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Preface 

Everyone knows what is meant by ‘shape’. However, it is not a trivial matter to 
define shape in a manner that is susceptible to mathematical and statistical anal- 
ysis and it is only over the last two or three decades that appropriate definitions 
have been developed and studied. In this book we assume that the shape of an 
object is essentially captured by the shape of a finite subset of its points and, for 
the latter, we carry out much of the fundamental analysis that is likely to lie at 
the heart of further progress. Although this may seem a severe restriction, there is 
no theoretical limit to the number of points we consider and it has the significant 
advantage that the dimensions of the resulting shape spaces are always finite and 
only increase linearly with the number of points. 

One of the central problems in shape theory is that it is not possible to represent 
the full range of possible shapes of an object in standard Euclidean coordinates 
without destroying our intuitive feel for the quantitative differences between 
them. Consequently, classical statistical methods are not always adequate or, 
at least, not clearly appropriate for the statistical analysis of shape and it is 
necessary to adapt them to work on unfamiliar spaces. We therefore need to 
describe the topological and geometric properties of these new spaces in some 
detail, as result of which this book is multidisciplinary. However, we have tried 
to make it accessible to as wide a range of readers as possible by giving, for 
each topic, more detail than the specialist in that subject might require. Where 
possible, we do this within the body of the text itself, with just a few of the more 
technical topological concepts and results reserved for the appendix. 

We start with an introductory survey of the spaces in which we shall repre- 
sent shapes and describe some of their more important properties and then, in 
Chapter 2, we investigate their global topological structure. The next three chap- 
ters lead up to a full calculation of the homology and cohomology groups of 
shape spaces. In the first of these we define homology theory and show how it 
is calculated in the special context that is adequate for our purposes because, 
although they are unfamiliar, shape spaces are still elementary. In Chapter 4 we 
examine the necessary chain complex for these computations that arises natu- 
rally from the topological structure of the spaces, and make some initial general 
deductions about their homology groups. Then, in Chapter 5, after giving a range 
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of low-dimensional illustrative examples, we calculate all the groups explicitly 
and also derive some intriguing relationships between them. 

In Chapters 6 and 7 we study the more subtle and more localised geometric 
properties of the spaces. Although there is only one topology, the natural quotient 
topology, that one can put on shape space, there is more than one metric. Here 
we discuss the Riemannian metric that arises from the theory of submersions, to 
which we shall relate any other metrics that we use. Once again, the elementary 
way in which shape spaces are produced enables us to prove most of the results 
that we require from that theory directly in our context, with little reference 
to the general case. In Chapter 6 we examine the geodesics, the analogues of 
straight lines in Euclidean space, between two shapes and find simple expressions 
for the distance between those shapes, as well as the distance from a shape to 
certain subsets of practical significance. In Chapter 7, after introducing a little 
more differential geometry, we are able to obtain explicit expressions for the 
main geometric invariants of the spaces. In particular, we are able to measure the 
precise extent to which they are curved. This is vital, for example, when assessing 
the extent to which a local linear approximation to shape space is valid. Since 
the curvature can be arbitrarily large, that is certainly not always the case. 

In the next two chapters we turn to the probabilistic and statistical topics that 
were the prime motivation for the introduction of shape spaces. In Chapter 8 
we investigate the distributions that arise on shape space from various standard 
distributions on the points that determine those shapes. We describe them gener- 
ally by referring to the volume measure on shape space obtained in Chapter 7. 
As the initial distributions become more general, the range of shape spaces on 
which we give explicit formulae for the induced distributions tends to become 
more restricted. However, in principle, our results are quite general. Moreover, 
although, as was the case for the homology groups, the formulae can become quite 
intricate, they are still elementary and susceptible to computation. We illustrate 
this claim by obtaining, in the final sections of this chapter, an explicit descrip- 
tion of the density function for the shape of a random triangle whose vertices are 
uniformly independently distributed in a given convex planar polygon. 

In classical statistics the mean is well-defined and simple to compute. However, 
problems can arise both in defining a ‘mean’ shape in theory and also in calcu- 
lating it in practice. It turns out that various ‘obvious’ approaches do not neces- 
sarily lead to the same results or even, in each case, to a unique result. In 
Chapter 9 we discuss some of the relations between different possible definitions 
and also identify circumstances, fortunately fairly general, in which the results 
we would like to take for granted are actually true. 

