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Preface 

The first seven chapters of this book were developed over a period of about 20 
years for the course Linear Statistical Models at Michigan State University. 
They were first distributed in longhand (those former students may still be 
suffering the consequences), then typed using a word processor some eight or 
nine years ago. The last chapter, on frequency data, is the result of a summer 
course, offered every three or four years since 1980. 

Linear statistical models are mathematical models which are linear in the 
unknown parameters, and which include a random error term. I t  is this error 
term which makes the models statistical. These models lead to the methodology 
usually called multiple regression or analysis of variance, and have wide 
applicability to the physical, biological, and social sciences, to agriculture and 
business, and to engineering. 

The linearity makes it possible to study these models from a vector space 
point of view. The vectors Y of observations are represented as arrays written 
in a form convenient for intuition, rather than necessarily as column or row 
vectors. The geometry of these vector spaces has been emphasized because the 
author has found that the intuition it provides is vital to the understanding of 
the theory. Pictures of the vectors spaces have been added for their intuitive 
value. In the author’s opinion this geometric viewpoint has not been sufficiently 
exploited in current textbooks, though it is well understood by those doing 
research in the field. For a brief discussion of the history of these ideas see Herr 
( 1980). 

Bold print is used to denote vectors, as well as linear transformations. The 
author has found it useful for classroom boardwork to use an arrow notation 
above the symbol to distinguish vectors, and to encourage students to do the 
same, at least in the earlier part of the course. 

Students studying these notes should have had a one-year course in 
probability and statistics at the post-calculus level, plus one course on linear 
algebra. The author has found that most such students can handle the matrix 
algebra used here, but need the material on inner products and orthogonal 
projections introduced in Chapter 1. 

xi 



xii PREFACE 

Chapter 1 provides examples and introduces the linear algebra necessary for 
later chapters. One section is devoted to a brief history of the early development 
of least squares theory, much of it written by Stephen Stigler (1986). 

Chapter 2 is devoted to methods of study of random vectors. The multi- 
variate normal, chi-square, t and F distributions, central and noncentral, are 
introduced. 

Chapter 3 then discusses the linear model, and presents the basic theory 
necessary to regression analysis and the analysis of variance, including con- 
fidence intervals, the Gauss-Markov Theorem, power, and multiple and partial 
correlation coefficients. I t  concludes with a study of a SAS multiple regression 
printout. 

Chapter 4 is devoted to a more detailed study of multiple regression methods, 
including sections on transformations, analysis of residuals, and on asymptotic 
theory. The last two sections are devoted to robust methods and to the 
bootstrap. Much of this methodology has been developed over the last 15 years 
and is a very active topic of research. 

Chapter 5 discusses simultaneous confidence intervals: Bonferroni, Scheffk, 
Tukey, and Bechhofer. 

Chapter 6 turns to the analysis of variance, with two- and three-way analyses 
of variance. The geometric point of view is emphasized. 

Chapter 7 considers some miscellaneous topics, including random component 
models, nested designs, and partially balanced incomplete block designs. 

Chapter 8, the longest, discusses the analysis of frequency, or categorical 
data. Though these methods differ significantly in the distributional assumptions 
of the models, it depends strongly on the linear representations, common to 
the theory of the first seven chapters. 

Computations illustrating the theory were done using APL*Plus (Magnugis- 
tics, Inc.), S-Plus (Statistical Sciences, Inc.). and SAS (SAS Institute, Inc.). 
Graphics were done using S-Plus.). To perform simulations, and to produce 
graphical displays, the author recommends that the reader use a mathematical 
language which makes it easy to manipulate vectors and matrices. 

For the linear models course the author teaches at Michigan State University 
only Section 2.3, Projections of Random Variables, and Section 3.9, Further 
Decomposition of Subspaces, are omitted from Chapters 1, 2, and 3. From 
Chapter 4 only Section 4. I ,  Linearizing Transformations, and one or two other 
sections are usually discussed. From Chapter 5 the Bonferroni, Tukey, and 
Scheffe simultaneous confidence interval methods are covered. From Chapter 
6 only the material on the analysis of covariance (Section 6.6) is omitted, though 
relatively little time is devoted to three-way analysis of variance (Section 6.5). 
One or two sections of Chapter 7, Miscellaneous Other Models, are usually 
chosen for discussion. Students are introduced to S-Plus early in the semester, 
then use it for the remainder of the semester for numerical work. 

