator to choose an appropriate model or estimation technique, the choice being determined largely by the actual conditions at hand. For example, the ordinary least squares regression estimator is one out of infinitely many regression estimators which is possible since it is derived from a set of specific assumptions, one being that the projection of the dependent variable/vector onto a sample subspace spanned by the independent (explanatory) variables is orthogonal. Of course, should orthogonality not be appropriate, statisticians have little compunction about altering the assumption and replacing ordinary least squares with a more general model. The choice is largely based on prevailing conditions and objectives, and far from denoting an ill-defined situation the existence of alternative estimation techniques contributes to the inherent flexibility and power of statistical/mathematical modeling.

An equivalent situation also exists in factor analysis, where coefficients may be estimated under several different assumptions, for example, by an oblique rather than an orthogonal model since an initial solution can always

be rotated subsequently to an alternative basis should this be required. Although transformation of the axes is possible with any statistical model (the choice of a particular coordinate system is mathematically arbitrary), in factor analysis such transformations assume particular importance in some (but not all) empirical investigations. The transformations, however, are not an inherent feature of factor analysis or other latent variable(s) models, and need only be employed in fairly specific situations, for example, when attempting to identify clusters in the variable (sample) space. Here, the coordinate axes of an initial factor solution usually represent mathematically arbitrary frames of references which are chosen on grounds of convenience and east of computation, and which may have to be altered because of interpretational or substantive requirements. The task is much simplified, however, by the existence of well-defined statistical criteria which result in unique rotations, as well as by the availability of numerical algorithms for their implementation. Thus once a criterion function is selected and optimized, a unique set of estimated coefficients (coordinate axes) emerges. In this sense the rotation of factors conforms to general and accepted statistical practice. Therefore, contrary to claims such as those of Ehrenberg (1962) and Temple (1978), our position on the matter is that the rotation of factors is not intrinsically subjective in nature and, on the contrary, can result in a useful and meaningful analysis. This is not to say that the rotational problem represents the sole preoccupation of factor analysis. On the contrary, in some applications the factors do not have to be rotated or undergo direct empirical interpretation. Frequently they are only required to serve as instrumental variables, for example, to overcome estimation difficulties in least squares regression. Unlike the explanatory variables in a regression model, the factor scores are not observed directly and must also be estimated from the data. Again, well-defined estimators exist, the choice of which depends on the particular factor model used.

The second major objection encountered in the statistical literature concerns the interpretation of factors as actual variables, capable of being identified with real or concrete phenomenon. Since factors essentially represent linear functions of the observed variables (or their transformations), they are not generally observable directly, and are thus at times deemed to lack the same degree of concreteness or authenticity as variables measured in a direct fashion. Thus, although factors may be seen as serving a useful role in resolving this estimation difficulty or that measurement problem, they are at times viewed as nothing more than mathematical artifacts created by the model. The gist of the critique is not without foundation, since misapplication of the model is not uncommon. There is a difficulty, however, in accepting the argument that just because factors are not directly observable they are bereft of all "reality." Such a viewpoint seems to equate the concept of reality with that of direct observability (in principle or otherwise), a dubious and inoperative criterion at best, since many of our observations emanate from indirect sources. Likewise, whether

factors correspond to real phenomena is essentially an empirical rather than a mathematical question, and depends in practice on the nature of the data, the skill of the practitioner, and the area of application. For example, it is important to bear in mind that correlation does not necessarily imply direct causation, or that when nonsensical variables are included in an analysis, particularly under inappropriate assumptions or conditions, very little is accomplished. On the other hand, in carefully directed applications involving the measurement of unobservable or difficult-to-observe variables---such as the true magnitude of an earthquake, extent and/or type of physical pain, political attitudes, empirical index numbers, general size and/or shape of a biological organism, the informational content of a signal or a two-dimensional image-the variables and the data are chosen to reflect specific aspects which are known or hypothesized to be of relevance. Here the retained factors will frequently have a ready and meaningful interpretation in terms of the original measurements, as estimators of some underlying latent trait(s).