In Chapter 10 we address the problem of visualising the first, that is, lowest 
dimensional, shape space that is not already familiar. That is the five-dimensional 
space of shapes of tetrahedra in 3-space. Although this is topologically a sphere, it 
is by no means a standard one, as it has a singular subset in the neighbourhood of 
which the curvature becomes arbitrarily large. The visualisation uses a carefully 
selected family of 24 two-dimensional sections that, rather surprisingly, do allow 



PREFACE xi 

us to follow what is going on in the space. We illustrate this by describing some 
typical geodesics, some sample paths for a diffusion and a comparison of two 
distributions on the space. 

We conclude by putting our work into a broader setting where similar studies 
may be carried out. In particular, this enables us to look at some shape spaces 
related to those that have been the subject of the rest of this book. The first 
applications still concern finite sets of points in Euclidean space but here we 
study their size-and-shape, for which size is no longer quotiented out, and also 
an alternative metric, one having negative curvature, on the non-degenerate part 
of the shape space. In the final sections we consider the shapes of finite sets 
of points in the other standard spaces of constant curvature, the sphere and 
hyperbolic space, as well as some connections with the classical theory of elliptic 
functions. 

We are, of course, indebted to all who have worked on shape theory, whether or 
not it lies in the area that we specifically address. Much of the material presented 
is previously unpublished work given in local seminars or work produced explic- 
itly for this book, and we are grateful to all our colleagues, but especially to 
Marge Batchelor, for many helpful discussions over the years of gestation of this 
project. Thanks are also due to our publishers, particularly to Helen Ramsey for 
her constant encouragement and patience over our ever-receding deadlines. 
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CHAPTER 1 

Shapes and Shape 
Spaces 

1.1 ORIGINS 

There have been at least three distinct origins of what we call shape theory. The 
first approach seems to have been that of Kendall (1977) who was, at that time, 
concerned with ‘shape’ in archaeology and astronomy, but it soon became clear 
that the subject could profitably be studied from a more general standpoint. At 
about the same time Bookstein (1978a,b) began to study shape-theoretic problems 
in the particular context of zoology. A third early contributor was Ziezold (1977). 
In this present book the theory will be developed largely along the lines initiated 
by Kendall in his 1977 paper, but much new material will be presented. 

In a typical case the calculations will be concerned with sets of, say, k labelled 
points in a Euclidean space Rn, where k 3 2. Normally, the centroid of the k 
points will serve as an origin, and the scale will be such that the sum of the 
squared distances of the points from that origin will be equal to unity. The basic 
object just described will be called the pre-shape, and any two configurations of 
k labelled points will be regarded as having the same shape if either of their pre- 
shapes can be transformed into the other by  a rotation about the shared centroid. 
The resulting assemblage of all possible shapes will be called the shape space 
and will be denoted by EL. Accordingly, the shape is defined as the pre-shape 
modulo rotations. These definitions and the related constructions provide the basis 
for the present book. It should be observed that the k constituent labelled points 
determine the shape. At a later stage we shall define ‘size-and-shape’ in a similar 
way by omitting the ‘unit-sum-of-squares’ standardisation. 

While we do not wish to go deeply into the details of Bookstein’s parallel 
work, it is appropriate here to stress the fact that for us the labelled points are 
basic and determine the object being studied. In Bookstein’s work, however, the 
‘marker points’ are selected from a usually two-dimensional or three-dimensional 
continuum. Thus, if the object in question is a planar representation of a human 
hand with fingers out-stretched, then the markers could be the tips of the fingers, 
the common roots of each pair of adjacent fingers and a few more points on the 
planar outline of the hand reaching down, say, as far as the wrist. Already in 
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this simple case it is clear that the choice of markers is far from being a simple 
matter even in the two-dimensional case, and it would be still more difficult if 
the complete three-dimensional surface were to be the object being studied. To 
take a still more difficult example, consider the problem of coding the shape of 
a potato! 

A further difference between the two approaches arises at the next stage. Book- 
stein is concerned to represent real objects, often biological ones, and the markers 
are chosen sufficiently well spaced to identify those objects. Thus, he is not 
interested in configurations in which the markers all lie in a lower-dimensional 
subspace or two or more of them coincide. This contrasts with Kendall’s spaces, 
which contain the shapes of all possible configurations except those for which all 
the points coincide. This provides a context in which it is possible to measure the 
statistical significance of apparent collinearities or other degeneracies in archae- 
ological or astronomical data. 

Bookstein’s work includes many delicate and important studies concerning the 
continuous deformation of biological shapes, this being a topic first studied by 
Thompson [1917] (1942). It is appropriate here to associate Thompson’s work 
with that of Bower (1930) who studied ‘size and form’ in plants. A copy of 
Bower’s book was given by him to Kendall, and it was this event that led many 
years later to the formulation of shape-theoretic studies in a general mathematical 
context. 

