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Preface 

In 1993 to 1994 I led the effort to establish a graduate program in biostatistics at 
the George Washington University. The program, which I now direct, was launched 
in 1995 and is a joint initiative of the Department of Statistics, the Biostatistics 
Center (which I have directed since 1988) and the School of Public Health and 
Health Services. Biostatistics has long been a specialty of the statistics faculty, 
starting with Samuel Greenhouse, who joined the faculty in 1946. When Jerome 
Cornfield joined the faculty in 1972, he established a two-semester sequence in 
biostatistics (Statistics 225-6) as an elective for the graduate program in statistics 
(our 200 level being equivalent to the 600 level in other schools). Over the years 
these courses were taught by many faculty as a lecture course on current topics. 
With the establishment of the graduate program in biostatistics, however, these 
became pivotal courses in the graduate program and it was necessary that Statistics 
225 be structured so as to provide students with a review of the foundations of 
biostatistics. 

Thus I was faced with the question “what are the foundations of biostatistics?” 
In my opinion, biostatistics is set apart from other statistics specialties by its focus 
on the assessment of risks and relative risks through clinical research. Thus bio- 
statistical methods are grounded in the analysis of binary and count data such as in 
2 x2 tables. For example, the Mantel-Haenszel procedure for stratified 2 x2 tables 
forms the basis for many families of statistical procedures such as the Gf’ family 
of modern statistical tests in the analysis of survival data. Further, all common 
medical study designs, such as the randomized clinical t ia l  and the retrospective 
case-control study, are rooted in the desire to assess relative risks. Thus I developed 

xv 
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Statistics 225, and later this text, around the principle of the assessment of relative 
risks in clinical investigations. 

In doing so, I felt that it was important first to develop basic concepts and 
derive core biostatistical methods through the application of classical mathematical 
statistical tools, and then to show that these and comparable methods may also be 
developed through the application of more modem, likelihood-based theories. For 
example, the large sample distribution of the’Mante1-Haenszel test can be derived 
using the large sample approximation to the hypergeometric and the Central Limit 
Theorem, and also as an efficient score test based on a hypergeometric likelihood. 

Thus the first five chapters present methods for the analysis of single and mul- 
tiple 2 x 2 tables for cross-sectional, prospective and retrospective (case-control) 
sampling, without and with matching. Both fixed and random effects (two-stage) 
models are employed. Then, starting in Chapter 6 and proceeding through Chapter 
9, a more modem likelihood or model-based treatment is presented. These chapters 
broaden the scope of the book to include the unconditional and conditional logistic 
regression models in Chapter 7, the analysis of count data and the Poisson regression 
model in Chapter 8, and the analysis of event time data including the proportional 
hazards and multiplicative intensity models in Chapter 9. Core mathematical sta- 
tistical tools employed in the text are presented in the Appendix. Following each 
chapter problems are presented that are intended to expose the student to the key 
mathematical statistical derivations of the methods presented in that chapter, and to 
illustrate their application and interpretation. 

Although the text provides a valuable reference to the principal literature, it is 
not intended to be exhaustive. For this purpose, readers are referred to any of 
the excellent existing texts on the analysis of categorical data, generalized linear 
models and survival analysis. Rather, this manuscript was prepared as a textbook for 
advanced courses in biostatistics. Thus the course (and book) material was selected 
on the basis of its current importance in biostatistical practice and its relevance 
to current methodological research and more advanced methods. For example, 
Cornfield’s approximate procedure for confidence limits on the odds ratio, though 
brilliant, is no longer employed because we now have the ability to readily perform 
exact computations. Also, I felt it was more important that students be exposed to 
over-dispersion and the use of the information sandwich in model-based inference 
than to residual analysis in regression models. Thus each chapter must be viewed 
as one professor’s selection of relevant and insightful topics. 