Factor analysis can also be used in statistical areas, for example, in estimating time and growth functions, least squares regression models, Kalman filters, and Karhunen-Loève spectral models. Also, for optimal scoring of a contingency table, principal components can be employed to estimate the underlying continuity of a population. Such an analysis (which predates Hotelling's work on principal components-see Chapter 9) can reveal aspects of data which may not be immediately apparent. Of course, in a broader context the activity of measuring unobserved variables, estimating dimensionality of a model, or carrying out exploratory statistical analysis is fairly standard in statistical practice and is not restricted to factor models. Thus spectral analysis of stochastic processes employing the power (cross) spectrum can be regarded as nothing more than a fictitious but useful mathematical construct which reveals the underlying structure of correlated observations. Also, statisticians are frequently faced with the problem of estimating dimensionality of a model, such as the degree of a polynomial regression or the order of an ARMA process. Available data are generally used to provide estimates of missing observations whose original values cannot be observed. Interestingly, recent work using maximum likelihood estimation has confirmed the close relationship between the estimation of missing data and factor analysis, as indicated by the EM algorithm. Finally, the everyday activity of estimating infinite population parameters, such as means or variances, is surely nothing more than the attempt to measure that which is fundamentally hidden from us but which can be partially revealed by careful observation and appropriate theory. Tukey (1979) has provided a broad description of exploratory statistical research as

 \dots an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as for those we believe might be there... its tools are secondary to its purposes.

This definition is well suited to factor and other latent variable models and is employed (implicitly or explicitly) in the text.

The time has thus perhaps come for a volume such as this, the purpose of which is to provide a unified treatment of both the theory and practice of factor analysis and latent variables models. The interest of the author in the subject stems from earlier work on latent variables models using historical and social time series, as well as attempts at improving certain least squares regression estimators. The book is also an outcome of postgraduate lectures delivered at the University of Kent (Canterbury) during the 1970s, together with more recent work. The volume is intended for senior undergraduate and postgraduate students with a good background in statistics and mathematics, as well as for research workers in the empirical sciences who may wish to acquaint themselves better with the theory of latent variables models. Although stress is placed on mathematical and statistical theory, this is generally reinforced by examples taken from the various areas of the natural and social sciences as well as engineering and medicine. A rigorous mathematical and statistical treatment seems to be particularly essential in an area such as factor analysis where misconception and misinterpretations still abound. Finally, a few words are in order concerning our usage of the term "factor analysis," which is to be understood in a broad content rather than the more restricted sense at times encountered in the literature. The reason for this usage is to accentuate the common structural features of certain models and to point out essential similarities between them. Although such similarities are not always obvious when dealing with empirical applications, they nevertheless become clear when considering mathematical-statistical properties of the models. Thus the ordinary principal components model, for example, emerges as a special case of the weighted (maximum likelihood) factor model although both models are at times considered to be totally distinct (e.g., see Zegura, 1978). The term "factor analysis" can thus be used to refer to a class of models that includes ordinary principal components, weighted principal components, maximum likelihood factor analysis, certain multidimensional scaling models, dual scaling, correspondence analysis, canonical correlation, and latent class/ latent profile analysis. All these have a common feature in that latent root and latent vector decompositions of special matrices are used to locate informative subspaces and estimate underlying dimensions.

This book assumes on the part of the reader some background in calculus, linear algebra, and introductory statistics, although elements of the basics are provided in the first two chapters. These chapters also contain a review of some of the less accessible material on multivariate sampling, measurement and information theory, latent roots and latent vectors in both the real and complex domains, and the real and complex normal distribution. Chapters 3 and 4 describe the classical principal components model and sample-population inference; Chapter 5 treats several extensions and modifications of principal components such as Q and three-mode

analysis, weighted principal components, principal components in the complex field, and so forth. Chapter 6 deals with maximum likelihood and weighted factor models together with factor identification, factor rotation, and the estimation of factor scores. Chapters 7–9 cover the use of factor models in conjunction with various types of data such as time series, spatial data, rank orders, nominal variables, directional data, and so forth. This is an area of multivariate theory which is frequently ignored in the statistical literature when dealing with latent variable estimation. Chapter 10 is devoted to applications of factor models to the estimation of functional forms and to least squares regression estimators when dealing with measurement error and/or multicollinearity.

I would like to thank by colleagues H. Howlader of the Department of Mathematics and Statistics, as well as S. Abizadeh, H. Hutton, W. Morgan, and A. Johnson of the Departments of Economics Chemistry, and Anthropology, respectively, for useful discussions and comments, as well as other colleagues at the University of Winnipeg who are too numerous to name. Last but not least I would like to thank Judi Hanson for the many years of patient typing of the various drafts of the manuscript, which was accomplished in the face of much adversity, as well as Glen Koroluk for help with the computations. Thanks are also owed to Rita Campbell and Weldon Hiebert for typing and graphical aid. Of course I alone am responsible for any errors or shortcomings, as well as for views expressed in the book.

