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If one is satisfied, as he should be, with that which is to be probable, no 
difficulty arises in connection with those things that admit of more than one 
explanation in harmony with the evidence of the senses; but if one accepts 
one explanation and rejects another that is equally in agreement with the 
evidence it is clear that he is altogether rcjecting science and taking refuge 
in myth. 

- Epicurus (Letter to Pythocles, Fourth Century B.C.) 

Physical concepts are free creations of the human mind, and are not, 
however it n a y  scem, uniquely determined by thc external world. In our 
endeavour to understand reality we are somewhat like a man trying to 
understand the mechanism of a closed watch. He sees the face and the 
moving hands, even hears its ticking, but he has no way of opening the case. 
If he is ingenious he may form some picture of a mechanism which could be 
responsible for all the things he observes, but he may never be quite sure his 
picture is the only one which could explain his observations. He will never 
be able to compare his picture with the rcal mechanism and he cannot even 
imagine the possibility of the meaning of such a comparison. 

-A. Einstein, The Evohtiun of Physics, 1938 
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Preface 

More so than other classes of statistical multivariate methods, factor analysis 
has suffered a somewhat curious fate in the statistical literature. In spite of 
its popularity among research workers in virtually every scientific endeavor 
(e.g., see Francis, 1!V4), it has received little corresponding attention 
among mathematical statisticians, and continues to engender debate con- 
cerning its validity and appropriateness. An equivalent fatc also seems to be 
shared by the wider class of procedures known as latent variables models. 
Thus although high-speed electronic computers, together with efficient 
numerical methods, have solved most difficulties associated with fitting and 
estimation, doubt at times persists about what is perceived to be an apparent 
subjectiveness and arbitrariness of the methods (see Chatfield and Cotlins, 
1980, p. 88). In the words of a recent reviewer, “They have not converted 
me to thinking factor analysis is worth the time necessary to understand it 
and carry it out.” (Hills, 1977.) 

Pmadoxically, on the more applied end of the spectrum, faced with 
voluminous and complex data structures, empirical workers in the sciences 
have increasingly turned to data reduction procedures, exploratory methods, 
graphical techniques, pattern recognition and other related models which 
directly or indirectly make use of the concept of a latent variable (for 
examples see Brillinger and Preisler, 1983). In particular, both formal and 
informal exploratory statistical analyses have recently gained some promi- 
nence under such terms as “soft modcling” (Wo€d, 1980) and “projection 
pursuit” (Huher, 1985; Friedman and Tukey, 1974). These are tasks to 
which factor analytic techniques are well suited. Besides being ablc to 
reduce large sets of data to more manageable proportions, factor analysis 
has also evolved into a useful data-analytic tool and has become an 
invaluable aid to other statistical models such as cluster and discriminant 
analysis, least squares regression, time /frequency domain stochastic pro- 
cesses, discrete random variables, graphical data displays, and so forth 
although this is not always recognized in the literature (cg.  Cooper, 1983). 

ix 
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Greater attention to latent variables models on the part of statisticians is 
now perhaps overdue. This book is an attempt to fill the gap between the 
mathematical itnd statistical theory of factor analysis and its scientific 
practice, in the hope of providing workers with a wider scope of the models 
than what at times may be perceived in the more specialized literature (e.g. 
Steward, 1981; Zegura, 1978; Matalas and Reicher, 1967; Rohlf and Sokal, 
1962). 

The main objections to factor analysis as a bona fide statistical model 
have stemmed from two sources-historical and methodological. Historical- 
iy, factor analysis has had a dual devclopment beginning indirectly with the 
work of Pearson (1898, 1901,1927). who used what later becomes known as 
principal components (Hotelling. 1933) to fit “regression” planes to multi- 
variate data when both dependent and independent variables are subject to 
error. Also, Fisher used the so-called singular value decomposition in the 
context of ANOVA (Fisher and Mackenzie, 1923). This was the beginning 
of what may be termed the statistical tradition of factor analysis, although it 
is clearly implicit in Bravais’ (1846) original development of the multivariate 
normal distribution, as well as the mathematical theory of characteristic 
(eigen) roots and characteristic (eigen) vectors of linear transformations. 
Soon after Hotclling’s work Lawley (1940) introduccd the maximum likeli- 
hood factor model. It was Spearman (1904, 1913), however, who first used 
the term ”factor analysis” in the context of psychological testing for 
“general intelligence*’ and who is generally credited (mainly in psychology) 
for the origins of the model. Although Spearman’s method of “tetrads” 
represented an adaptation of correlation analysis, it bore little resemblance 
to what became known as factor analysis in the scientific literature. Indeed, 
after his death Spearman was challenged as the originator of factor anaIysis 
by the psychologist Burt, who pointed out that Spearman had not used a 
proper factor model, as Pearson (1901) had done. Consequently, Burt was 
the originator of the psychological applications of the technique 
(Hearnshaw, 1979). It was not until later however that factor analysis found 
wide application in the engineering, medical, biological, and other natural 
sciences and was put on a more rigorous footing by Hotelling, Lawley, 
Anderson, Joreskog, and others, An early exposition was also given by 
Kendall(1950) and Kendall and Lawley (1956). Because of the computation 
involved, it was only with the advent of electronic computers that factor 
analysis became feasible in everyday applications. 

