Contents

Contributors xiii
Preface xvii

1 Themes in Bacterial Pathogenic Mechanisms 3
* C. L. Gyles and J. F. Prescott
 - Basic Steps in Pathogenesis Provide a Sound Foundation 3
 - Refining Concepts of Virulence 5
 - Critical Host-Bacteria Communication 6
 - Promise of Genomics 8
 - Evolution of Pathogens—Insights into the Road Ahead 9

2 Evolution of Bacterial Virulence 13
* P. Boerlin
 - Population Structures and Genome Plasticity: Sex in Bacteria 14
 - Pathogenicity Islands: Not a Place for Fun 14
 - Illustrations of Virulence Evolution 15
 - Conclusion 21

3 Streptococcus 23
* J. F. Timoney
 - *Streptococcus agalactiae* 23
 - *Streptococcus dysgalactiae* 26
 - *Streptococcus equi* 27
 - *Streptococcus zooepidemicus* 31
 - *Streptococcus canis* 32
 - *Streptococcus suis* 33
 - *Streptococcus porcinus* 35
 - *Streptococcus uberis* 36
 - *Streptococcus pneumoniae* 37
 - Conclusions 38

4 Staphylococcus 43
* K. Hermans, L. A. Devriese, and F. Haesebrouck
 - Characteristics of the Organism 43
 - Pathogenic *Staphylococcus* Species 44
5 Bacillus anthracis
M. A. Weiner and T. C. Dixon

Epidemiology 57
Bacteriology 58
Pathogenesis 60
Therapeutics 63
Immunity and Control 64

6 Mycobacterium
C. O. Thoen and R. G. Barletta

Virulence 70
Host Response 70
Granulomatous Lesion Development 72

7 Corynebacterium and Arcanobacterium
B. H. Jost and S. J. Billington

Corynebacterium 77
 Corynebacterium bovis 77
 Corynebacterium kutscheri 77
 Corynebacterium pseudotuberculosis 78
 Corynebacterium renale, C. pilosum and C. cystitidis 80
 Corynebacterium ulcerans 81
Arcanobacterium 81
 Arcanobacterium pyogenes 81
Conclusions 84

8 Rhodococcus
J. F. Prescott, J. Ren, and C. Dupont

Characteristics and Sources of the Organism 87
Bacterial Virulence Factors 87
Pathogenesis 89
Gaps in Knowledge and Anticipated Developments 95

9 Listeria
C. Czuprynski

Characteristics of the Bacterium 99
Sources of the Bacterium 100
Bacterial Virulence Factors 101
Pathogenesis 102
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host-Pathogen Interactions in Listeriosis</td>
<td>105</td>
</tr>
<tr>
<td>Conclusions</td>
<td>107</td>
</tr>
<tr>
<td>10 Erysipelothrix rhusiopathiae</td>
<td>111</td>
</tr>
<tr>
<td>Y. Shimoji</td>
<td></td>
</tr>
<tr>
<td>Bacterial Virulence Factors</td>
<td>111</td>
</tr>
<tr>
<td>Diseases</td>
<td>112</td>
</tr>
<tr>
<td>Pathogenesis</td>
<td>112</td>
</tr>
<tr>
<td>Acquired Immunity</td>
<td>114</td>
</tr>
<tr>
<td>Conclusions</td>
<td>115</td>
</tr>
<tr>
<td>11 Neurotoxigenic Clostridia</td>
<td>117</td>
</tr>
<tr>
<td>R. H. Whitlock</td>
<td></td>
</tr>
<tr>
<td>Botulism</td>
<td>117</td>
</tr>
<tr>
<td>Characteristics of Clostridium botulinum</td>
<td>117</td>
</tr>
<tr>
<td>Pathogenesis of Botulism</td>
<td>118</td>
</tr>
<tr>
<td>Tetanus</td>
<td>119</td>
</tr>
<tr>
<td>Pathogenesis of Tetanus</td>
<td>119</td>
</tr>
<tr>
<td>Nature and Action of Botulinum and Tetanus Toxins</td>
<td>119</td>
</tr>
<tr>
<td>Immunity to Botulism and Tetanus</td>
<td>120</td>
</tr>
<tr>
<td>Conclusion</td>
<td>121</td>
</tr>
<tr>
<td>12 Histotoxic Clostridia</td>
<td>125</td>
</tr>
<tr>
<td>J. G. Songer</td>
<td></td>
</tr>
<tr>
<td>Virulence Factors and Pathogenesis</td>
<td>125</td>
</tr>
<tr>
<td>Conclusion</td>
<td>128</td>
</tr>
<tr>
<td>13 Enteric Clostridia</td>
<td>131</td>
</tr>
<tr>
<td>J. G. Songer</td>
<td></td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>131</td>
</tr>
<tr>
<td>Clostridium septicum</td>
<td>136</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>136</td>
</tr>
<tr>
<td>Clostridium spiroforme</td>
<td>138</td>
</tr>
<tr>
<td>Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>14 Salmonella</td>
<td>143</td>
</tr>
<tr>
<td>S. J. Libby, T. A. Halsey, C. Altier, J. Potter, and C. L. Gyles</td>
<td></td>
</tr>
<tr>
<td>Classification and Nomenclature</td>
<td>143</td>
</tr>
<tr>
<td>Biochemical Characteristics and Bacterial Isolation</td>
<td>144</td>
</tr>
<tr>
<td>Host Specificity</td>
<td>144</td>
</tr>
<tr>
<td>Diseases Caused by Salmonella</td>
<td>145</td>
</tr>
<tr>
<td>Virulence Factors</td>
<td>148</td>
</tr>
<tr>
<td>Pathogenesis</td>
<td>153</td>
</tr>
<tr>
<td>Immunity</td>
<td>158</td>
</tr>
<tr>
<td>Antibiotic Resistance and Virulence</td>
<td>160</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>160</td>
</tr>
</tbody>
</table>
Contents