Alexander Basilevsky

Winnigep, Manitoba February 1994

Contents

1.	Preliminaries			1
	1.1	Introd	luction	1
	1.2	Rules	for Univariate Distributions	5
		1.2.1	The Chi-Squared Distribution	5
		1.2.2	The F Distribution	6
		1.2.3	The t Distribution	7
	1.3	Estim	ation	8
		1.3.1	Point Estimation: Maximum Likelihood	9
		1.3.2	The Likelihood Ratio Criterion	12
	1.4	Notio	ns of Multivariate Distributions	15
	1.5	Statist	ics and the Theory of Measurement	19
		1.5.1	The Algebraic Theory of Measurement	20
		1.5.2	Admissible Transformations and the Classification	
			of Scales	25
		1.5.3	Scale Classification and Meaningful Statistics	28
		1.5.4	Units of Measure and Dimensional Analysis for	
			Ratio Scales	30
	1.6	Statistical Entropy		31
	1.7	Comp	lex Random Variables	33
	Exe	rcises		35
2.	Matrixes, Vector Spaces			
	2.1	Intro	duction	37
	2.2	Linea	ar, Quadratic Forms	38
	2.3	Multi	ivariate Differentiation	42
		2.3.1	Derivative Vectors	42
		2.3.2	Derivative Matrices	44

xvii

	2.4	Grammian Association Matrices	47
		2.4.1 The Inner Product Matrix	49
		2.4.2 The Cosine Matrix	50
		2.4.3 The Covariance Matrix	51
		2.4.4 The Correlation Matrix	52
	2.5	Transformation of Coordinates	56
		2.5.1 Orthogonal Rotations	57
		2.5.2 Oblique Rotations	60
	2.6	Latent Roots and Vectors of Grammian Matrices	62
	2.7	Rotation of Quadratic Forms	67
	2.8	Elements of Multivariate Normal Theory	69
		2.8.1 The Multivariate Normal Distribution	70
		2.8.2 Sampling from the Multivariate Normal	83
	2.9	The Kronecker Product	86
	2.10	Simultaneous Decomposition of Two Grammian Matrices	88
	2.11	The Complex Multivariate Normal Distribution	90
		2.11.1 Complex Matrices, Hermitian Forms	90
		2.11.2 The Complex Multivariate Normal	93
	Exer	cises	95
3.	The	Ordinary Principal Components Model	97
	3.1	Introduction	97
	3.2	Principal Components in the Population	101
	3.3	Isotropic Variation	119
	3.4	Principal Components in the Sample	127
		3.4.1 Introduction	127
		3.4.2 The General Model	128
		3.4.3 The Effect of Mean and Variances on PCs	142
	3.5	Principal Components and Projections	146
			1.0
	3.6	Principal Components by Least Squares	160
	3.6 3.7	Nonlinearity in the Variables	160 162
	3.7	Nonlinearity in the Variables	162
	3.7	Nonlinearity in the Variables Alternative Scaling Criteria	162 173
	3.7	Nonlinearity in the Variables Alternative Scaling Criteria 3.8.1 Introduction	162 173 173
	3.7 3.8	Nonlinearity in the VariablesAlternative Scaling Criteria3.8.1Introduction3.8.2Standardized Regression Loadings3.8.3Ratio Index Loadings3.8.4Probability Index Loadings	162 173 173 174
	3.7 3.8	Nonlinearity in the VariablesAlternative Scaling Criteria3.8.1Introduction3.8.2Standardized Regression Loadings3.8.3Ratio Index Loadings	162 173 173 174 175