A course on the analysis of frequency data could be built on Sections 1.1, 
1.2, 1.3, 2.1, 2.2, 2.3, 2.4 (if students have not already studied these topics), and, 
of course, Chapter 8. 
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C H A P T E R  1 

Linear Algebra, Projections 

1.1 INTRODUCTION 

Suppose that each element of a population possesses a numerical characteristic 
x, and another numerical characteristic y .  It is often desirable to study the 
relationship between two such variables x and y in order to better understand 
how values of x affect y, or to predict y, given the value of x. For example, we 
may wish to know the effect of amount x of fertilizer per square meter on the 
yield y of a crop in pounds per square meter. Or we might like to know the 
relationship between a man's height y and that of his father x. 

For each value of the independent variable x, the dependent variable Y may 
be supposed to have a probability distribution with mean g(x). Thus, for 
example, g(0.9) is the expected yield of a crop using fertilizer level x = 0.9 
(k g m s h  ). 

For each x E D suppose Y is a random variable with 
distribution depending on x. Then 

Definition 1.1.1: 

y(x) = E( Ylx) for x E D 

is the regression function for Y on x 

Often the domain D will be a subset of the real line, or even the whole real 
line. However, D could also be a finite set, say { 1,2,3}, or a countably infinite 
set (1,2, . . .}. The experimenter or statistician would like to determine the 
function g, using sample data consisting of pairs (x i ,  y i )  for i = 1,. . . , n. 
Unfortunately, the number of possible functions g(x) is so large that in order 
to make headway certain simplifying models for the form of g(x) must be 
adopted. If it is supposed that g(x) is of the form g(x) = A + Bx + Cx2 or 
g(x) = A2" + B or &) = A log x + B, etc., then the problem is reduced to one 
of identifying a few parameters, here labeled as A, B, C. In each of the three 
forms for g(x) given above, g is linear in these parameters. 

In one of the simplest cases we might consider a model for which g(x) = 
C + Dx, where C and D are unknown parameters. The problem of estimating 

1 
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FIGURE 1.1 Regression of yield on fertilizer level. 

g(x) then becomes the simpler one of estimating the two parameters C and D. 
This model may not be a good approximation of the true regression function, 
and, if possible, should be checked for validity. The crop yield as a function of 
fertilizer level may well have the form in Figure 1.1. 

The regression function g would be better approximated by a second degree 
polynomial y(x) = A + Bx + Cx2. However, if attention is confined to the 0.7 
to 1.3 range, the regrcssion function is approximately linear, and the simplifying 
model y(x) = C + D.u, called the simple linear regression model, may be used. 

In attempting to understand the relationship between a person's height Y 
and the heights of hisiher father (xl) and mother (xZ) and the person's sex (xJ. 
we might suppose 

where .x3 is 1 for males, 0 for females, and Po, PI .  p2, ps are unknown 
parameters. Thus a brother would be expected to be P3 taller than his sister. 
Again, this model, called a multiple regression model, can only be an approxi- 
mation of the true regression function, valid over a limited range of values of 
x l ,  x2. A more complex model might suppose 
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Table 1.1.1 Height Data 

Indiv. Y X I  x2 x 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

68.5 
72.5 
70.0 
71.0 
65.0 
64.5 
67.5 
61.5 
63.5 
63.5 

70 
73 
68 
72 
66 
71 
74 
65 
70 
69 

62 
66 
67 
64 
60 
63 
68 
65 
64 
65 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

This model is nonlinear in (xl, x2, x3), but linear in the Fs. It is the linearity 
in the p's which makes this model a linear statistical model. 

Consider the model ( l . l . l ) ,  and suppose we have data of Table 1.1.1 on 
( Y , x , , x z , x 3 )  for 10 individuals. These data were collected in a class taught 
by the author. Perhaps the student can collect similar data in his or her class 
and compare results. 

The statistical problem is to determine estimates b0, b,, &, b, so that the 
resulting function d(x,, x2, x3) = Po + B,x, + B2x2 + B,x3 is in some sense a 
good approximation of g(x,, x2, x3). For this purpose it is convenient to write 
the model in vector form: 

where xo is the vector of all ones, and y and xlr  x2, x3 are the column vectors 
in Table 1.1.1. 