15 *E. coli* Shigella
T. Adam and C. L. Gyles

 Disease 170
 Shigellosis in Animals 170
 Virulence Factors of *E. coli* Shigella 171
 Plasmids 174
 Pathogenesis of Shigellosis 177
 Immunity 181
 Toxins 184
 Concluding Remarks 184

16 *Escherichia coli*
C. L. Gyles and J. M. Fairbrother

 Types of *E. coli* Implicated in Disease 194
 Enterotoxigenic *E. coli* (ETEC) 194
 Pathogenesis 199
 Shiga Toxin-Producing *Escherichia coli* (STEC) 202
 Enteropathogenic *E. coli* (EPEC) 206
 Pathogenesis 206
 Extraintestinal *E. coli* (ExPEC) 208
 Immunity 213
 Concluding Remarks 214

17 *Actinobacillus*
J. I. MacInnes and J. T. Bossé

 Actinobacillus pleuropneumoniae 225
 Actinobacillus suis 232
 Actinobacillus equuli 233
 Actinobacillus lignieresii 234
 Conclusions and Future Prospects 235

18 *Haemophilus*
T. J. Inzana and L. Corbeil

 Characteristics 243
 Habitat and Transmission 244
 Haemophilus somnus 245
 Haemophilus parasuis 251
 Haemophilus paragallinarum 252
 Conclusions 253

19 *Bordetella*
D. A. Bemis and B. Fenwick

 Characteristics of the Organism 259
 Sources of the Bacterium 260
 Bacterial Virulence Factors 260
 Pathogenesis 263
<table>
<thead>
<tr>
<th>20</th>
<th>Pasteurella and Mannheimia</th>
<th>273</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. D. Boyce, R. Y. C. Lo, I. Wilkie, and B. Adler</td>
<td></td>
</tr>
<tr>
<td>Pasteurella</td>
<td>Diseases/Economic Impact</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Taxonomy, Nomenclature, and Typing</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>Sources of the Bacteria</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>Bacterial Virulence Factors</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Pathogenesis and Pathology</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Immunity</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>278</td>
</tr>
<tr>
<td>Mannheimia</td>
<td>Characteristics of the Organism</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Sources of the Bacterium</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Bacterial Virulence Factors</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Pathogenesis</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Interactions Between the Bacterium and Host Defenses</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Immunity</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>285</td>
</tr>
<tr>
<td>21</td>
<td>Yersinia</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>J. Mecsas and R. Chafel</td>
<td></td>
</tr>
<tr>
<td>Classification of Yersinia Species</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Sources of Yersinia Species</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>Virulence Factors</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Pathogenesis</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>Immunity</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Future Directions</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Brucella</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>S. C. Olsen, C. O. Thoen, and N. F. Cheville</td>
<td></td>
</tr>
<tr>
<td>Virulence</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Brucella abortus</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>Brucella melitensis</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Brucella ovis</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Brucella suis</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Brucella canis</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Host Response</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Disease Control</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pseudomonas</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>M. Matewish and J. S. Lam</td>
<td></td>
</tr>
<tr>
<td>Diseases</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Virulence Factors of P. aeruginosa</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Antibiotic Resistance</td>
<td>329</td>
<td></td>
</tr>
</tbody>
</table>
“Genome-Mining” for Essential Genes 330
Pathogenesis 330
Vaccines 332
Conclusions and Future Prospects 333