4.	Stati	stical Testing o	f the Ordinary	Principal	Components	Model	182
	4.1	Introduction					182

	4.2	Testin	g Covariance and Correlation Matrices	184
		4.2.1	Testing for Complete Independence	185
		4.2.2	Testing Sphericity	191
		4.2.3	Other Tests for Covariance Matrices	194
	4.3	Testir	ng Principal Components by Maximum Likelihood	202
		4.3.1	Testing Equality of all Latent Roots	202
		4.3.2	Testing Subsets of Principal Components	204
		4.3.3	Testing Residuals	207
		4.3.4	Testing Individual Principal Components	209
		4.3.5	Information Criteria of Maximum Likelihood Estimation of the Number of Components	220
	4.4	Other	Methods of Choosing Principal Components	223
		4.4.1	Estimates Based on Resampling	223
		4.4.2	Residual Correlations Test	228
		4.4.3	Informal Rules of Thumb	229
	4.5	Discar	rding Redundant Variables	231
	4.6		sing Normality	234
		4.6.1	Assessing for Univariate Normality	234
		4.6.2	*	235
		4.6.3	Retrospective Testing for Multivariate Normality	241
	4.7	Robus	stness, Stability, and Missing Data	242
		4.7.1	Robustness	242
		4.7.2	Sensitivity of Principal Components	243
		4.7.3	Missing Data	246
	Exe	rcises		248
5.	Exte	ensions	of the Ordinary Principal Components Model	250
	5.1	Introd	luction	250
	5.2	Princi	pal Components of Singular Matrices	250
		5.2.1	Singular Grammian Matrices	251
		5.2.2	Rectangular Matrices and Generalized Inverses	252
	5.3		pal Components as Clusters: Linear formations in Exploratory Research	257
			Orthogonal Rotations	258
		5.3.2	Oblique Rotations	270
		5.3.3	Grouping Variables	276
	5.4		native Modes for Principal Components	278
		5.4.1	Q-Mode Analysis	278
		5.4.2	Multidimensional Scaling and Principal Coordinates	282
			www.waintyu	202

		5.4.3	Three-Mode Analysis	286
		5.4.4	Joint Plotting of Loadings and Scores	297
	5.5	Other	Methods for Multivariable and Multigroup	
		Princip	pal Components	300
		5.5.1	The Canonical Correlation Model	300
		5.5.2	Modification of Canonical Correlation	308
		5.5.3		
			of Variables	310
		5.5.4	8 1 1 1	311
	5.6	Weigh	ted Principal Components	318
	5.7	Princi	pal Components in the Complex Field	321
	5.8	Miscel	laneous Statistical Applications	322
		5.8.1	Further Optimality Properties	322
		5.8.2	Screening Data	324
		5.8.3	Principal Components of Discrimination and	
			Classification	326
		5.8.4		
			Test	328
	5.9	•	l Types of Continuous Data	330
		5.9.1	Proportions and Compositional Data	330
			Estimating Components of a Mixture	334
		5.9.3	Directional Data	339
	Exe	rcises		347
6.	Fact	tor Ana	lysis	351
	6.1	Intro	duction	351
	6.2		Unrestricted Random Factor Model in the	
		-	lation	353
	6.3		oring by Principal Components	361
			The Homoscedastic Residuals Model	361
		6.3.2	Unweighed Least Squares Models	363
		6.3.3	The Image Factor Model	365
		6.3.4	The Whittle Model	367
	6.4	Unre	stricted Maximum Likelihood Factor Models	367
		6.4.1	The Reciprocal Proportionality Model	367
		6.4.2	The Lawley Model	370
		6.4.3	The Rao Canonical Correlation Factor Model	379
		6.4.4	. The Generalized Least Squares Model	381
	6.5	Othe	r Weighted Factor Models	382
		6.5.1	The Double Heteroscedastic Model	382
		6.5.2	Psychometric Models	384