This formulation of the model suggests that linear algebra may be an 
important tool in the analysis of linear statistical models. We will therefore 
review such material in the next section, emphasizing geometric aspects. 

1.2 VECTORS, INNER PRODUCI'S, LENGTHS 

Let R be the collection of all n-tuples of real numbers for a positive integer n. 
In applications R will be the sample space of all possible values of the 
observation vector y. Though $2 will be in one-to-one correspondence to 
Euclidean n-space, it will be convenient to consider elements of Q as arrays all 
of the same configuration, not necessarily column or row vectors. For example, 
in application to what is usually called one-way analysis of variance, we might 
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have 3,4 and 2 observations on three different levels of some treatment effect. 
Then we might take 

Y l Z  

Yzz 

Y32 

)14 Z 

and 0 the collection of all such y- While we could easily reform y into a column 
vector, it is often convenient to preserve the form of y. The term "n-tuple" 
means that the elements of a vector y f R  are ordered. A vector y may be 
considered to be a real-valued function on { 1,. . . , n} .  

R becomes a linear space if we define ay for any y E R and any real number 
a to be the element of R given by multiplying each component of R by a, and 
if for any two elements yl, yz E R we define yl + yz to be the vector in R whose 
ith component is the sum of the ith components of y, and y2, for i = 1, . . . , n. 

R becomes an inner product space if for each x, y E R we define the function 

where x = (x l , .  . . , x n )  and y = { y , , .  . . , y . ) .  If R is the collection of n- 
dimensional column vectors then h(x, y) = x'y, in matrix notation. The inner 
product h(x, y) is usually written simply as (x, y), and we will use this notation. 
The inner product is often called the dot product, written in the form x-y .  Since 
there is a small danger of confusion with the pair (x, y), we will use bold 
parentheses to emphasize that we mean the inner product. Since bold symbols 
are not easily indicated on a chalkboard or in student notes, it is important 
that the meaning will almost always be clear from the context. The inner 
product has the properties: 

for all vectors, and real numbers a. 

x = (3,4, 12) has length 13. 

y are said to be orthogonal if (x, y) = 0. We write x I y. 

We define \lx\\' = (x, x) and call llxll the {Euclidean) length of x. Thus 

The distance between vectors x and y is the length of x - y. Vectors x and 
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For example, if the sample space is the collection of arrays mentioned above, 
then 

are orthogonal, with squared lengths 14 and 36. For R the collection of 3-tuples, 

The following theorem is perhaps the most important of the entire book. 
We credit it to Pythagorus (sixth century B.c.), though he would not, of course, 
have recognized it in this form. 

(2,3, 1) I (- I ,  1, - 1). 

Pythagorean Tbeorem: Let v,,  . . . , vk be mutually orthogonal vectors in R 
Then 

Debition 1.21: The projection of a vector y on a vector x is the vector 9 
such that 

1. 9 = bx for some constant b 
2. (y - 5 )  I x (equivalently, (9, x) = (y, x)) 

Equivalently, 3 is the projection of y on the subspace of all vectors of the form 
ax, the subspace spanned by x (Figure 1.2). To be more precise, these properties 
define othogonal projection. We will use the word projection to mean ortho- 
gonal projection. We write p(ylx) to denote this projection. Students should 
not confuse this will conditional probability. 

Let us try to find the constant b. We need (9, x) = (bx, x) = b(x, x) = (y, x). 
Hence, if x = 0, any b will do. Otherwise, b = (y, x)/[lxl12. Thus, 

for x = 0 

[(y, X)/IIXI(~]X, otherwise 

Here 0 is the vector of all zeros. Note that if x is replaced by a multiple ax of 
x, for a # 0 then 9 remains the same though the coefficient 6 is replaced by 6/a 
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A 

Y 
FIGURE 1.2 

X 

Theorem 1.2.1: Among all multiples ux of x, the projection 9 of y on x is 
the closest vector to y. 

Proof: Since (y - 9 )  I ( 9  - ax) and (y - ax) = (y - 9 )  + (9  - ax), it 
follows that 

11y - ax112 = !(y - $11’ + iI$ - uxI12. 