24 Moraxella
W. P. Michalski and J. L. Farn 343

Characteristics of the Organism 343
Characteristics of M. bovis 343
Infectious Bovine Keratoconjunctivitis (IBK) or Pinkeye 346

25 Campylobacter and Helicobacter
L. A. Joens 353

Campylobacter 353
Campylobacter fetus 353
Campylobacter jejuni and C. coli 354
Campylobacter upsaliensis, C. hyointestinalis, and C. mucosalis 357
Helicobacter 357
Helicobacter hepaticus and H. bilis 357
Helicobacter pylori 358

26 Lawsonia intracellularis
C. J. Gebhart and R. M. C. Guedes 363

Characteristics of L. intracellularis 364
Sources of L. intracellularis 365
Virulence Factors 365
Pathogenesis 366
Conclusion 369

27 Gram-Negative Anaerobes
D. J. Hampson, T. G. Nagaraja, and N. B. Buller 373

General Bacterial Virulence Factors 373
Bacteroides 373
Fusobacterium 374
Prevotella and Porphyromonas 377
Dichelobacter 377
Treponema 379
Brachyspira 379
Overall Conclusions and Future Work 381

28 Leptospira
B. Adler and A. de la Peña-Moctezuma 385

Introduction and Historical Perspectives 385
Characteristics of the Organism 385
Sources of the Bacterium 387
Bacterial Virulence Factors 388
Pathogenesis 390
Conclusions 392

29 Mycoplasma
K. L. Whithear and G. F. Browning 397

Characteristics of the Organism 397
Sources of the Bacterium 397
Bacterial Virulence Factors 398
Pathogenesis 400
Interactions 404
Protective Immunity 408
Conclusions and Future Directions 410

30 Chlamydia
A. A. Andersen 415

Classification 415
Hosts and Kinds of Disease 415
Life Cycle 416
Host Response 417
Diseases 418
Pathogenesis 419

31 Rickettsiales
S. Harrus, T. Waner, S. Mahan, and H. Bark 425

Characteristics of Rickettsial Organisms 425
Animal Rickettsial Pathogens—Family Anaplasmataceae 426
Animal Rickettsial Pathogens—Family Rickettsiaceae 436
Conclusion 438

Index 445
Contributors

Thomas Adam Institut für Mikrobiologie und Hygiene, Medizinische Fakultat der Humboldt-Universität, Charité, Dorotheenstr., Berlin, Germany

Ben Adler Bacterial Pathogenesis Research Group, Department of Microbiology, School of Biomedical Sciences, Monash University, VIC 3800, Australia

Craig Altier Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh NC 27606, USA

Arthur A. Andersen National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA

Hylton Bark School of Veterinary Medicine, The Hebrew University of Jerusalem, P. O. Box 12 Rehovot, 76100, Israel

Raul G. Barletta Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA

David A. Bemis Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA

Stephen J. Billington Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, AZ 85721, USA

Patrick Boerlin Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Janine T. Bossé Molecular Infectious Disease Group, Department of Academic Paediatrics, Imperial College London, St. Mary’s Campus, London W2 1PG, United Kingdom

John D. Boyce Bacterial Pathogenesis Research Group, Department of Microbiology, School of Biomedical Sciences, Monash University, VIC 3800, Australia

Glenn F. Browning School of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia

N. B. Buller Western Australian Department of Agriculture, Baron-Hay Court, South Perth, Western Australia 6151, Australia

Rebecca Chafel Department of Microbiology and Molecular Biology, Tufts University, Boston, Massachusetts, USA

Norman F. Cheville National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA

Lynette Corbeil Department of Pathology, University of California at San Diego Medical Center, 2000 West Arbor Drive, San Diego, CA 92103, USA

Charles Czuprynski Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706-1102, USA

Luc A. Devriese Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B 9820 Merelbeke, Belgium
Terry C. Dixon, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA

Chris Dupont, Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

John M. Fairbrother, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte CP5000, St. Hyacinthe, Quebec, J2S 7C6 Canada

Jacinta L. Farn, University of Melbourne, Department of Microbiology and Immunology, Parkville, Victoria 3052, Australia

Brad Fenwick, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA

Connie J. Gebhart, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA

Roberto M. C. Guedes, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA

Carlton L. Gyles, Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Freddy Haesebrouck, Faculty of Veterinary Medicine, Ghent University, Salisburylann 133, B 9820 Merelbeke, Belgium

Tom A. Halsey, Department of Microbiology, College of Veterinary Medicine, North Carolina State University, Raleigh NC 27606, USA

David J. Hampson, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia

Shimon Harrus, School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12 Rehovot, 76100, Israel

Kathleen Hermans, Faculty of Veterinary Medicine, Ghent University, Salisburylann 133, B 9820 Merelbeke, Belgium

Thomas J. Inzana, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Lynn A. Joens, Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, AZ 85721, USA

B. Helen Jost, Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, AZ 85721, USA

Joseph S. Lam, Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Steve J. Libby, Department of Microbiology, College of Veterinary Medicine, North Carolina State University, Raleigh NC 27606, USA

Reggie Y. C. Lo, Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Jan I. Maclnnes, Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Suman Mahan, University of Florida/USAID/SADC Heartwater Research Project, Department of Pathobiology, College of Veterinary Medicine, Gainesville, FL 32610-0880, USA

Mauricia Matewish, Canadian Bacterial Diseases Network, Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Joan Mecas, Department of Microbiology and Molecular Biology, Tufts University, Boston, MA, USA

Wojtek P. Michalski, CSIRO Livestock Industries, Australian Animal Health Laboratory, Protein Biochemistry and Proteomics Group, Geelong, Victoria 3220, Australia

Alejandro de la Peña-Moctezuma, Departamento de Microbiología e Inmunología, Facultad de Medi-
Cina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, México, D.F. México

T. G. Nagaraja Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502-5606, USA

Steven C. Olsen National Animal Disease Center Agricultural Research Service US Department of Agriculture, Ames, IA 50010, USA

Jennifer Potter Department of Microbiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA

John F. Prescott Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Jun Ren Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Yoshihiro Shimoji National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan

J. Glenn Songer Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, AZ 85721, USA

Charles O. Thoen Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA 50011, USA

John F. Timoney Department of Veterinary Medicine, 108 Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA

Trevor Waner Israel Institute for Biological Research, PO Box 19, Ness Ziona, 74100, Israel

Matthew A. Weiner Department of Pediatrics, Duke University Medical Center, Durham, NC, USA

Kevin L. Whithear School of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia

Robert H. Whitlock Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 426 Dean Drive Cedar Croft, Kennett Square, PA 19348, USA

Ian Wilkie Veterinary Pathology and Anatomy, School of Veterinary Science and Animal Production, The University of Queensland, QLD, 4072, Australia
Preface

The third edition of *Pathogenesis of Bacterial Infections in Animals* is much more than an updated version of the second edition. Two new editors and 47 new authors bring new perspectives and considerable expertise to the book. For most chapters, 2 to 5 authors have combined their efforts to ensure that the book provides a balanced and authoritative account of pathogenesis. For the other chapters, we were fortunate to find individuals whose breadth and depth of knowledge on a group of pathogens allowed them to carry out the task single-handedly.

We have added two introductory chapters to provide an overview of mechanisms in pathogenesis and a review of evolutionary changes that impact on pathogenesis. Readers will be able to further explore the themes and the evolution of virulence as they read individual chapters. The chapter on *Nocardia, Actinomyces, and Dermatophilus* was omitted from this edition as there have not been great strides in knowledge of pathogenesis of these bacteria in recent years.