	6.6	Tests of Significance	384	
		6.6.1 The Chi-Squared Test	385	
		6.6.2 Information Criteria	387	
		6.6.3 Testing Loading Coefficients	392	
	6.7	The Fixed Factor Model	394	
	6.8	Estimating Factor Scores	395	
		6.8.1 Random Factors: The Regression Estimator	396	
		6.8.2 Fixed Factors: The Minimum Distance Estimator	398	
		6.8.3 Interpoint Distance in the Factor Space	400	
	6.9	Factors Representing "Missing Data:" The EM		
		Algorithm	400	
	6.10	Factor Rotation and Identification	402	
	6.11	Confirmatory Factor Analysis	414	
	6.12	Multigroup Factor Analysis	417	
	6.13	Latent Structure Analysis	418	
	Exer	cises	420	
7.	Fact	or Analysis of Correlated Observations	432	
	7.1	Introduction	432	
	7.2	Time Series as Random Functions	424	
		7.2.1 Constructing Indices and Indicators	430	
		7.2.2 Computing Empirical Time Functions	434	
		7.2.3 Pattern Recognition and Data Compression:		
		Electrocardiograph Data	437	
	7.3	Demographic Cohort Data	439	
	7.4	Spatial Correlation: Geographic Maps		
	7.5	5 The Karhunen-Loève Spectral Decomposition in the		
		Time Domain	445	
		7.5.1 Analysis of the Population: Continuous Space	446	
		7.5.2 Analysis of a Sample: Discrete Space	454	
		7.5.3 Order Statistics: Testing Goodness of Fit	461	
	7.6	Estimating Dimensionality of Stochastic Processes	464	
		7.6.1 Estimating A Stationary ARMA Process	465	
		7.6.2 Time Invariant State Space Models	467	
		7.6.3 Autoregression and Principal Components	469	
		7.6.4 Kalman Filtering Using Factor Scores	477	
	7.7	Multiple Time Series in the Frequency Domain	480	
		7.7.1 Principle Components in the Frequency Domain	481	
		7.7.2 Factor Analysis in the Frequency Domain	483	
	7.8	Stochastic Processes in the Space Domain:		
		Karhunen-Loève Decomposition	486	

	7.9		ned Matrices	489	
			Circular Matrices	490	
		7.9.2	5	491	
		7.9.3	•	492	
		7.9.4	Block-Patterned Matrices	495	
	Exe	rcises		497	
8.	Ord	inal and	d Nominal Random Data	501	
	8.1	Introd	luction	501	
	8.2	Ordin	al Data	501	
		8.2.1	Ordinal Variables as Intrinsically Continuous: Factor Scaling	502	
		8.2.2	Ranks as Order Statistics	508	
		8.2.3	Ranks as Qualitative Random Variables	512	
		8.2.4	Conclusions	518	
	8.3	Nomi	nal Random Variables: Count Data	518	
		8.3.1	Symmetric Incidence Matrices	519	
		8.3.2	Asymmetric Incidence Matrices	522	
		8.3.3	Multivariate Multinominal Data: Dummy Variables	524	
	8.4	Furthe	er Models for Discrete Data	533	
		8.4.1	Guttman Scaling	534	
		8.4.2	Maximizing Canonical Correlation	538	
		8.4.3	Two-Way Contingency Tables: Optimal Scoring	540	
		8.4.4	Extensions and Other Types of Discrete Data	552	
	8.5 Related Procedures: Dual Scaling and Correspondence				
		Analy	sis	561	
	8.6	Conclu	usions	564	
	Exe	rcises		564	
9.	Oth	er Mod	els for Discrete Data	570	
	9.1		luction	570	
	9.2	Serial	ly Correlated Discrete Data	570	
			Seriation	571	
			Ordination	577	
			Higher-Dimensional Maps	580	
	9.3		Ionlinear "Horseshoe" Effect	583	
	9.4		res of Pairwise Correlation of Dichotomous		
		Variat		593	
		9.4.1	Euclidean Measures of Association	594	
		9.4.2	Non-Euclidean Measures of Association	596	

	٠	
vv	11	22
A A	а.	

	9.5	Mixed I	Data	597
		9.5.1 I	Point Biserial Correlation	598
		9.5.2 I	Biserial Correlation	599
	9.6	Thresho	old Models	602
	9.7	Latent	Class Analysis	607
	Exe	rcises		621
10.	Fact	or Analy	sis and Least Squares Regression	624
	10.1	Introdu	uction	624
	10.2	Least S	Squares Curve Fitting with Errors in Variables	624
		10.2.1	Minimizing Sums of Squares of Errors in Arbitrary Direction	627
		10.2.2	The Maximum Likelihood Model	635
		10.2.3		639
		10.2.4	•	640
		10.2.5	•	644
	10.3		Squares Regression with Multicollinearity	645
	2010	10.3.1	* •	647
		10.3.2	Comparing Orthogonal-Norm and Y-Norm	663
		10 3 3	Least Squares Regression Latent Root Regression	665
			Quadratic Principal Components Regression	669
	10.4		Squares Regression with Errors in Variables and	(0)
	10.1		blinearity	671
		10.4.1	Factor Analysis Regression: Dependent	
			Variable Excluded	671
		10.4.2	Factor Analysis Regression: Dependent Variable Included	674
	10.5	Factor	Analysis of Dependent Variables in MANOVA	676
	10.6	Estima	ting Empirical Functional Relationships	678
	10.7	Other .	Applications	682
		10.7.1	Capital Stock Market Data: Arbitrage Pricing	682
		10.7.2	Estimating Nonlinear Dimensionality: Sliced Inverse Regression	684
		10.7.3	Factor Analysis and Simultaneous Equations	
			Models	687
	Exer	cises	· · · · · · · · · · · · · · · · · · ·	687
	Refe	rences		690
	Inde	x		733