1.2 SOME PRELIMINARY OBSERVATIONS 

Consider the shape of a configuration of k 3 2 labelled and not totally coincident 
points x:, x;, . . . , x$ in a Euclidean space having m 3 1 Euclidean dimensions. 
How is the shape of such a configuration to be represented? 

Since we are not interested in the location of the k-ad, we may start by 
uniformly translating its component points x; in Rm in such a way that their 
centroid, x:, is moved to the origin of the coordinates. The ‘size’ of this k-ad is, 
of course, important as an aspect of ‘size-and-shape’, but as far as shape alone 
is concerned it is of no interest, so we normally shrink or expand the size of the 
centred k-ad about the new origin so as to make the natural quadratic measure 
of ‘size’ 

equal to unity. This convention makes sense because we have deliberately exclu- 
ded the maximally degenerate case in which all the points xy coincide. 

To take the most trivial example, the only such sized-and-centred configura- 
tions when k = 2 and m = 1 are the labelled point-pairs: 
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in R2, so we see that C: consists of just two shapes, and that it can be identified 
with the two-point unit sphere {-I, 1) of dimension zero. 

A straightforward generalisation of this argument, which we shall give in more 
detail later, tells us that shape space C: consists of all standardised k-ads of the 
form: 

I k k 

(XI ,  x2, . . . , xk) c x i  = 0, = 1 { i=l i= 1 

for k 3 2. Thus, shape space Ci is a unit-radius ( k  - 2)-sphere Sk-*(l) for all 
k 3 2. 

But now suppose that m 3 2 and k 3 2, and let us move the centroid of the 
k-ad to the origin and standardise the size as before. If we write x* for the 
sized-and-centred m x k coordinate matrix with components 

(i;j : 1 < i < m, 1 < j < k ) ,  

then the k individual columns of the matrix can be thought of as column m- 
vectors specifying the positions of the k points x; - x,* in R" where, as above, 
x,* is the centroid of the k-ad and 1 < j < k. Then, from the shape-theoretic 
point of view, we will never wish to distinguish between x* and T x *  where 
T is in SO(m). This is because it is a basic feature of our work that rotations 
acting on the left of z* are to be regarded as irrelevant. We therefore call the 
sized-and-centred configuration described by x* the pre-shape, and we define 
the shape itself to be x* viewed modulo the rotations in SO(m) acting from 
the left. 

It is easily checked that the complete set of all such pre-shapes is a unit sphere 
of dimension m(k - 1) - I ,  and we call this SL. That is the pre-shape space, 
and the corresponding shape space Zk is S i  modulo SO(m) with the rotations 
acting from the left. Provided that k 3 m + I ,  the dimension of Zk, is 

k 1 d, = m(k - 1) - ?m(m - I )  - 1. 

In this formula the first term on the right follows from the fact that, while there 
are m rows and k columns in the matrix x*, k is here reduced to k - 1 because 
we want to have the centroid of the k points at the origin of the coordinates. 
The second term on the right arises because we must quotient out the effect of 
rotations of SO(m) acting from the left, while the final term, -1, takes account 
of the fact that we wish to ignore scale effects. In particular, we note that d'; = 
k - 2 agrees with our earlier calculations. When k < m, a configuration of k 
labelled points in Rn lies in a (k - 1)-dimensional subspace and so its shape 
lies in However, now the extra dimensions give us room to rotate the 
configuration onto its mirror image. This means that the pre-shape is quotiented 
out by O(k - 1) rather than SO(k - 1) to obtain the shape. Thus, for k < m, Ck, 
is a 'halved' version of Xt-,, this being the result of identifying the shapes of 
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configurations of k labelled points in ( k  - 1)-space that are mirror images of 
each other. In particular, when k 6 m, Xk, is ‘over-dimensioned’ in the sense that 
dk, > dim(Xk,) = d i p l .  

Note that, while the construction of the pre-shape is entirely elementary, the 
quotient operation that yields the shape itself is very far from being so, save 
in a few trivial cases. When m = 1 the shape is identical with the pre-shape 
x* because there are no non-trivial rotations T in SO(1), but the corresponding 
situation when m is equal to two or more can be quite complicated. To illustrate 
the non-triviality of shape spaces in general it suffices to remark that when k 3 2 
the shape of k labelled points in the plane will turn out to be a point in the 
classical complex projective space CPkp2(4), where the ‘4’ is the appropriate 
value for the curvature parameter. This is its name as a classical object, but as 
a shape space we call it Xi. In particular, is CP’(4). This, in more familiar 
terms, is the 2-sphere S2( i )  of radius one-half. More details about this will be 
given later in Section 1.3. 