This is obviously minimum for ux = 9. I1 

Since 3 I (y - 9)  and y = 9 + (y - 9), the Pythagorean Theorem implies 
that IIyilz = 11911’ + I/y - 9112. Since [19iI2 = b211xIIZ = (y, X ) ~ / I I X I I ~ ,  this implies 
that !Iyilz 2 (y, ~ ) ~ / l l x l \ ~ ,  with equality if and only if Ily - 911 = 0, i.e., y is a 
multiple of x. This is the famous Cauchy-Schwurz Inequality, usually written 
as (y, x ) ~  I lly112/1x112. The inequality is best understood as the result of the 
equality implied by the Pythagorean Theorem. 

Definition 1.2.2: Let A be a subset of the indices of the components of a 
vector space R. The indicator of A is the vector I, E !2, with components which 
are 1 for indices in A, and 0 otherwise. 

The projection 9, of y on the vector I, is therefore hl, for b = (y. I , ) / ~ l l k ~ ~ 2  = 

(2 y[)/N(A), where N ( A )  is the number of indices in A. Thus, h = j A ,  the 
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mean of the y-values with components in A. For example, if R is the space of 
4-component row vectors, y = (3,7,8,13), and A is the indicator of the second 
and fourth components, p(yl1,) = (0, 10, 0,lO). 

Problem 1.2.1: Let R be the collection of all 5-tuples of the form 
y=(‘” ”21 ) . L e t x = (  1 0  ) . y = ( ’  ) 

Y l Z  Y 2 2  y.31 2 1 3  9 4 11 
(a) Find (x, y), I I X ~ ~ ~ ,  Ilyl12, 9 = p(yIx), and y - 9. Show that x I (y - j ) ,  and 

(b) Let w = ( ) and z = 3x + 2n. Show that (w, x) = 0 and that 

(c) Let x,, x‘, x3 be the indicators of the first, second and third columns. 

IIYII’ = 119112 + IIY - 911’. 
- 2  1 

0 2 0  
1!z)1’ = 911x)j’ + 4[1wl12. (Why must this be true?) 

Find p(y)x,) for i = 1, 2, 3. 

Problem 12.2: Is projection a linear transformation in the sense that 
p(cyIx) = cp(ylx) for any real number c? Prove or disprove. What is the 
relationship between p(y(x) and p(yicx) for c # O? 

Problem 1.23: Let l1x11’ > 0. Use calculus to prove that I/y - hxII’ is 
minimiim for b = (y, x)/IIxlI’. 

Problem 134: Prove the converse of the Pythagorean Theorem. That is, 
IIx + yi12 = llxll’ i- llyll’ implies that x 1 y. 

Problem 1.2.5: Sketch a picture and provc the parallelogram law: 

1.3 SUBSPACES, PROJECTIONS 

We begin the discussion of subspaces and projections with a number of 
definitions of great importance to our subsequent discussion of linear models. 
Almost all of the definitions and the theorems which follow are usually included 
in a first course in matrix or linear algebra. Such courses do not always include 
discussion of orthogonal projection, so this material may be new to the student. 

Defioition 1.3.1: A subspuce of R is a subset of R which is closed under 

That is, V c R is a subspace if for every x E V and every scalar a, ax E V 
addition and scalar multiplication. 

and if for every vl, v2 E V, vI  + v2 E V. 
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Definition 1.3.2: Let xl, .  . . , x k  be k vectors in an n-dimensional vector 
space. The subspace spanned by x , ,  . . . , x k  is the collection of all vectors 

for all real numbers b, ,  . . . , bk. We denote this subspace by Y ( x , ,  . . . , x k ) .  

t 
Definition 133: Vectors x , ,  . . . , x k  are linearly independent if 1 bixi = O 

I implies b, = 0 for i = 1,. . . , k. 

Definition 13.4: A busis for a subspace V of f2 is  a set of linearly 

The proofs of Theorems 1.3.1 and 1.3.2 are omitted. Readers are referred to 
independent vectors which span V.  

any introductory book on linear algebra. 

Tbeorem 1.3.1: Every basis for a subspace V on $2 has the same number 
of elements. 