In my Statistics 225 course, I cover perhaps two-thirds of the material in this text. 
Chapter 9, on survival analysis, has been added for completeness, as has the section 
in the Appendix on quasi-likelihood and the family of generalized linear models. 
These topics are covered in detail in other courses. My detailed syllabus for Sta- 
tistics 225, listing the specific sections covered and exercises assigned, is available 
at the Biostatistics Center web site (www.bsc.gwu.edu/jml/biostatmethods). Also, 
the data sets employed in the text and problems are available at this site or the web 
site of John Wiley and Sons, Inc. (www.wiley.com). 

Although I was not trained as a mathematical statistician, during my career I 
have learned much from those with whom I have been blessed with the opportunity 
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to collaborate (chronologically): Jerry Cornfield, Sam Greenhouse, Nathan Mantel, 
and Max Halperin, among the founding giants in biostatistics; and also Robert 
Smythe, L.J. Wei, Peter Thall, K.K. Gordon Lan and Zhaohai Li, among others, 
who are among the best of their generation. I have also learned much from my 
students, who have always sought to better understand the rationale for biostatistical 
methods and their application. 

I especially acknowledge the collaboration of Zhaohai Li, who graciously agreed 
to teach Statistics 225 during the fall of 1998, while I was on sabbatical leave. 
His detailed reading of the draft of this text identified many areas of ambiguity 
and greatly improved the mathematical treatment. I also thank Costas Cristophi for 
typing my lecture notes, and Yvonne Sparling for a careful review of the final text 
and programming assistance. I also wish to thank my present and former statisti- 
cal collaborators at the Biostatistics Center, who together have shared a common 
devotion to the pursuit of good science: Raymond Bain, Oliver Bautista, Patricia 
Cleary, Mary Foulkes, Sarah Fowler, Tavia Gordon, Shuping Lan, James Rochon, 
William Rosenberger, Larry Shaw, Elizabeth Thom, Desmond Thompson, Dante 
Verme, Joel Verter, Elizabeth Wright, and Naji Younes, among many. 

Finally, I especially wish to thank the many scientists with whom I have had the 
opportunity to collaborate in the conduct of medical research over the past 30 years: 
Dr. Joseph Schachter, who directed the Research Center in Child Psychiatry where I 
worked during graduate training; Dr. Leslie Schoenfield, who directed the National 
Cooperative Gallstone Study; Dr. Edmund Lewis, who directed the Collaborative 
Study Group in the conduct of the Study of Plasmapheresis in Lupus Nephritis 
and the Study of Captropil in Diabetic Nephropathy; Dr. Thomas Gamey, who 
directed the preparation of the New Drug Application for treatment of gallstones 
with ursodiol; Dr. Peter Stacpoole, who directed the Study of Dichloroacetate 
in the Treatment of Lactic Acidosis; and especially Drs. Oscar Crofford, Saul 
Genuth and David Nathan, among many others, with whom I have collaborated 
since 1982 in the conduct of the Diabetes Control and Complications Trial, the 
study of the Epidemiology of. Diabetes Interventions and Complications, and the 
Diabetes Prevention Program. The statistical responsibility for studies of such great 
import has provided the dominant motivation for me to continually improve my 
skills as a biostatistician. 

JOHN M. LACHIN 

Rockville, Maryland 
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Biostatistics and 
Biomedical Science 

1.1 STATISTICS AND T H E  SCIENTIFIC METHOD 

The aim of all biomedical research is the acquisition of new information so as to 
expand the body of knowledge that comprises the biomedical sciences. This body 
of knowledge consists of three broad components: 

1. Descriptions of phenomena in terms of observable characteristics of elements 
or events; 

2. Descriptions of associations among phenomena; 

3. Descriptions of causal relationships between phenomena. 

The various sciences can be distinguished by the degrees to which each contains 
knowledge of each of these three types. The hard sciences (e.g. physics and chem- 
istry) contain large bodies of knowledge of the third kind - causal relationships. 
The soft sciences (e.g. the social sciences) principally contain large bodies of 
infonnation of the first and second kind - phenomenological and associative. 