Before discussing general shape spaces Xk, we introduce two important dia- 
grams shown in Tables 1.1 and 1.2. These will be useful in reminding the reader 
of ‘what goes where’ and we here mention some of their most important features. 

Obviously, it is desirable that in the diagrams we should be able to recognise 
those shape spaces that are over-dimensioned, that is, those for which k 6 m. In 
Table 1.1 the over-dimensioned shape spaces are emphasised by the use of lower 
case (r instead of upper case C, which will be used elsewhere. Here, the entry 
at ( k ,  m)  in the table is the name of the shape space associated with k labelled 
points in m dimensions. 

The accompanying Table 1.2 follows the same pattern, but now the entry in 
position ( k ,  m) is the dimension of the corresponding shape space, and a bold 
font is used to indicate the region k 3 m + 1 in which shape spaces are not over- 
dimensioned. For example, X: in Table 1.1 is the shape space for four labelled 
points in three dimensions and, from the corresponding entry in Table 1.2, we 
see that this is a five-dimensional shape space-actually we shall find that it is 
a topological 5-sphere that possesses singularities. 

As already mentioned, the spaces listed in the first column, where m = 1, are 
all unit spheres, while the second column also has familiar entries: for each 
choice of k is the classical complex projective space with a complex dimension 
k - 2 and a real dimension 2k - 4. 

A striking feature of Table 1.1 is that the main diagonal consists entirely of, 
mainly only topological, spheres. We already know that X: is the two-point, 
zero-dimensional, metric sphere of radius unity. We shall see later that X; is a 
metric 2-sphere of radius one-half, while the further entries on the main diagonal 
hold the topological spheres of the dimensions 5 ,  9, 14, . . ., etc. indicated by the 
corresponding entries on the main diagonal in Table 1.2, where the mth entry is 

c+’= 2m + Z m -  ’ 1. 
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Table 1.2 Shape space dimensions 

k\m 1 2 3 4 5 6 7 8 9 10 

2 0 
3 1 
4 2 
5 3 
6 4 
7 5 
8 6 
9 7 

10 8 
11 9 
12 10 
13 11 
14 12 
15 13 
16 14 
17 15 
18 16 
19 17 
20 18 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 

0 0 0 0 0 
2 2 2 2 2 
5 5 5 5 5 
8 9 9 9 9 

11 13 14 14 14 
14 17 19 20 20 
17 21 24 26 27 
20 25 29 32 34 
23 29 34 38 41 
26 33 39 44 48 
29 37 44 50 55 
32 41 49 56 62 
35 45 54 62 69 
38 49 59 68 76 
41 53 64 74 83 
44 57 69 80 90 
47 61 74 86 97 
50 65 79 92 104 
53 69 84 98 111 

0 
2 
5 
9 

14 
20 
27 
35 
43 
51 
59 
67 
75 
83 
91 
99 

107 
115 
123 

0 
2 
5 
9 

14 
20 
27 
35 
44 
53 
62 
71 
80 
89 
98 

107 
116 
125 
134 

0 
2 
5 
9 

14 
20 
27 
35 
44 
54 
64 
74 
84 
94 

104 
114 
124 
134 
144 

However, when k = 4 the row starts off with a unit metric 2-sphere, followed 
by a four-dimensional complex projective space of complex curvature 4, and then 
by a five-dimensional topological sphere, this last space having singularities. That 
space lies on the diagonal and is followed on its right by an infinite sequence of 
identical topological hemispheres, or, equivalently, topological balls, which are 
precisely ‘halves’ of the 5-sphere on the diagonal. The situation is highlighted in 
Table 1.1 by the use of upper-case and lower-case sigmas. 

After inspecting Table 1.1 the reader will notice that we have still to describe 
the shape spaces Xk in the infinite triangular region determined by the inequalities 
m 3 3 and k 3 m + 2, that is, those that lie to the right of the column m = 2 and to 
the left of the spheres on the diagonal of the array. These particular shape spaces 
are truly peculiar in that they appear not to have occurred in any earlier contexts. 
They have not yet been determined up to homeomorphism, but in due course we 
will present the integral homology for each one and describe its global geodesic 
geometry as well as the Riemannian metric and associated curvature tensors. 