Definition 13.5: The dimension of a subspace Y of Q is the number of 
elements in each basis. 

Theorem 13.2: Let v,, . . . , vk be linearly independent vectors in a subspace 
V of dimension J .  Then d 2 k. 

Comment: Theorem 1.3.2 implies that if dim( V) = d then any collection of 
d + 1 or more vectors in V must be linearly dependent. In particular, any 
collection of n + 1 vectors in the n-component space R are linearly dependent. 

Definition 13.6: A vector y is orthogonal to a subspace V of Q if y is 
orthogonal to all vectors in V. We write y _L V. 

Problem 1.3.1: Let Q be the space of all 4component row vectors. 
Let x 1 = ( 1, 1, 1, 1 ), X I ;  = ( 1, 1 , 0, O), ~3 = ( 1 , 0, 1 , 0), ~4 = (7,4,9,6). Let Vz = 
V ( x 1 ,  XA Vs = Y(x,, ~ 2 ,  x j )  and V, = Y ( x 1 ,  ~ 2 r  ~ 3 9  ~ 4 ) .  

(a) Find the dimensions of Vz and V,. 
(b) Find bases for V2 and 

(c) Give a vector z # 0 which is orthogonal to all vectors in V,. 
(d) Since x l ,  x2, xg, z are linearly independent, x4 is expressible in the form 

b,xi + cz. Show that c = 0 and hence that x4 E V,, by determining ( x 4 ,  2). 

(e) Give a simple verbal description of V3. 

which contain vectors with as many zeros as 
possible. 

3 

1 

What is dim( V,)? 
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Problem 13.2: Consider the space R of arrays y , 2  y,, and define 

C,, C2. C3 to be the indicators of the columns. Let V = Y ( C , ,  Cz, C3). 
(a) What properties must y satisfy in order that y E M In order that y I M 
(b) Find a vector y which is orthogonal to V. 

The following definition is perhaps the most important in the entire book. 
It serves as the foundation of all the least squares theory to be discussed in 
Chapters 1, 2, and 3. 

Definition 1.3.7: The projection of a vector y on a subspace Y of R is the 
vector 9 E V such that (y - 9 )  I V. The vector y - 9 = e will be called the 
residual vector for y relative to V. 

Comment: The condition (y - 9 )  1 V is equivalent to (y - f ,  x) = 0 for all 
x E V.  Therefore, in seeking the projection f of y on a subspace V we seek a 
vector 9 in V which has the same inner products as y with all vectors in V 
(Figure 1.3). 

If vectors x,. . . . , x k  span a subspace V then a vector z E V is the projection 

of y on V if (z, x i )  = (y. x i )  for all i, since for any vector x = c b j x l  E V, this 
k 

implies that j -  1 

It is tempting to attempt to compute the projection f of y on V by simply 
summing the projections f i  = p(yIx,) .  As we shall see, this is only possible in 
some very special cases. 

FIGURE 13 
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At this point we have not established the legitimacy of Definition 1.3.7. Does 
such a vector 9 always exist and, if so, is it  unique? We do know that the 
projection onto a one-dimensional subspace, say onto V = 9(x), for x # 0, 
does exist and is unique. In fact 

Example 13.1: Consider the 6-component space Q of the problem above, 

and let V =  2(Cl,C2,C3). Let y = 10 8 . It is easy to show that the i6 7\ 
\ s  J 

vector 9 = Ep(yJC,)  = 7C1 + 6C2 + 7C3 satisfies the conditions for a pro- 
jection onto V. As will soon be shown the representation of f as the sum of 
projections on linearly independent vectors spanning the space is possible 
because C,, C,, and C3 are mutually othogonal. 

We will first show uniqueness of the projection. Existence is more difficult. 
Suppose 9 ,  and g2 are two such projections of y onto V. Then f 1  - 9, E V and 
(9 ,  - 9,)  = (y - 9,) - (y - fl) is orthogonal to all vectors in V ,  in particular 
to itself. Thus l l f ,  - 9,112 = (PI - y,, 9, - j l , )  = 0, implying - f2 = 0, i.e., 

We have yet to show that 4 always exists. In the case that it does exist (we 
will show that it always exists) we will write 9 = p(yl Vj. 