None of these descriptions, however, are exact. To quote the philosopher and 
mathematician Jacob Bronowski (1973). 

All information is imperfect. We have to treat it with humilit y... Errors are 
inextricably bound up with the nature of human knowledge ... 

Thus every science consists of shared information, all of which to some extent is 
uncertain. 



2 BIOSTATISTICS AND BIOMEDICAL SCIENCE 

When a scientific investigator adds to the body of scientific knowledge, the de- 
gree of uncertainty about each piece of information is described through statistical 
assessments of the probability that statements are either true or false. Thus the 
language of science is statistics, for it is through the process of statistical analysis 
and interpretation that the investigator communicates the results to the scientific 
community. The syntax of this language is probability, because the laws of prob- 
ability are used to assess the inherent uncertainty, errors, or precision of estimates 
of population parameters, and probabilistic statements are used as the basis for 
drawing conclusions. 

The means by which the investigator attempts to control the degree of uncertainty 
in the research conclusions is the application of the scientific method. In a nutshell, 
the scientific method is a set of strategies, based on common sense and statistics, 
that is intended to minimize the degree of uncertainty and maximize the degree 
of validity of the resulting knowledge. Therefore, the scientific method is deeply 
rooted in statistical principles. 

When considered sound and likely to be free of error, such knowledge is termed 
scientifically valid. The designation of scientific validity, however, is purely sub- 
jective. The soundness or validity of any scientific result depends on the manner 
in which the observations were collected, that is, on the design and conduct of the 
study, as well as the manner in which the data were analyzed. 

Therefore, in the effort to acquire scientifically valid information, one must 
consider the statistical aspects of all elements of a study - its design, execution and 
analysis. To do so requires a firm understanding of the statistical basis for each 
type of study and for the analytic strategies commonly employed to assess a study’s 
objectives. 

1.2 BIOSTATISTICS 

Biostatistics is principally characterized by the application of statistical principles 
to the biologicallbiomedical sciences; in contrast to other areas of application of 
statistics, such as psychometrics and econometrics. Thus biostatistics refers to the 
development of statistical methods for, and the application of statistical principles 
to, the study of biologic and medical phenomena. 

Biomedical research activities range from the study of cellular biology to clinical 
therapeutics. At the basic physical level it includes so-called bench research or the 
study of genetic, biochemical, physiologic, and biologic processes, such as the study 
of genetic defects, metabolic pathways, kinetic models and pharmacology. Although 
some studies in this realm involve investigation in animals and man (in vivo), 
many of these investigations are conducted in “test tubes” (in vitro). The ultimate 
objective of these inquiries is to advance our understanding of the pathobiology 
or pathophysiology of diseases in man and of the potential mechanisms for their 
treatment. 

Clinical research refers to the direct observation of the clinical features of pop- 
ulations. This includes epidemiology, which can be broadly defined as the study 
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of the distribution and etiology of human disease. Some elements, such as in- 
fectious disease epidemiology, are strongly biologically based, whereas others are 
more heavily dependent on empirical observations within populations. These latter 
include such areas as occupational and environmental epidemiology or the study of 
the associations between occupational and environmental exposures with the risk of 
specific diseases. This type of epidemiology is often characterized as population- 
bused because it relies on the observation of natural samples from populations. 

Ultimately, bench research or epidemiologic observation leads to advances in 
medical therapeutics - the development of new pharmaceuticals (drugs), devices, 
surgical procedures or interventions. Such therapeutic advances are often assessed 
using a randomized, controlled, clinical trial. Such studies evaluate the biological 
effectiveness of the new agent (biological efficacy), the clinical effectiveness of 
the therapy in practice (the so-called intention-to-treat comparison), as well as the 
incidence of adverse effects. 