Early uses of factor analysis in psychology and related areas relied heavily 
on linguistic labeling and subjective interpretation (perhaps Cattell. 1949 
and Eysenck, 1951 are the best known examples) and this tended to create a 
distinct impression among statisticians that imposing a particular set of 
values and terminology was part and parcel of the models. Also, ques- 
tionable psychological and eugenic attempts to use factor analysis to mea- 
sure innate (i.e., genetically based) “intelligence,” together with Burt’s 
fraudulent publications concerning twins (e.g. ,  see Gould, 1981) tended to 
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further alienate scientists and statisticians from the model, Paradoxically, 
the rejection has engendered its own misunderstandings and confusion 
amongst statisticians (e.g., see Ehrenberg, 1962; Armstrong, 1967; Hills, 
1977), which seems to have prompted some authors of popular texts on 
multivariate analysis to warn rcaders of the ‘‘. . . many drawbacks to factor 
analysis” (Chatfield and Collins, 1980, p. 88). Such misunderstandings have - 

had a further second-order impact on practitioners (c.g., Mager, 1988, p. 
312). 

Methodological objections to factor analysis rest essentiatly on two 
criteria. First, since factors can be subjected to secondary transformations of 
the coordinate axes, it is difficult to decide which set of factors is appro- 
priate. The number of such rotational transformations (orthogonal or ob- 
lique) is infinite, and any solution chosen is, mathematically speaking, 
arbitrary. Second, the variables that we identify with the factors are almost 
never obscrved directly. Indeed, in many situations they are, for all practical 
intents and purposes, unobservable. This raises a question concerning 
exactly what factors do estimate, and whether thc accompanying identifica- 
tion process is inherently subjective and unscientific. Such objections are 
substantial and fundamental, and should he addressed by any text that deals 
with latent variables models. Thc first objection can be met in a relatively 
straightforward manner, owing to its somewhat narrow technical nature, by 
observing that no estimator is ever definitionally unique unless restricted in 
some suitable manner. This is because statistical modeling of the empirical 
world involves not only the selection of an appropriate mathematical 
procedure, with all its assumptions, but also consists of a careful evaluation 
of the physical-empirical conditions that have given rise to, or can be 
identified with, the particular operative mechanism under study. It is thus 
not only the responsibility of mathematical theory to provide us with a 
unique statistical estimator, but rather the arbitrary nature of mathematical 
assumptions enables the investigator to choose an appropriate model or 
estimation technique, the choice being determined largely by the actual 
conditions at hand. For example, the ordinary least squares regression 
estimator is one out of infinitely many regression estimators which is 
possible since it is derived from a set of specific assumptions, one being that 
the projection of the dependent variable/vector onto a sample subspace 
spanned by the independent (explanatory) variables is orthogonal. Of 
course, should orthogonality not be appropriate, statisticians have little 
compunction about altering the assumption and replacing ordinary least 
squares with a more general model. The choice is largely based on prevail- 
ing conditions and objectives, and far from denoting an ill-defined situation 
the existence of alternative estimation techniques contributes to the inherent 
flexibility and power of statistical/mathematical modeling. 