Since they have different dimensions, no mo of the ‘diagonal’ shape spaces are 
the same, but to the left of the diagonal the dimension alone is not sufficient to 
distinguish between them. For example, X; and Xio each have dimension 34. In 
later chapters we will make use of a ‘topological recurrence’ that provides useful 
structural information about all of them and, in principle, leads to a complete char- 
acterisation of the whole family of shape spaces. It will be shown, in particular, 
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that the shape spaces in the infinite triangular region mentioned above possess 
the following interesting properties: 

(i) 

(ii) 
(iii) 

These facts were first established by making use of the exact sequences for 
shape space homology that we introduce in Chapter 5 and that results from the 
above-mentioned topological recurrence. Note, in particular, an important conse- 
quence implied by (iii): the shape spaces located in the injinite triangular region 
of Table 1.1 are all topologically distinct from one another. They are also distinct 
from those in the first two columns so that apart from E; and Ei, which are 
different sized copies of the 2-sphere, all shape spaces with k 3 m are topologi- 
cally distinct. 

no one of these is a sphere, and indeed no one is even a homotopy 
sphere or a manifold, 
all of these spaces have torsion in homology, 
no two of them share the same homology, even at the Z2-level. 

1.3 A MATRIX REPRESENTATION 
FOR THE SHAPE OF A k-ad 

Let us consider a labelled set of k points in O B m ,  where k 3 2, whose coordinates 
x;, x;, . . . , x l  we shall write as the columns of the matrix X * .  We recall that 
degeneracies are allowed except that we insist that the points are not totally coin- 
cident, and that the shape of the k-ad is what is left when all effects attributable 
to translation, rotation and dilatation have been quotiented out. 

We now orthogonally transform the k-ad X* as follows: 

and 

for 1 ,< j ,< k - 1. We can see that the matrix (Ax: XI . . . &-I)  representing 
the new k-ad is obtained from X* by multiplying on the right by a special k x k 
matrix Q k .  The second equation also shows that, for each j > 0, Xj is a scalar 
multiple of 

XI* + . . . + x; 
j 

Xj*+l - 

and a striking feature of this construction is the progressive re-centring of xj;l 
relative to its predecessors XI*, . . . , x?. This follows from the form of Q k  and it 
provides the main justification for its use. As an example we present the matrix 
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Q k  in the particular case k = 6 as follows: 

It should be noted that 

(i) 
(ii) 

(iii) 

in each column of the array the squares of the entries sum to unity, 
each column is orthogonal to all of the other columns, 
the integers, the square roots of which appear in the denominators in the 
second and later positions in row one, are as follows: 

2 = 1 ~ 2 ,  6 = 2 ~ 3 ,  1 2 = 3 ~ 4 ,  

2 0 = 4 ~ 5 ,  3 0 = 5 ~ 6 ,  . . .  

these entries being repeated in the rows below in the same horizontal 
locations until just before the main diagonal is reached. 

In fact, these properties suffice to specify the matrix Qk in the general case up 
to the sign of each column. For our particular choice it turns out that Qk is 
a rotation. Indeed, the fact that it is orthogonal is immediate from properties 
(i) and (ii) above. However, it remains for us to show that Qk has determi- 
nant +1 rather than -1. In order to do this we start by adding to the top row 
of the matrix the sum of all the subsequent rows. This yields a new top row 
consisting of followed by zeros. It follows that the value of the determi- 
nant is 

d i  x 1 x 2 x 3 x . . .  x ( k  - 1) 

divided by 

((1 x 2) x (2 x 3) x (3 x 4) x . . . x ( ( k  - 1) x k>}"2, 

which reduces to + I  as required. 
For most purposes it is convenient to shift the configuration so that its centroid 

is moved to the origin of coordinates after which the matrix X *  will have all its 
row sums equal to zero. If we now examine the product 
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we find that it has the form 

because the first column of Qk is ‘constant’ and each row-sum of the matrix 

x; + x; + . . . + x; 
is equal to zero. We also note that our normalisation for size, dividing by 

112 
now corresponds to dividing by { xf=l I Ix: I I’} 

112 
to dividing by { xfz; I 12i 1 I’} . 

and, since Qk is orthogonal, 

The result of this normalisation will be a matrix 

(0 XI  x2 . . . Xk-1) 

and, if we throw away the zero first column, we can represent the pre-shape by 

x = (XI x2 . . .  X k - l ) ,  

and then the shape itself is represented by this m x ( k  - 1) array modulo SO(m) 
acting on the left. We also note that, if we identify the space of m x ( k  - 1) real 
matrices with Euclidean (m x ( k  - 1))-space, our normalisation implies that this 
pre-shape will lie on the unit (m(k - 1) - 1)-sphere in that space. 