The single feature that most sharply distinguishes clinical biomedical research 
from other forms of biological research is the propensity to assess the absolute and 
relative risks of various outcomes within populations. The absolute risk refers to 
the distribution of a disease, or risk factors for a disease, in a population. This risk 
may be expressed cross-sectionally as a simple probability, or it may be expressed 
longitudinally over time as a hazard function (or survival hnction) or an intensity 
process. The relative risk refers to a measure of the difference in risks among 
subsets of the population with specific characteristics, such as those exposed versus 
not to a risk factor, or those randomly assigned to a new drug treatment versus 
a placebo control. The relative risk of an outcome is sometimes described as a 
difference in the absolute risks of the outcome, the ratio of the risks, or a ratio of 
the odds of the outcome. 

Thus a major part of biostatistics concerns the assessment of absolute and rel- 
ative risks through epidemiologic studies of various types and randomized clinical 
trials. This, in general, is the subject of this text. This entails the study of discrete 
outcomes, some of which are assessed over time. This also includes many major 
areas of statistics that are beyond the scope of any single text. For example, the 
analysis of longitudinal data is another of the various types of processes studied 
through biostatistics. In many studies, however, interest in a longitudinal quantita- 
tive or ordinal measure arises because of its fundamental relationship to an ultimate 
discrete outcome of interest. For example, longitudinal analysis of serum choles- 
terol levels in a population is of interest because of the strong relationship between 
serum lipids and the risk of cardiovascular disease, not cholesterol itself. Thus this 
text is devoted exclusively to the assessment of the risks of discrete characteristics 
or events in populations. 

1.3 NATURAL HISTORY OF DISEASE PROGRESSION 

Underlying virtually all clinical research is some model of our understanding of the 
natural history of the progression of the disease under investigation. As an example, 
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Table 1.1 Stages of Progression of Diabetic Nephropathy 
1. 
2. 
3. 
4. 
5 .  
6. Mortalitv 

Normal: Albumin excretion rate (AER) 5 40 mg/24 h 
Microalbuminuria: 40 < AER < 300 mg/24 h 
Proteinuria (overt albuminuria): AER 2 300 mg/24 h 
Renal insufficiency: Serum creatinine > 2 mg/dL 
End-stage renal disease: Need for dialysis or renal transplant 

consider the study of diabetic nephropathy (kidney disease) associated with type 1 
or insulin dependent diabetes mellitus (IDDM), also known as juvenile diabetes. 
Diabetes is characterized by a state of metabolic dysfunction in which the subject is 
deficient in endogenous (self-produced) insulin. Thus the patient must administer 
exogenous insulin by some imperfect mechanical device, such as by multiple daily 
injections or a continuous subcutaneous insulin infusion (CSII) device also called a 
“pump”. Because of technological deficiencies with the way insulin can be admin- 
istered, it is difficult to maintain normal levels of blood glucose throughout the day, 
day after day. The resulting hyperglycemia leads to microvascular complications, 
the two most prevalent being diabetic retinopathy (disease of the retina in the eye) 
and diabetic nephropathy, and ultimately to cardiovascular disease. 

Diabetic nephropathy is known to progress through a well-characterized sequence 
of disease states, characterized in Table 1.1. The earliest sign of emergent kidney 
disease is the leakage of small amounts of protein (albumin) into urine. The amount 
or rate of albumin excretion can be measured from a timed urine collection in which 
all the urine voided over a fixed period of time is collected. From the measurement 
of the urine volume and the concentration of albumin in the serum and urine at 
specific intervals of time, it is possible to compute the albumin excretion rate 
(AER) expressed as the mg/24 h of albumin excreted into the urine by the kidneys. 

In the normal (non-diseased) subject, the AER is no greater than 40 mg/24 h, 
some would say no greater than 20 or 30 mg/24 h. The earliest sign of possible 
diabetic nephropathy is microalbuminuria, defined as an AER >40 mg/24 h (but < 
300 mg/24 h). As the disease progresses, the next landmark is the development of 
definite albuminuria, defined as an AER >300 mg/24 h. This is often termed overt 
proteinuria because it is at this level of albumin (protein) excretion that a simple 
dip-stick test for protein in urine will be positive. This is also the point at which 
nephropathy, and the biological processes that ultimately lead to destruction of the 
kidney, are considered well established. 