An equivalent situation also exists in factor analysis, where coefficients 
may be estimated under several different assumptions, for example, by an 
obliquc rather than an orthogonal model since an initial solution can always 
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be rotated subsequently to an alternative basis should this be required. 
Although transformation of the axes is possible with any statistical model 
(the choice of a particular coordinate system is mathematically arbitrary), in 
factor analysis such transformations assume particular importance in some 
(but not all) empirical investigations. The transformations, however, are not 
an inherent feature of factor analysis or other latent variablc(s) models, and 
need only be employed in fairly specific situations, for example, when 
attempting to identify clusters in the variable (sample) space. Here, the 
coordinate axes of an initial factor solution usually represent mathematically 
arbitrary frames of references which are chosen on grounds of convenience 
and east of computation, and which may have to be altered bccause of 
interpretational or substantive requirctnents. The task is much simplified, 
however, by the existence of well-defined statistical criteria which result in 
unique rotations, as well as by the availability of numerical algorithms for 
their implementation. Thus once a criterion function is selected and opti- 
mized, a unique set of estimated coefficients (coordinate axes) emerges. In 
this sense the rotation of factors conforms to general and accepted statistical 
practice. Therefore, contrary to claims such as those of Ehrenberg (1962) 
and Temple (1978), our position on the matter is that the rotation of  factors 
is not intrinsically subjective in nature and, on the contrary, can result in a 
useful and meaningful analysis. This is not to say that the rotational problcm 
represents the sole preoccupation of factor analysis. On the contrary, in 
some applications the factors do not have to be rotated or undergo direct 
empirical interpretation. Frequently they are only rcquired to serve as 
instrumental variables, for example, to overcome estimation difficulties in 
least squares regression. Unlike the explanatory variables in a regression 
model, the factor scores are not observed directly and must also be 
estimated from the data. Again, Well-defined estimators exist, the choice of 
which depends on the particular factor model used. 

The sccond major objection encountered in thc statistical literature 
concerns the interpretation of factors as actual variables, capable of being 
identitied with real or concrete phenomenon. Since factors essentially 
represent linear functions of the observed variables (or their transforma- 
tions), they are not generally observable directly, and are thus at times 
deemed to lack the same degree of concreteness or authenticity as variables 
measured in a direct fashion. Thus, although factors may be scen as serving 
a useful rolc in resolving this estimation difficulty or that measurement 
probIem, they are at times viewed as nothing more than mathematical 
artifacts created by the model. The gist of the critique is not without 
foundation, since misapplication of the model is not uncommon. There is a 
difficulty. however. in accepting the argument that just because factors are 
not directly observable they are bereft of all "reality." Such a viewpoint 
seems to equate the concept of reality with that of direct observability (in 
principlc or otherwise), a dubious and inoperative criterion at best, since 
many of our observations emanate from indirect sources. Likewise, whether 
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factors correspond to real phenomena is essentially an empirical rather than 
a mathematical question, and depends in practice on the nature of the data, 
the skill of the practitioner, and the area of application. For cxample, it is 
important to bear in mind that correlation does not necessarily imply direct 
causation, or that when nonsensical variables are included in an analysis, 
particularly under inappropriate assumptions or conditions, very little is 
accomplished. On the other hand, in carefully directed applications involv- 
ing the measurement of unobservable or difficult-to-observe variables-such 
as the true magnitude of an earthquake, extent and/or type of physical pain, 
political attitudes, empirical index numbers, general size and/or shape of a 
biological organism, the informational content of a signal or a two-dimen- 
sional image-the variables and the data are chosen to reflect specific 
aspects which are known or hypothesized to be of relevance. Here the 
retained factors will frequently have a ready and meaningful intcrpretation 
in terms of the original measurements, as estimators of some underlying 
latent trait(s). 

Factor analysis can also be used in statistical areas, for example, in 
estimating time and growth functions, least squares regression models, 
Kalman filters, and Karhunen-Lodve spectral models. Also, for optimal 
scoring of a contingency table, principal components can be employed to 
estimate the underlying continuity of a population. Such an analysis (which 
predates Hotelling’s work on principal components-see Chaptcr 9) can 
reveal aspects of data which may not be immediately apparent. Of course, in 
a broader context the activity of measuring unobscrved variables, estimating 
dimensionality of a model, or carrying out exploratory statistical analysis is 
fairly standard in statistical practice and is not restricted to factor models. 
Thus spectral analysis of stochastic proccsscs employing the power (cross) 
spectruni can be regarded as nothing more than a fictitious but useful 
mathematical construct which reveals the underlying structure of correlated 
obscrvations. Also, statisticians are frequently faced with the problem of 
cstimating dimensionality of a model, such as the degree of a polynomial 
regression or the order of an ARMA process. Available data are generally 
used to provide estimates of missing observations whose original values 
cmnot be observed. Interestingly, recent work using maximum likclihood 
estimation has confirmed the close relationship bctween the estimation of 
missing data and factor analysis, as indicated by the EM algorithm. Finally, 
the everyday activity of estimating infinite population parameters, such as 
means or variances, is surely nothing more than the attempt to measure that 
which is fundamentally hidden from us but which a n  be partially revealed 
by careful observation and appropriate theory. Tukey (1979) has provided a 
broad description of exploratory statistical research as 