This book is possible because of the dedication of a vast number of people. Most important are the researchers whose curiosity, commitment to discovery, and hard work have produced a vast body of knowledge of the interactions of pathogenic bacteria and their hosts. The writers of the chapters in this book are part of this group and have used their own work and insights as well as the work of colleagues to produce interesting accounts of pathogenesis. Authors were allowed considerable freedom to tell the pathogenesis story in a way that they felt was most effective for the particular organism or group of organisms. The editors reviewed the chapters and have ensured that there is consistency of approach, despite the variation in styles of writers and in state of knowledge of pathogenesis of various bacteria. Several publishers and colleagues kindly gave permission for the use of illustrations in the book and we are grateful to them.

This is the age of things molecular. Therefore, it is not surprising that molecular pathogenesis is a major aspect in almost every chapter. Bacterial and host molecules that participate in the disease process are being identified at a rapid pace, and our understanding of their precise roles in pathogenesis is improving daily. This is a satisfying experience as more and more pieces of the puzzle are put together, and these advances are leading to new ways of preventing and controlling disease. Care has been taken to ensure that our fascination with molecular events has not led to the neglect of other aspects of pathogenesis that are critical for appreciation of the big picture. This has been possible because of the selection of authors who are active in cutting-edge research and have expertise in the whole range of interactions between host, parasite, and environment that constitute pathogenesis.

This book is unique. It brings together expertise from both medical and animal health research and describes events at the molecular, cellular, organ, and whole-animal levels. This is a truly international production with contributors from Australia, Belgium, Canada, Germany, Israel, Japan, Mexico, the United Kingdom, the United States, and Zimbabwe.

Finally, we wish to thank our publishers who have been extremely helpful in transforming the writings of 57 individuals into a beautiful book. Special thanks go to Tad Ringo, the project manager; Justin Eccles, designer; Carol Kromminga, copy editor; Cheryl Garton, publishing assistant; and Gretchen Van Houten, commissioning editor.
1 Themes in Bacterial Pathogenic Mechanisms

C. L. Gyles and J. F. Prescott

The speed of progression of our understanding of pathogenic bacteria and their interactions with the host at the molecular level is providing novel insights and perspectives on pathogens and pathogenicity at an almost overwhelming rate. Such information and insights should be of fundamental value in designing better and unprecedented ways to counter infectious diseases. This is happening already. For example, studies on the use of drugs that jam quorum sensing communication systems have shown promise that this approach may be an effective method of preventing virulence regulons from being activated (Hentzer et al. 2003).

Although an overview of the basic themes in bacterial pathogenic mechanisms provides a conceptual skeleton for the extensive details of individual pathogens given in later chapters, understanding of virulence and pathogenicity is changing rapidly. The fundamental concepts have withstood the test of time fairly well but new knowledge has brought the complexities of host-pathogen interactions into sharper focus and has identified nuances that had not been recognized previously (Finlay and Falkow 1997).

Basic Steps in Pathogenesis Provide a Sound Foundation

The basic steps in the establishment of infection by a bacterial pathogen are (1) attachment or other means of entry into the body; (2) evasion of normal host defenses against infection; (3) multiplication to significant numbers at the site of infection and/or spread to other sites; (4) damage to the host, either directly or through the nonspecific or specific immune host response to the bacterium; and (5) transmission from the infected animal to other susceptible animals, so that the infection cycle can continue. As would be expected for carefully regulated systems, the infection process is a dynamic continuum rather than a clear series of steps, but breaking it down into progressive steps allows ease of understanding.

Pathogen Association with the Host

Successful colonization of the skin or a mucosal surface of the host is usually the first prerequisite of the infectious process. Some organisms need to employ motility and chemotaxis as well as resistance to acid and bile in order to reach their target host cells. Initial contact between bacterial pathogen and host cell is usually mediated by fimbrial or nonfimbrial adhesins on the bacterial surface. Binding may result in extracellular colonization or in internalization of the pathogen. The adhesins bind to specific host-cell surface receptors and both host and organ specificity of infection may be determined by differences among animals in cellular receptors for the bacterial adhesins. As many receptors are developmentally regulated, age specificity may also be determined by the receptor to which a pathogen binds.