Statistical Factor Analysis and Related Methods

CHAPTER 1

Preliminaries

1.1 INTRODUCTION

Since our early exposure to mathematical thinking we have come to accept the notion of a variable or a quantity that is permitted to vary during a particular context or discussion. In mathematical analysis the notion of a variable is important since it allows general statements to be made about a particular member of a set. Thus the essential nature of a variable consists in its being identifiable with any particular value of its domain, no matter how large that domain may be. In a more applied context, when mathematical equations or formulas are used to model real life phenomena, we must further distinguish between a deterministic variable and a probabilistic or random variable. The former features prominently in any classical description of reality where the universe is seen to evolve according to "exact" or deterministic laws that specify its past, present, and future. This is true, for example, of classical Newtonian mechanics as well as other traditional views which have molded much of our comtemporary thinking and scientific methodology.

Yet we know that in practice ideal conditions never prevail. The world of measurement and observation is never free of error or extraneous, nonessential influences and other purely random variation. Thus laboratory conditions, for example, can never be fully duplicated nor can survey observations ever be fully verified by other researchers. Of course we can always console ourselves with the view that randomness is due to our ignorance of reality and results from our inability to fully control, or comprehend, the environment. The scientific law itself, so the argument goes, does not depend on these nuisance parameters and is therefore fixed, at least in principle. This is the traditional view of the role of randomness in scientific enquiry, and it is still held among some scientific workers today.

Physically real sources of randomness however do appear to exist in the real world. For example, atomic particle emission, statistical thermody-

PRELIMINARIES

namics, sun spot cycles, as well as genetics and biological evolution all exhibit random behavior over and above measurement error. Thus randomness does not seem to stem only from our ignorance of nature, but also constitutes an important characteristic of reality itself whenever natural or physical processes exhibit instability (see Prigonine and Stengers, 1984). In all cases where behavior is purely or partially random, outcomes of events can only be predicted with a probability measure rather than with perfect certainty. At times this is counterintuitive to our understanding of the real world since we have come to expect laws, expressed as mathematical equations, to describe our world in a perfectly stable and predictable fashion. The existence of randomness in the real world, or in our measurements (or both), implies a need for a science of measurement of discrete and continuous phenomena which can take randomness into account in an explicit fashion. Such a science is the theory of probability and statistics, which proceeds from a theoretical axiomatic basis to the analysis of scientific measurements and observations.

Consider a set of events or a "sample space" S and a subset A of S. The sample space may consist of either discrete elements or may contain subsets of the real line. To each subset A in S we can assign a real number P(A), known as "the probability of the event A." More precisely, the probability of an event can be defined as follows.

Definition 1.1. A probability is a real-valued set function defined on the closed class of all subsets of the sample space S. The value of this function, associated with a subset A of S, is denoted by P(A). The probability P(A) satisfies the following axioms.*

- (1) P(S) = 1
- (2) $P(A) \ge 0$, all A in S
- (3) For any r subsets of S we have $P(A_1 \cup A_2 \cup \cdots \cup A_r) = P(A_1) + P(A_2) + \cdots + P(A_r)$ for $A_i \cap A_i = \emptyset$ the empty set, $i \neq j$

From these axioms we can easily deduce that $P(\emptyset) = 0$ and P(S) = 1, so that the probability of an event always lies in the closed interval $0 \le P(A) \le 1$. Heuristically, a zero probability corresponds to a logically impossible event, whereas a unit probability implies logical certainty.

Definition 1.2. A real variable X is a real valued function whose domain is the sample space S, such that:

- (1) The set $\{X \le x\}$ is an event for any real number x
- $(2) P(X = \pm \infty) = 0$

This definition implies a measurement process whereby a real number is assigned to every outcome of an "experiment." A random variable can

Known as the Kolmogorov axioms.