. . . an attitude, a state of flexibility, a willingness to look for those things that we 
believe are not thcrc, as well as for those we believe might be therc . . . its tools 
are secondary to its purposes. 



xiv PREFACE 

This definition is well suited to factor and other latent variable models and is 
employed (implicitly or explicitly) in the text. 

The time has thus perhaps come for a volume such as this, the purpose of 
which is to provide a unified treatmcnt of both the theory and practice of 
factor analysis and latent variables models. The interest of the author in the 
subject stems from earlier work on latent variables models using historical 
and social time series. as well as attempts at improving certain least squares 
regrcssion estimators. The book is also an outcome of postgraduate lectures 
delivered at the University of Kent (Canterbury) during the 1970s, together 
with more recent work. The volume is intended for senior undergraduate 
and postgraduate students with a good background in statistics and mathe- 
matics, as well as for research workers in the empirical sciences who may 
wish to acquaint themselves bettcr with the theory of latent variables 
models. Although stress is placed on mathematical and statistical theory, 
this is generally reinforced by examples taken from the various areas of the 
natural and social sciences as well as engineering and medicine. A rigorous 
mathematical and statistical treatment seems to be particularly essential in 
an area such a s  factor analysis where misconception and misinterprctations 
still abound. Finaliy, a few words arc in order concerning our usage of the 
term “factor analysis,” which is to be understood in a broad content rather 
than the more restricted sense at times encountered in the literature. The 
rcason for this usage is to accentuate the common structural features of 
certain models and to point out essential similarities between them. AI- 
though such similarities are not always obvious when dealing with empirical 
applications, they nevertheless become clear when considering mathc- 
matical-statistical properties of the models. Thus the ordinary principal 
components model, for example, emerges as a special case of the weighted 
(maximum likelihood) factor model although both models are at times 
considered to be totaHy distinct (e.g., see Zxgura, 1978). The term “factor 
analysis” can thus be used to refer to a etas  of models that includes 
ordinary principal components, weighted principal components, maximum 
likelihood factor analysis, certain multidimensional scaling models, dual 
scaling, correspondence analysis, canonical correlation, and latent class/ 
latent profile analysis. All these have a common feature in that latent root 
and latent vector decompositions of special matrices arc uscd to locate 
informative subspaces and estimate underlying dimensions. 

This book assumes on the part of the reader some background in 
calculus, linear algebra, and introductory statistics, although elements of the 
basics arc provided in the first two chaptcrs. These chapters also contain a 
review of some of the less accessible material on multivariate sampling, 
measurement and information theory, latent roots and latent vectors in both 
the rcal and complex domains, and the real and complex normal dis- 
tribution. Chapters 3 and 4 describe the classical principal components 
model and sample-population inference; Chapter 5 treats several extensions 
and modifications of principal componcnts such as Q and thrce-mode 
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analysis, weighted principal components, principal components in the com- 
plex field, and so forth. Chapter 6 deals with maximum likelihood and 
weighted factor models together with factor identification, factor rotation, 
and the estimation of factor scores. Chapters 7-9 cover the use of factor 
models in conjunction with various types of data such as time series, spatial 
data, rank orders, nominal variables, directional data, and so forth. This is 
an area of multivariate theory which is frequently ignored in the statistical 
literature when dealing with latent variable estimation. Chapter 10 i s  
devoted to applications of factor models to the estimation of functional 
forms and to least squares regression estimators when dealing with measure- 
ment error and/or multicollinearity. 

I would like to thank by colieagues H. Howlader of the Department of 
Mathematics and Statistics, as well as S. Abizadeh, H. Hutton, W, Morgan, 
and A. Johnson o f  the Departments of Economics Chemistry, and Anth- 
ropology, respectively, for useful discussions and comments, as well as other 
colleagues at the University of  Winnipeg who are too numerous to name. 
Last but not least I would like to thank Judi Hanson for the many years of 
patient typing of the various drafts of the manuscript. which was accom- 
plished in the face of much adversity, as well as Glen Koroluk for help with 
the computations. Thanks are also owed to Rita Campbell and Weldon 
Hiebcrt for typing and graphical aid. Of course I alone am responsible for 
any errors or shortcomings, as well as for views expressed in the book. 