Thus, the shape is to be identified with the equivalence class or ‘orbit’ asso- 
ciated with the left action of SO(m) on the pre-shape, and we shall be free to 
represent each such class by any one of its members. In particular, we can if we 
wish transform the pre-shape matrix 

x = (XI x2 . . ‘  xk-1) 

by using one of the rotations in SO(m) to perform various ‘left-hand’ tidying-up 
operations. Thus, we can exploit these procedures to yield 

(i) an upper semi-diagonal matrix that has a strictly positive sign for the first 
non-zero entry in each of the first m - 1 rows, all the entries in the last row 
being 0 or f, as in 

0 0 0 + f f f f f f f ,  
O f f f f f f f f f f  i ( 0 0 0 0 f f f f f f f  

or 

(ii) an upper semi-diagonal matrix with a strictly positive sign for the first 
non-zero entry in each of the first j < m - 2 rows, with ‘zero’ rows below this, 
as in the further example with j = 2: 
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0 0 0 0 0 0 0 0 0 0  0 0 .  

O O + f f f f f f f f f  
O O O + f f f f f f f f  

0 0 0 0  0 0  0 0 0 0  0 0  
0 0 0 0 0 0 0 0 0 0 0 0  

Such 'tidying-up' operations involving an (m x m)-rotation on the left will 
often be useful. Of course, on replacing each f by the actual numerical entry we 
get a tidied-up version of the original data. In fact, when we come to perform 
our mathematical computations on these matrices it will sometimes be more 
convenient to have all the potentially non-zero elements at the beginning of 
each row. 

Another presentation of the pre-shape X = (XI x2 . . . xk-1) is based on a 
'pseudo-singular values decomposition' of X .  This allows us to present the pre- 
shape in the three-factor form 

U ( A  0)V.  

Here, U is an element of SO(m), V is an element of SO(k - I )  and A is the 
m x m diagonal matrix 

with 

1 

diagV-1, A2, . . . , A,) 

A1 3 A2 3 . . .  3 A,-' 3 lA,l. 

In this formula the sum of the squares of the A's is equal to unity, and h, 3 0 
unless k = m + 1. 

We can re-write this decomposition in either of the forms 

U ( A D  0) diag{D-', O}V, 

or, equivalently, 
U D ( A  0) diag{D-', OJV, 

where D is any diagonal (m x m)-matrix of the form 

diag{fl ,  f l ,  . . . , f l }  

with an even number of minus signs. 

interested in the shape, so that in that case we are left with 
Accordingly, U D  is a left-rotation and can be dismissed when we are only 

(AD-' o)v. 
These transformations will be useful later. 

1.4 'ELEMENTARY' SHAPE SPACES Ci AND C$ 

We have already claimed that 
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and that 
c; = C P y 4 ) ,  

11 

and in this section we provide the evidence for these assertions. We begin with 

When k = 2 we start with a non-degenerate point-pair (xT, x;), and we carry 
c;. 

out our standard reduction using Q2 to yield the singleton 

21 = ‘ ( x *  - XT). 2 2  

Because, with our conventions, xT and x; must be distinct when k = 2, it is 
clear that we can divide out the size Ix; - XT I /2/2 to get + 1 when xz > xT,  and 
-1 when xz < xT. Accordingly, we find that Xf = {-1, l}, and this is So(l)  
as already noted. Of course, quotienting on the left by SO(1) is here irrelevant 
because SO(1) is the trivial group. 

Next, suppose that k = 3. We then find, using Q3, that 

1 *  * 1 XI = -(x2 -xl) and 22 = - { 2 4  - (x? +x;)}, 45 & 

and after dividing by the size s, where 

the components x1 = Xl/s and x2 = 221s of the shape will satisfy the equation 

2 2  
XI +x, = 1, 

c; = Sl(1). 
so that 

This argument extends to general k ,  and it tells us that E; = SkP2(1), confirming 
our claim for these spaces. 

We turn next to the identification of the shape spaces Ck,. Here, we consider a 
not totally coincident k-ad of points 

x;,x;, . . . , x i  

in two dimensions. Assuming that these are the coordinates after we have moved 
the centroid to the origin and normalised the size, we construct the pre-shape in 
the form 

following the specification of Q k .  For m = 2 it is, of course, natural to think of 
each xi as a complex number, z j ,  so we can think of the 2 x ( k  - 1) matrix X as 
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identified with the ordered set of complex numbers z = (ZI , Z Z ,  . . . , Zk-1). To get 
the shape from this pre-shape we still have to quotient out the action of SO(2) 
acting on the left, which is just scalar multiplication of z = (z1, zz, . . . , Zk-1) by 
the group {eta : a! E [0, 2n)J of complex numbers of unit modulus. The resulting 
quotient space is known as the complex projective space Cpk-2(4), where the '4' 
is the value of the complex curvature constant that is determined by our unit-size 
convention. 