Bacterial pathogens, including those associated with wound infections, may bind to extracellular matrix molecules such as fibronectin, collagen, laminin, or other proteins possessing RGD sequences for binding of eukaryotic cell-membrane integrins. Bacteria may use “invasins” to invade nonprofessional phagocytic host cells after attaching to molecules on the cell surface and activating host-cell signaling to facilitate their entry, often through host-cell cytoskeleton rearrangement. An excellent example of this is found in the adherence to and invasion of M cells by Yersinia enterocolitica.
and \textit{Y. pseudotuberculosis}. The outer membrane protein invasin produced by these bacteria binds to \(\beta_1\) integrin on the surface of M cells and triggers uptake of the bacteria in a zipperlike internalization process (Hauck 2002). This entry provides the bacteria with access to the lymphoid tissue below and to draining lymph nodes in which the bacteria are well equipped to multiply.

Faculative intracellular pathogens may deliberately target macrophages, for example entering through complement or other lectin-binding receptors and thus avoiding the oxidative burst that might otherwise kill them. Remarkably for these organisms, which subsequently interfere with normal macrophage phagosome maturation, the safest place in the body is actually a macrophage.

Pathogen Multiplication and Evasion of Host Defenses

After initial association with the host, bacterial pathogens need to evade host defenses and to multiply to numbers sufficient for the infection to be self-sustaining rather than to be aborted by the host response. The “defensins” involved in the evasion-multiplication process can be divided into those involved with defense against innate immune mechanisms and those involved in defense against specific immune mechanisms.

Innate immunity can be overcome in a wide variety of ways. The lack of available iron within the substance of the body that restricts the growth of many bacteria is often overcome by the iron-acquisition systems of pathogens. Many organisms, particularly those causing septicemia and pneumonia, have prominent, usually carbohydrate, capsules that help the organism resist phagocytosis in the absence of antibody. Some capsules mimic host matrices so that the organisms are unrecognized by phagocytes. The lipopolysaccharide molecules of some gram-negative bacteria can protect them from the membrane attack complex of complement or from the insertion of antimicrobial peptides. Other bacteria such as streptococci can break down complement components through \(C5a\) peptidase or other proteases. Other bacteria may destroy or impair phagocytic cells through their leukocidins, such as the RTX toxins, or enable bacteria to survive inside phagocytes through enzymes such as superoxide dismutases or catalases.

Acquired immunity can be overcome in several ways. These include the ability to degrade immunoglobulins, such as the IgA proteases of \textit{Haemophilus somnus}, or the ability to alter the antigenicity of cell surface components such as fimbriae or outer membrane proteins. Bacterial superantigens can dramatically up-regulate certain T-cell subsets with specific \(V_\beta\) regions, which may not only result in a “cytokine storm” that confuses the immune system but also result in the deletion of these cells from the immune repertoire. In ways that are not well understood, some bacteria, such as \textit{Rhodococcus equi}, may modulate the cytokine response to infection so that an ineffective Th2 rather than effective Th1-based immune response leads to development of disease. The role of “modulins” in diverting the host immune response is far less well understood for bacteria than for viral infections.

Pathogen Damage to the Host

Bacterial damage to the host is usually essential for immediate or longer-term acquisition of the nutrients the bacterium needs to thrive and to continue its pathogenic lifestyle. Infection does not always lead to disease, which is one of the possible outcomes of bacteria-host interaction. Other outcomes include commensalism and latency.

Among the wide variety of “offensins” produced by bacteria are many different types of toxins. Toxins can be classified in different and not fully satisfactory ways, though that based on activity is most logical (Wilson et al. 2002). Type I toxins, the membrane-acting toxins, bind to cell-surface receptors to transduce a signal that results in activation of host-cell pathways, leading to aberrant cell metabolism. Examples in \textit{E. coli} include the heat-stable enterotoxin StA, which binds to the receptor for guanylyl cyclase, resulting in hypersecretion due to excessive levels of cGMP, and the CNF toxins, which activate Rho GTPases, resulting in cytoskeletal rearrangements. Other examples include the \textit{Bacillus anthracis} EF toxin, the \textit{Pasteurella multocida} PMT toxin, and the ExoS toxin of \textit{Pseudomonas aeruginosa}. The superantigens fall into this class. Type II toxins, the membrane-damaging toxins, include the membrane-channel-forming toxins using the \(\beta\)-barrel structure (e.g., \textit{Staphylococcus aureus} \(\alpha\)-toxin), channel-forming toxins involving \(\alpha\)-helix formation, the large range of thiol-activated cholesterol-binding cytolysins, and the RTX toxins. Type II toxins that damage membranes enzymatically include the phospholipases of many bacteria. Type III toxins, the intracellular toxins, are toxins that enter and are active within the cell. These are often AB (active-binding) two-component toxin molecules. Examples include the ADP-ribosyl transferases (e.g., the \textit{E. coli} LT toxin), the N-glycosidases
(e.g., the Shiga toxins), the adenylate cyclases (e.g., the Bordetella bronchiseptica adenylate cyclase toxin), and the metalloendoproteases of the clostridial neurotoxins.