To then chart the hrther loss of kidney function, a different measure is used - 
the glomerular filtration rate (GFR). The glomerulus is the cellular structure that 
serves as the body’s filtration system. As diabetic nephropathy progresses, fewer 
and fewer intact glomeruli remain, so that the rate of filtration declines, starting 
with the leakage of protein and other elements into the urine. The GFR is difficult 
to measure accurately. In practice, a measure of creatinine clearance, also from a 
timed urine collection, or a simple measure of the creatinine concentration in serum 
are used to monitor disease progression. Renal insufficiency is often declared when 
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the serum creatinine exceeds 2 mg/dL. This is followed by end-stage renal disease 
(ESRD), at which point the patient requires frequent dialysis or renal transplantation 
to prolong survival. Ultimately the patient dies from the renal insufficiency or 
related causes if a suitable donor kidney is not available for transplantation. 

Thus the natural history of diabetic nephropathy is described by a collection of 
quantitative, ordinal and qualitative assessments. In the early stages of the disease, 
a study might focus entirely on quantitative measures of AER. Later, during the 
middle stages of the disease, this becomes problematic. For example, patients with 
established proteinuria may be characterized over time using a measure of GFR, 
but the analysis will be complicated by informatively missing observations because 
some patients reached ESRD or died before the scheduled completion of follow-up. 

However, a study that assesses the risk of discrete outcomes, such as the in- 
cidence or prevalence of proteinuria or renal insufficiency, is less complicated by 
such factors and is readily interpretable by physicians. For example, if a study 
shows that a new drug treatment reduces the mean AER by 10 mg/24 h less than 
that with placebo, it is dificult to establish the clinical significance of the result. 
On the other hand, if the same study demonstrated a relative risk of developing 
proteinuria of 0.65, a 35% risk reduction with drug treatment versus placebo, the 
clinical significance is readily apparent to most physicians. 

Therefore, we shall focus on the description of the absolute and relative risks of 
discrete outcomes, historically the core of biostatistics. 

1.4 TYPES OF BIOMEDICAL STUDIES 

Biomedical research employs various types of study designs, some of which involve 
formal experimentation, others not, among other characteristics. In this section the 
characteristics and the roles of each type of study are briefly described. 

Study designs can be distinguished by three principal characteristics: 

1. Number of samples: single versus multiple samples; 

2. Source of samples: natural versus experimental. An experimental sample is 
one to which a treatment or procedure has been applied by the investigator. 
This may or may not involve randomization as an experimental device to 
assign treatments to individual patients. 

3. Time course of observation: prospective versus retrospective versus concur- 
rent collection of measurements and observation of responses or outcome 
events. 

Based on these characteristics, there are basically four types of designs for bio- 
medical studies in man: (1) the cross-sectional study, (2) the cohort study, (3) the 
case-control study, and (4) the randomized experiment. A more exhaustive classi- 
fication was provided by Bailar, Louis, Lavori and Polansky (1 984), but these four 
are the principal types. Examples of each type of study are described subsequently. 



6 BlOSTATlSTlCS AND BIOMEDICAL SCIENCE 

The cross-sectional study is a study of a single, natural sample with concurrent 
measurement of a variety of characteristics. In the review by Bailar, Louis, Lavori, 
and Polansky (1984), 39% of published studies were of this type. Some notable 
examples are the National Health and Nutritional Examination Survey (NHANES) 
of the relationship between health and nutrition, and the annual Health Interview 
Survey of the prevalence of various diseases in the general U.S. population. Such 
studies have provided important descriptions of the prevalence of disease in specified 
populations, of the co-occurrence of the disease and other factors (i.e. associations), 
and of the sensitivity and specificity of diagnostic procedures. 