Since we have excluded the totally coincident k-ad, not all the z j  will be zero. 
Then, if z j  # 0 for some particular j ,  the ordered set of complex numbers 

(zl/zj, z2/zj, . . . 9 zj-l/zj, 1, zj+l/zj, . . . 3 Zk-l/zj) 

is invariant under the above action of SO(2). Ignoring the redundant entry ' l ' ,  
this provides us with a local coordinate system, which we shall employ from 
time to time, on all the shape space except for the points where z j  = 0. These 
excluded points, in fact, form a subspace isometric with CPkP3 (4). We have thus 
confirmed the identification of C!j in the column for m = 2 in Table 1.1. Note, 
in particular, that X; = CP0(4), this being a one-point space. 

A particular identification already referred to is 

x; = CP'(4) = SZ(i). 

Now the metric identification of CP'(4) with S2( i )  is a classical theorem, but 
for the sake of completeness we will set out the details below. We shall make 
frequent use of this both as it stands and also in a flat, but not isometric, version 
obtained by stereographic projection from a point of the sphere S2( i )  onto the 
tangent plane at the antipodal or some other point. 

Before entering into a more detailed study of X;, it will be helpful to note a 
few common features of the general shape spaces Xi. For every k and m, 

and the rotations T in SO(m) act from the left on the matrices X that are the 
points of s;. We write 

is S i  modulo SO(m), where Sk denotes the pre-shape unit sphere Sm(k-')-l (1) 

n : s; - g*; x H n ( X )  

for the quotient mapping. Although, in some papers, the shape is denoted by 
[XI rather than n ( X ) ,  we shall use the latter notation throughout this book. It is 
natural to choose the customary metric topology on SL and the corresponding 
quotient topology on Xi for which the open sets are the images of the SO(m)- 
saturated open sets in Si. Then, the mapping n is continuous. It follows that, 
with this topology, shape space Xk is compact and that it is connected whenever 
S i  is connected, that is, whenever (k, m)  is not (2, 1). 

Equivalently, we can say that the open sets in Ck are those determined by the 
quotient metric p defined by the fundamental formula 
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in which each of X and Y is a pre-shape and, when m 3 2, 

d(X, Y) = 2 arcsin (i I IX - Y I I) , 

which is equal to 
arccos tr(YXf) 
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and so is, in fact, the great-circle metric on the unit sphere SL. This d-metric on 
Sk is topologically equivalent to the norm-metric or ‘chordal metric’ inherited 
from ~ ~ ( ~ p l ) .  

When (1.1) and (1.2) are combined we see that for m 3 2 the distance p 
between two shapes n(X) and n(Y) is given by 

p(n(X), n(Y)) = Tern&rn) arccos tr(TYX‘), 

where we always have O < p < n .  This important result underlies the whole 
discussion of the metric geometry of shape spaces for all values of m 3 2. 

We now return to the special, but particularly interesting, case Ei and, as 
before, we take x:, x; and$ to be the labelled vertices of a not totally degenerate 
triangle in R2. We then have a number of different ways to represent the shapes 
of such triangles. If for the moment we leave on one side the special case when 
x; and x; coincide, then the triangle (x;,x;,x,*) with 0 as the mid-point of 
x:x; can be arranged to have the vector Ox; horizontal and of unit length 
without altering the shape situation. In this way, all except the excluded shape 
are represented uniquely by the resulting position of x,* in the plane. 

Alternatively, we may reduce the specification to ( i ? ~ , & )  E R2 x R2 or 
(2 ,  , 22) E C2 in the manner already explained. Then, as explained above, because 
of the freedom to rotate and rescale the data we can specify the shape either by 

(i) 
or by 

(ii) 

( 1 ,  <) where < = 22/21 and 21 # 0, 

(<, 1) where ( = 21/22 and 22 # 0. 

It may be checked that the coordinate < in (i) is x,*/& when x,* is obtained as in 
the previous paragraph. Alternatively, if we normalise 0x2 to have length l/& 
in the previous paragraph, then the resulting x; will have coordinate precisely <. 

When a more symmetrical parameterisation of the shapes in E; is required, 
then it is convenient to use 

(21 1 2 2 )  

ll-2 

for the pre-shape, and similarly for points in Ei with general k .  
When k = 3 and 21 # 0 another useful coding of the shape is 
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where r = 122/211. That version is often convenient for calculation and it leads 
to informative pictorial representations. When z1 = 0, that is, when x; coincides 
with x l ,  we can find out what happens by letting r tend to infinity. There the 
coded shape reduces to 

(: :;:,"), 
or, equivalently, 

(0, e'9, 

and this, modulo SO(2) acting on the left, is the shape point (0, 1) in complex 
coordinates, which is the only shape excluded from the coordinate representation 
(i) above. 

Whichever of the above representations of the shapes is chosen, however, we 
must not lose sight of the fact that the shape really is the ratio z2/zlr and similar 
remarks apply when working with shape spaces Ck, for general k .  