Tissue damage and impairment of host function is often due to the inflammatory response mounted by the host in response to infection with a bacterial pathogen. Sepsis probably represents an extreme case in which hyperresponsiveness to LPS and/or other host signaling molecules unleashes an excessively strong inflammatory response resulting in vascular damage, hypotension, and multiple organ damage. The inflammatory response mounted by the host may also provide a point of entry for certain invasive enteric pathogens, such as Shigella dysenteriae. This organism carries a virulence plasmid-encoded homolog of the msbB gene in addition to the chromosomal copy, and it has been suggested that this may ensure complete acylation of lipid A and production of highly stimulatory LPS. The massive leukocyte infiltration between epithelial cells promotes invasion by the pathogens (D’Hauteville et al. 2002). A similar arrangement for the msbB gene exists in E. coli O157:H7.

PATHOGEN TRANSMISSION FROM THE HOST

Although not often considered in a discussion of bacterial pathogenesis, a crucial feature of bacterial pathogens is their ability to use their pathogenic nature to assure their further transmission from the host, either back into their environmental reservoir or directly to other susceptible hosts. Depending on the infection, further transmission to animals may be immediate or may involve decades.

An important aspect of transmission involves bacterial infections of animals that are important primarily because of the transmission of organisms from animals to humans. In some cases, as with EHEC O157:H7, the bacteria are normal flora in the intestine of animals in which they do not cause disease, but they induce severe disease following transmission to humans. A similar situation exists for Campylobacter jejuni and most serotypes of Salmonella in poultry. Efficient transfer from their reservoir hosts to their accidental host occurs directly through contamination of foods of animal origin and indirectly through fecal contamination of water and the environment.

REFINING CONCEPTS OF VIRULENCE

Bacteria cause disease by a variety of virulence mechanisms in a highly complex process that usually involves penetrating host protective barriers, evading deeper host defenses, multiplying to significant numbers, and damaging the host, leading to escape from the host to continue the cycle. Although this concept of virulence is well established, the resurgence or emergence of infectious diseases in humans in recent years because of changes in host susceptibility (AIDS, immunosuppressive drugs, hospital-acquired infections) emphasizes the importance of host factors in determining the outcome of encounters with microbes. Many people now die in hospitals from infectious agents that are not pathogens in healthy people. A parallel situation exists in many small animal hospitals, especially in intensive care units. Similarly, the ability of some bacteria rapidly to develop or acquire antimicrobial resistance and then to emerge as significant problems in hospital or community settings emphasizes the importance of environmental factors in determining the outcome of infection. Virulence does not occur in a vacuum; it is contextually dependent.

The impact of infection on the evolution of animal hosts can generally only be guessed at, but may have been profound. For example, the target of the Vibrio cholerae toxin (CT) and Escherichia coli heat labile enterotoxin (LT) is the cystic fibrosis transmembrane conductance regulator (CFTR) protein, whose response to CT leads to fluid outpouring in the intestine. The CFTR protein is necessary for fluid secretion in the intestine and in airways, and intestinal tissue from patients with cystic fibrosis fails to respond to CT. It has been suggested that the defects in the CFTR gene that provide resistance to cholera may have led to the maintenance of defective genes in the human population and the current high frequency of the delta F508 mutation (1 in 25), homozygotes for which develop cystic fibrosis. It is interesting that recent evidence suggests that this mutation may also provide protection against infection with Salmonella Typhi (Pier et al. 1998). The historical association of pathogens and their hosts, and the coevolutionary nature of this relationship, are also part of the host-pathogen-environment triad that determines the outcome of an infection.