In a cohort study (25% of studies), one or more samples (cohorts) of individuals, 
either natural or experimental samples, are followed prospectively and subsequent 
status is evaluated. 

A case-control study (5% of studies) employs multiple, natural samples with 
retrospective measurements. A sample of cases with the disease is compared to a 
sample of controls without the disease with respect to the previous presence of, or 
exposure to, some factor. 

An important characteristic of cohort and case-control studies is whether or not 
the study employs matching of pairs or sets of subjects with respect to selected 
covariate values. Matching is a strategy to remove bias in the comparison of groups 
by ensuring equality of distributions of the selected matching covariates. Matching, 
however, changes the sample frame or the sampling unit in the analysis from the 
individual subject in an unmatched study to the matched set in the matched study. 
Thus matched studies require analytic procedures that are different from those more 
commonly applied to unmatched studies. 

A randomized, controlled clinical trial or parallel - comparative trial (1 5% 
of studies) employs two or more parallel randomized cohorts, each of which receives 
only one treatment in the trial. Such studies provide a controlled assessment of a 
new drug, therapy, diagnostic procedure, or intervention procedure. Variations of 
this design include the multiple-period crossover design and the crossed factorial 
design. Since a clinical trial uses randomization to assign each subject to receive 
either the active treatment versus a control (e.g. drug vs. placebo), the comparison 
of the groups is in expectation unbiased. However, a truly unbiased study also 
requires other conditions such as complete and unbiased follow-up assessments. 

Each of the first three types are commonly referred to as an observational or 
epidemiological study, in contrast to the clinical trial. It is rare, some might say 
impossible, that a population-based observational study will identify a single neces- 
sary and sufficient cause for a biologic effect, or a 1:l causal relationship. Almost 
always, a risk factor is identified that has a biological effect that is associated with 
a change in the risk of an outcome. It is only aAer a preponderance of evidence 
is accumulated from many such studies that such a risk factor may be declared to 
be a causal agent. Such was the case with the relationship between smoking and 
lung cancer, and the criteria employed to declare smoking a causal agent are now 
widely accepted (US Surgeon General, 1964, 1982). 

The principal advantage of the randomized controlled trial (RCT), on the other 
hand, is that it can provide conclusions with respect to causal relationships because 
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other intervening factors are controlled through randomization. Thus the RCT 
provides an unbiased comparison of the effects of administering one treatment versus 
another on the outcome in the selected population of patients, and any differences 
observed can be confidently ascribed to the differences between the treatments. 
Therefore, the distinction between a relationship based on an observational study 
and one based on a randomized experiment rests in the degree to which an observed 
relationship might be explained by other variables or other mechanisms. 

However, in no study is there an absolute guarantee that all possible influential 
variables are controlled, even in a randomized, controlled experiment. Also, as the 
extent of knowledge about the underlying natural history of a disease expands, it 
becomes increasingly important to account for the known or suspected risk factors 
in the assessment of the effects of treatments or exposures, especially in an obser- 
vational cross-sectional, cohort, or case-control study. This entails the use of an 
appropriate statistical model for the simultaneous influence of multiple covariates 
on the absolute or relative risk of important outcomes or events. 

Thus the principal objective of this text is to describe methods for the assessment 
of risk relationships derived from each type of study, and to consider methods to 
adjust or control for other factors in these assessments. 

1.5 STUDIES OF DIABETIC NEPHROPATHY 

To illustrate the different types of studies, we close this chapter with a review of 
selected studies on various aspects of diabetic nephropathy. 