Now suppose that we are interested in two shapes, these being identified, say, 
as 

i61 
<I = rle 

where rl and r 2  are real, non-negative and finite. To find the shape-theoretic 
distance p(<l, <2) between these two shapes we calculate the trace of the triple 
matrix-product 

- sina cosa 0 rl sin81 r2 cos82 r 2  sin62 
( cosa! s i n a )  ( 1  rlcos81) ( 1 

divided by d( 1 + r f ) (  1 + r,"), which reduces to 

(1 + rl r2 cos(81 - 82)) cos a! + r1 rz sin(& - 82) sin a 

JGiKT-3 
We now need the maximum value of this ratio for 0 < a! < 2n: namely, 

1 + rfr; + 2rl r2 cos(82 - 81 ) J (1 + rf)(l + Y;) 
The value of the inter-shape distance p(<l, <2) is then the arc-cosine of the above 
expression. 

This formula for the shape-distance, which is necessarily always finite, simpli- 
fies if we introduce super-abundant shape variables (&6, C) that are related to 
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the variables (r ,  8 )  by the formulae 
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r cos 8 

for then it will be seen that the new shape coordinates (& b, C) satisfy the equation 

Thus, (a, 6, C) is a point on the sphere S2(i) .  Moreover, this one-to-one corre- 
spondence between the points of that sphere and the shapes in is an isometric 
correspondence, since 

2C0s2p(<i,<2) - 1 = C O s 2 p ( r i , r 2 ) = 4 ( ( i i i , ~ 1 , C 2 ) ,  (22,62,C2)). 

Accordingly, we see that the shape space X; is indeed the sphere S2(i), with the 
point (0, 0, i) replacing the compactification point at infinity. This takes care of 
the otherwise excluded point (0, 0, i) on the sphere. 

To visualise how the various triangular shapes lie upon this sphere we note first 
that SO(3) acts naturally on it as a group of isometries. In particular, there is the 
group of six isometries induced by the permutations of the labels for the vertices 
of the original triangles. The result of this is that S 2 ( $ )  is split into six equivalent 
lunes with their common ‘upper’ and ‘lower’ vertices corresponding to the two 
possible shapes of equilateral triangles. Then, for each unlabelled triangle, the 
six shapes obtained by labelling the vertices will occur at corresponding points in 
the six lunes. Thus, if we are only interested in the shapes of unlabelled triangles, 
these may be specified in just one of these lunes. In addition, the mapping of 
each triangle to its reflection induces an isometry 12 of the shape space, which, 
in the above representation, corresponds to mapping the ‘upper’ half of each 
lune onto its ‘lower’ half. As a result, up to labelling and reflection, all possible 
shapes may be represented in such a half-lune. If we now project this lune onto 
a right circular cylinder that touches S2( i )  along a great circle and then open 
out that cylinder onto a plane, then we obtain, for a suitable choice of cylinder, 
the outline in Figure 1.1 on which a selection of shapes are indicated at their 
representative points on the projection. It is important to note that although this 
projection is not isometric it is measure-preserving and the metric distortions are 
reasonably controlled. In this diagram the shapes of degenerate triangles, that 
is, those in which the three vertices are collinear, lie along the base curve and 
the shape of the regular, equilateral triangles at the upper vertex is maximally 
remote from them. The shapes of isosceles triangles appear along the other two 
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Figure 1.1 
V. Barnett (ed), Interpreting Multivariate Date. Copyright John Wiley & Sons Ltd 

Reproduced with permission from D.G. Kendall, The statistics of shape, in 

boundary arcs with those whose third angle is less than n/3 on the left-hand 
arc and the third angle progressively increasing to n as they move down the 
right-hand arc. 

To compute the metric on the shape space sphere S2(k) in terms of the coor- 
dinate < in (i) above we look first at the way in which stereographic projection 
links the points on the shape sphere to the points in the compactified plane. We 
start by translating the above sphere of radius one-half upwards along the Z-axis 
so that it sits on the plane spanned by 0 6  and Ob with the point of contact at the 
origin 0 and OZ. passing through the centre of the sphere. We label the new coor- 
dinates a, b, c,  so that the equation of the translated sphere is u2 + b2 + c2 = c. 
The point N at the top of the sphere with coordinate (0, 0, 1) corresponds to the 
shape of those triangles that have their first two vertices coincident, and the point 
of contact (0, 0,O) between the sphere and the plane corresponds to the shape of 
those triangles whose third vertex lies midway between the first two. If (x, y, 0) 
is an arbitrary point of the supporting plane and if (a, b, c), where c # 1, is the 