If  we are fortunate enough to have an orthogonal basis (a basis of mutually 
orthogonal vectors) for a given subspace V, it is easy to find the projection. 
Students are warned that that method applies only for an orthogonal basis. We 
will later show that all subspaces possess such orthogonal bases, so that the 
projection 9 = p(yl V) always exists. 

9 ,  = 9 2 .  

Theorem 133: Let v,, . . . , vk be an orthogonal basis for V, subspace of R. 
Then 

k 

POI v) = C P(YIvi) 
i =  1 

Proof: Let fi = p(ylv,) = hivi for hi = (y, vi)/Ilvi112. Since 3,- is a scalar 
multiple of vi, it is orthogonal to vj forj # i. From the comment on the previous 
page, we need only show that cfi and y, have the same inner product with 
each vj, since this implies that they have the same inner product with all x E V. 
But 
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Example 13.2: Let 

Then v1  I v2 and 

Then (y, v l )  = 9, (y, v2) = 12, (9, v l )  = 9, and (9, v,)  = 12. The residual vector is 

/ o\ 
y - 9 = - which is orthogonal to V. 

Would this same procedure have worked if we replaced this orthogonal basis 
v!, v1 for Y by a nonorthogonal basis? To experiment, let us leave v, in the 
new basis, but replace v2 by v3 = 2v, - v2. Note that lip(vl, v3) = 9 ( v I ,  v2) = V, 

and that (v,, v2) # 0. f I  remains the same. v3 = 2v, - v2 = 

, which has inner products 11 and 24 with v1 and v3. 

is not orthogonal to V. Therefore, 9,  + j 3  is not the 

projection of y on V = Y ( v l ,  v3). 
Since (y - 9)  I 9, we have, by the Pythagorean Theorem, 

l!Y!I2 = IKY - 9 )  + HI2 = IlY - 9112 + 1191r’ 

2 9 2  123 
llyllz = 53, 1 1 f 1 1 2  = + - 6 = 51, IIy - j1I2 = II( -‘)i = 2. 

1 

Warning: We have shown that when v l , .  . . , vk are mutually orthogonal 
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k 

the projection 3 of y on the subspace spanned by vl, . . . , vk is p(y(vj). This 

is true for all y only if vI, . . . , vk are mutually orthogonal. Students are asked 
to prove the “only” part in Problem 1.3.5. 

/=  1 

Every subspace V of R of dimension r > 0 has an orthogonal basis (actually 
an infinity of such bases). We will show that such a basis exists by using 
Gram-Schmidt orthogonalization. 

Let xl,. . . , xk be a basis for a subspace V, a kdimensional subspace of Q. 
For 1 5 i 5 k let 6 = U(xl, . . . , xi) so that V, c 6 t * * c 5 are properly 
nested subspaces. Let 

v1 = Xl, v2 = x2 - p(X,lV,). 

Then vl and v2 span 6 and are othogonal. Thus p(x3( V,) = p(x,lv,) + p(x31v2) 
and we can define v3 = x3 - p(x3J Vz). Continuing in this way, suppose we have 
defined vl, ..., vi to be mutually orthogonal vectors spanning 6. Define 
vi+l = xi+, - ~ ( X ~ + ~ I  Jo. Then vi+l 1 < and hence v,, . . . , vi+ I are mutually 
orthogonal and span c+l. Since we can do this for each i I k - 1 we get the 
orthogonal basis vl,. . . , vk for V. 

If {vl,. . . , vk}  is an orthogonal basis for a subspace V then, since f = 
k 

P(yl V )  = 2 p(ylv,) and p(ylvj) = bjvj, with b, = [(y, v,)/IIvjl12], it follows by 
j -  1 

the Pythagorean Theorem that 

k k k 

Of course, the basis {vl,. . . , vk) can be made into an orthonormal basis (all 
vectors of length one) by dividing each by its own length. If {v:, . . . , v:) is such 

an orthonormal basis then 3 = p(yl V )  = p(ylv’) = C (y. vf)vf and 11911’ = 
k k 

k 1 1 c ( Y N 2 .  
i =  1 

Example  1.3.3: Consider R,, the space of Ccomponent column vectors. 
Let us apply Gram--Schmidt orthogonalization to the columns of X = [ \ ,: ’~ ] ,  a matrix chosen carefully by the author to keep the 