Alexander Basilevsky 

winn1gc-p. Munitobn 
Februury 1994 
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C H A P T E R  1 

Preliminaries 

I. 1 INTRODUCTION 

Sincc our early exposure to mathematical thinking we have come to accept 
the notion of a variable or a quantity that is permitted to vary during a 
particular context or discussion. In mathematical analysis the notion of a 
variable is important since i t  allows general statements to bc nadc about a 
particular member of a set. Thus the essential nature of a variable consists in 
its being identifiable with any particular value of its domain, no matter how 
large that domain may be. In a more applied context, when mathematical 
equations or formulas are used to model real life phenomena, we must 
further distinguish between a deterministic variable and a probabilistic or 
random variable. The former features prominently in any classical descrip- 
tion of reality where the universe is seen to evolvc according to "exact" or 
deterministic laws that specify its past, present, and future. This is true, for 
example, of classical Newtonian mechanics as well as other traditional views 
which have molded much of our comtemparary thinking and scientific 
methodology. 

Yet we know that in practicc ideal conditions nevcr prevail. The world of 
measurement and observation is never free of error or extraneous, nones- 
sential influences and other purely random variation. Thus laboratory 
conditions, for example, can never be fully duplicated nor can survey 
observations ever be fully verified by other researchers. Of course we can 
always console ourselves with the view that randomness is due to our 
ignorance of reality and results from our inability to fully control, or 
comprehend, the environment. The scientific law itself, SO the argument 
goes, does not depend on these nuismce pdrameters and is thercforc fixed, 
at least in principle. This is the traditional view of the role of randomness in 
scientific enquiry, and it is still heId among some scientific workers today. 

Physically real sources of randomness however do appear to exist in the 
real world. For example, atomic particle emission, statistical thermody- 
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namics, sun spot cycles, as well as genetics and biological evolution all 
exhibit random behavior over and abwc measurement error. Thus random- 
ness does not seem to stem only from our ignorance of nature, but also 
constitutes an important characteristic of reality itself whenever natural or 
physical processes exhibit instability (see Prigonine and Stengers, 1984). In 
all cases where behavior is purely or partially random, outcomes of events 
can only be predicted with a probability measure rather than with perfect 
certainty. At times this is counterintuitive to our understanding of the real 
world since we have come to expect laws, expressed as mathematical 
equations, to describe our world in a perfectly stable and predictabie 
fashion. The existence of randomness in the real world, or in our measure- 
ments (or both), implies a need for a science of measurement of discrcte and 
continuous phenomena which can take randomness into account in an 
explicit fashion. Such a science is the theory of probability and statistics, 
which proceeds from a theoretical axiomatic basis to the analysis of scientific 
measurements and observations. 

Consider a set of events or a “sample space” S and a subset A of S. The 
sample space may consist of either discretc elements or may contain subsets 
of the real line. To each subset A in S we can assign a real number P(A), 
known as “the probability of the event A,” More precisely, the probability 
of an event can be defined as follows. 

Definition 1.1. A probability is a real-valued set function defined on the 
closed class of all subsets of the sample space S. The value of this function, 
associated with a subset A of S, is denoted by P(A). The probability P(A) 
satisfies the following axioms.* 

(1)  P ( S ) =  1 
(2) P(A)>O, all A in S 
( 3 )  ForanyrsubsetsofSwehaveP(A, U A , U . - - U A , ) = P ( A , ) f  

From these axioms we can easily deduce that P(0) = 0 and P ( S )  = 1, so that 
the probability of an event always lies in the closed interval 0 5 P(A) 5 I .  
Heuristically, a zero probability corresponds to a logically impossible event, 
whereas a unit probability implies logical certainty. 

P(A,) + . . -  + P(A,) for A, A, = 0 the empty set, i # j 

Definition 1.2. A real variable X is a real valued function whose domain 

(1) The set {X I x }  is an event for any real number x 
(2) P ( X =  “M) = 0 

is the sample space S, such that: 

This definition implies a measurement process whereby a real number is 
assigned to every outcome of an “experiment.” A random variable can 

Known as the Kolrnogorov axioms. 