Cross-sectional surveys such as the National Health Interview Survey (NHIS) 
and the National Health and Nutrition Evaluation Survey (NHANES) indicate that 
approximately 16 million people in the United States population have some form 
of diabetes mellitus (Harris, Hadden, howle r  and Bennett, 1987). The majority 
have what is termed type 2 or non-insulin dependent diabetes mellitus (NIDDM). 
Approximately 10% or 1.6 million have the more severe form termed type 1 or 
insulin-dependent diabetes mellitus (IDDM) for which daily insulin injections or 
infusions are required to sustain life. Among the most important clinical features of 
type 1 diabetes are the development of complications related to micro- and macro- 
vascular abnormalities, among the most severe being diabetic nephropathy (kidney 
disease), which ultimately leads to end-stage renal disease (ESRD) in about a third 
of patients. These and other national surveys indicate that approximately 35% of 
all ESRD in the United States is attributed to diabetes. 

As an illustration of a longitudinal observational cohort study, Deckert et al. 
(1978) followed a cohort of 907 Danish subjects with type 1 diabetes for many years 
and reported the annual incidence (proportion) of new cases of proteinuria (overt 
albuminuria) to appear each year. They showed that the peak incidence or greatest 
risk occurs approximately 15 years after the onset of diabetes. Their study also 
showed that over a lifetime, approximately 70% of subjects develop nephropathy 
whereas approximately 30% do not, suggesting that there is some mechanism that 
protects patients from nephropathy, possibly of a genetic nature, possibly related to 
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the lifetime exposure to hyperglycemia, or possibly related to some environmental 
exposure or characteristic. 

Since the discovery of insulin in the 1920s, one of the principal issues of con- 
tention in the scientific community is what was often called the Glucose Hypothesis. 
This hypothesis asserts that the extent of exposure to elevated levels of blood glucose 
or hyperglycemia is the dominant determinant of the risk of diabetic nephropathy 
and other microvascular abnormalities or complications of type 1 diabetes. Among 
the first studies to suggest an association was a large observational study conducted 
by Pirart (1978a, 1978b) in Belgium over the period 1947-1973. This study exam- 
ined the association between the level of blood glucose and the prevalence (presence 
or absence) of nephropathy. The data were obtained from a retrospective examina- 
tion of the clinical history of 4,400 patients treated in a community hospital over a 
period of up to 25 years in some patients. The rather crude analysis consisted of 
figures that displayed the prevalence of nephropathy by year of diabetes duration 
for subgroups categorized as being in good, fair or poor control of blood glucose 
levels. These figures suggest that as the mean level of hyperglycemia increases, 
the risk (prevalence) of nephropathy also increases. This type of study is clearly 
open to various types of sampling or selection biases. Nevertheless, this study pro- 
vides evidence that hyperglycemia may be a strong risk factor, or is associated with 
the risk of diabetic nephropathy. Note that this study is not strictly a prospective 
cohort study because the cohort was identified later in time and the longitudinal 
observations were then obtained retrospectively. 

In all of these studies, biochemical measures of renal function are used to as- 
sess the presence and extent of nephropathy. Ultimately, however, end stage renal 
disease is characterized by the physiologic destruction of the kidney, specifically 
the glomeruli, which are the cellular structures that actually perform the filtration 
of blood. However, the only way to determine the physical extent of glomerular 
damage is to conduct a morphologic evaluation of a tissue specimen obtained by 
a needle biopsy of the kidney. As an example of a case-control study, Chavers, 
Bilous, Ellis, et al. (1989) conducted a retrospective study to determine the associ- 
ation between established nephropathy or not (the cases vs. controls) and evidence 
of morphologic (structural tissue) abnormalities in the kidneys (the risk factor or 
exposure). They showed that approximately 69% of patients with nephropathy 
showed morphologic abnormalities versus 42% among those without nephropathy, 
for a relative risk (odds ratio) of 3.2. Other studies (cJ Steffes, Chavers, Bilous and 
Mauer (1989) show that the earliest stage of nephropathy, microalbuminuria (which 
they defined as an AER 2 20 mg/24 h) is highly predictive of progression to pro- 
teinuria, with a positive predictive value ranging from 83-100%. These findings 
established that proteinuria is indeed associated with glomerular destruction and 
that microalbuminuria is predictive of proteinuria. Thus a treatment that reduces 
the risk of microalbuminuria can be expected to reduce the risk of progression to 
proteinuria, and one that reduces the risk of proteinuria will also reduce the extent 
of physiologic damage to the kidneys. 