5 8 10 
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arithmetic simple. Let the four columns be xlr.. . , x4. Define v 1  = xl. Let 

, v 3 = x 3 - [ r * , + * 6 v 2 ] = ~  32 - 2  

2 

L -2 .  

and 

We can multiply these vI by arbitrary constants to simplify them without losing 
their orthogonality. For example, we can define ui = vi/l~vil12, so that u,, u2, 
u3, u, are unit length orthogonal vectors spanning R. Then U = (ul, u2, u3, u4) 
is an orthogonal matrix. U is expressible in the form U = XR, where R has 
zeros below the diagonal. Since I = U'U = U'XR, R- ' = U'X, and X = UR- ', 
where R-' has zeros below the diagonal (see Section 1.7). 

As we consider linear models we will often begin with a model which 
supposes that Y has expectation 8 which lies in a subspace b, and will wish 
to decide whether this vector lies in a smaller subspace V,. The orthogonal 
bases provided by the following theorem will be useful in the development of 
convenient formulas and in the investigation of the distributional properties of 
estimators. 

Theorem 1.3.4: Let V, c V, c R be subspaces of Q of dimensions 
1 5 n, c n, c n. Then there exist mutually orthogonal vectors vl, . . . , v, such 
that vI,. . . , v,, span F, i = 1, 2. 

Proof: Let {xl,. . .,x,,} be a basis for V,. Then by Gram-Schmidt 
orthogonalization there exists an orthogonal basis (vl,. . . , v,,} for V,. Let 
x,, + l , .  . . , xnZ be chosen consecutively from V2 so that vI, . . . , v,,,, x,,, + . . , x,, 
are linearly independent. (If this could not be done, V2 would have dimension 
less than n2.)  Then applying Gram-Schmidt orthogonalization to x,, + ,, . . . , x,, 
we have an orthogonal basis for V,. Repeating this for V2 replaced by R and 
vl,. . . , v,, by vl , .  . . , v,, we get the theorem. n 

For a nested sequence of subspaces we can repeat this theorem consecutively 
to get Theorem 1.3.5. 
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Theorem 1.3.5: Let Vl c c . . .  c V, c R = Q + l  be subspaces of R of 
dimensions 1 5 n ,  € n2 € . . . < n k  < n = n k +  1. Then there exists an orthogonal 
basis vI, . . . , v, for R such that v l r  . . . , v,, is a basis for 4 for i = 1, , . . , k + 1. 

We can therefore write for any y E Q, 

and 
II’ (y v.)2 

I =  1 I l V j f i  
11p(yIv/1)11~ = 1 -‘_I-- for i = 1,. . . , k + 1. 

2 

The vj can be chosen to have length one, so these last formulas simplify still 
further. 

Thus, the definition of the projection p ( y f  V) has been justified. Fortunately, 
it is not necessary to find an orthogonal basis in order to find the projection 
in the general case that the basis vectors ( x ~ ,  . . . , x,) are not orthogonal. The 
Gram-Schmidt method is useful in the development of nonmatnx formulas for 
regression coefficients. 

In order for 5 = b,xl + * * + h,x, to be the projection of y on V =  
9 ( x , ,  . . . , X k )  we need (y, xi) = (9, xi) for a11 i. This leads to the so-called nonnal 
equutions: 

k 

0, xi) = b,4xj, xi) = (y, xi) for i = 1,. . . , k 
1 

I t  is convenient to write these k simultaneous linear equations in matrix form: 

M b = U ,  
k x k  k x  1 

where M is the matrix of inner products among the xi vectors, b is the column 
vector of bj’s, and U is the k x 1 column vector of inner products of y with the 
xi. If R is taken to be the space of n-component column vectors, then we can 
write X = (x,, . . . , x k ) ,  and we get M = X’X, U = X’y, so the normal equations 
are: 

M b  = (X‘X)b = X’y = U 

Of course, if M = ( ( x i ,  xi)) has an inverse we will have an explicit solution 

b = M-’U 

of the normal equations. It will be shown in Section 1.6 that M has rank k if 
and only if x,, . . . , xk are linearly independent. Thus b = M-’U if and only if 
xl, . . . , xk are linearly independent. 