The major question to be addressed, therefore, was whether the risk of albu- 
minuria or nephropathy could be reduced by a treatment that consistently lowered 
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F;g. 1.1 Cumulative incidence of microalbuminuria (AER > 40 mg/24 h) over nine years 
of follow-up in the DCCT Primary Prevention Cohort. 
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the levels of blood glucose. By the 1980s, technological developments made an 
experiment (clinical trial) to test this hypothesis feasible. The level of blood glu- 
cose vanes continuously over the 24 hour period, with peaks following meals and 
troughs before meals. It was discovered that the hemoglobin (red cells) in the blood 
become glycosylated when exposed to blood glucose. Thus the percent of the to- 
tal hemoglobin that has become glycosylated (the HbAI, %) provides an indirect 
measure of the mean level of hyperglycemia over the preceding 4-6 weeks, the 
half-life of the red blood cell. This made it possible to assess the average extent 
of hyperglycemia in individual patients. Other developments then made it possible 
for patients and their health-care teams to control their blood sugar levels so as to 
lower the level of hyperglycemia, as reflected by the level of HbA1,. Devices for 
self-blood glucose monitoring allowed patients to measure the current level of blood 
glucose (mg/dL) from a drop of blood obtained by a finger prick. Patients could 
then alter the amount of insulin administered to keep the level of blood glucose 
within a desirable range. Also, a variety of types of insulin were developed, some 
of which acted quickly and some over long periods of time, that could be adminis- 
tered using multiple daily insulin injections or a pump. The health care team could 
then try different algorithms to vary the amount of insulin administered in response 
to the current level of blood glucose. 

With these advances, in 1981 the National Institute of Diabetes, Digestive and 
Kidney Disease launched the Diabetes Control and Complications Trial (DCCT) to 
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Fig. 1.2 Cumulative incidence of microalbuminuria (AER > 40 mgf24 h) over nine years 
of follow-up in the DCCT Secondary Intervention Cohort. 
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test the glucose hypothesis (DCCT 1990, 1993). This was a large scale random- 
ized controlled clinical trial involving 1441 patients enrolled in 29 clinical centers 
in the United States and Canada and followed for an average of 6.5 years (4-9 
years), Of these, 726 patients comprising the primary prevention cohort were free 
of any microvascular complications (AER 5 40 mg/& and no retinopathy, among 
other features); and 71 5 patients comprising the Secondary Intervention Cohort may 
have had minimal pre-existing levels of albuminuria (AER c 200 mg/dL) and mild 
retinopathy. Patients were randomly assigned to receive either intensive or con- 
ventional treatment. Intensive treatment used all available means (self-monitoring 
four or more times a day with three or more multiple daily injections or a pump in 
conjunction with diet and exercise) to obtain levels of HbA1, as close as possible 
to the normal range (< 6.05%) while attempting to avoid hypoglycemia. Hypo- 
glycemia occurs when the blood glucose level is reduced below a physiologically 
safe level, resulting is dizziness and possibly coma (unconsciousness) or seizures. 
Conventional treatment, on the other hand, consisted of one or two daily injections 
of insulin with less frequent self-monitoring with the goal of maintaining the clinical 
well-being of the patient, but without any specific glucose targets. 

Figure 1.1 presents the cumulative incidence of microalbuminuria (AER > 40 
mg/24 h) among the 724 patients free of microalbuminuria at baseline in the primary 
cohort (adapted from DCCT, 1993); presented with permission). The average hazard 
ratio for intensive versus conventional treatment (1:C) over the 9 years is 0.66. This 