Earlier definitions of virulence often derived from older studies of classic bacterial pathogens (“Koch’s postulates”), many of which have been controlled by immunization, hygiene, or antimicrobial drugs. These definitions were markedly updated (“Falkow’s molecular Koch’s postulates”) (Falkow 1988) but were still largely pathogen centered and focused on a narrow range of virulence determinants such as
A recent theme, even ignoring host and environmental interactions with the pathogen as determinants of disease, has emphasized that bacterial virulence is multifactorial, involving not only “true” or “essential virulence genes” that are directly responsible for host damage, but also “virulence-associated genes” that regulate essential virulence genes or are otherwise required for their expression, secretion, or processing, as well as “virulence lifestyle genes,” which allow bacteria to colonize the host, evade host defenses, use host factors for survival, or survive intracellularly (Wassenaar and Gaastra 2001). An analogy is to a gun: the bullets can be considered the true virulence genes, the gun can be considered the virulence-associated genes, and the criminal can be considered the virulence-lifestyle genes. Clearly, inactivation of any of these three elements will stop the bullets from killing a victim, but ultimately it is the bullets that kill. Recognition of the distinction of these different elements will prevent some of the potential confusion that faulty interpretations of modern experimental methods produce. Bacterial virulence is thus more clearly than ever recognized as the truly complex, dynamic, changeable, and often surprising phenomenon that it is.

This view of bacterial virulence highlights bacterial survival and successful further spread under potentially adverse conditions in the ecological niche(s) into which they have been introduced or to which they have adapted, and all the complexity that successful survival implies. From this perspective, antimicrobial resistance genes may contribute to virulence as they are virulence lifestyle genes that contribute to survival in antibiotic-containing environments.

CRITICAL HOST-BACTERIA COMMUNICATION

It has long been recognized that the outcome of infection is dependent on complex multistep processes involving host, pathogen, environment, and their interactions. Nonetheless, the tendency has been for researchers to tackle problems of pathogenesis primarily by investigation of virulence attributes of the pathogen. One of the outcomes of this approach is that we now have an impressive catalog of virulence genes of bacterial pathogens, but we have a long way to go in understanding issues of regulation, timing, cross talk, and interplay with host structures and physiology. In recent years, researchers have sought to redress this imbalance, and we have seen numerous investigations of pathogens in either their natural host environments or in in vitro settings that seek to simulate aspects of the in vivo environment. It is not surprising, therefore, that a major theme in pathogenesis research is that communication among bacteria, host, and environment is a critical aspect of pathogenesis. Studies in this field have led to a new branch of microbiology, namely cellular microbiology, that investigates bacterial signal transduction as a tool to characterize host signaling pathways.

Bacteria have an astounding ability to sense their environment and to rapidly respond to it. Bacteria-host-environment communication systems that are important in pathogenesis may involve combinations of bacterial type III secretion systems (TTSS), type IV secretion systems, host-cell cytoskeletal rearrangement, quorum sensing, two-component regulatory systems, and stress responses. Studies of TTSSs have identified a conservation of the secretion apparatus and a remarkable diversity in the effector functions mediated by the systems in extensively investigated bacterial pathogens such as Salmonella, Shigella, enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), and Yersinia. The effectors of the TTSSs are virulence factors that interact with specific host-cell structures and factors that set off complex host-cell pathways (Gruenheid and Finlay 2003).

Cues to bacterial location are as diverse as temperature, pH, growth phase, nutrient availability, oxygen levels, ion concentrations, and quorum-sensing molecules, or combinations of these cues. Depending on the environment, some virulence genes may be up-regulated while others are down-regulated only to reverse when the environment changes. The regulation of virulence is complex, with several regulators often controlling the expression of a particular virulence gene and with coordinate regulation of genes whose products are required under the same circumstances. The practical application of knowing how virulence genes are regulated is that regulation is a potential target for novel synthetic or natural inhibitory molecules.

A recent study by Hentzer and colleagues (2003) showed in dramatic fashion how sabotage of the bacteria-host communication system might be used to attenuate bacterial virulence. These researchers targeted the quorum-sensing circuits of P. aeruginosa, which are known to regulate critical virulence factors in this organism. The researchers demon-
strated that a synthetic furanone compound, C-30, was antagonistic toward the quorum-sensing systems of *P. aeruginosa*. The researchers then used transcriptome analysis to identify 93 genes that were >fivefold affected by application of C-30 to a culture of *P. aeruginosa*, and noted that 30 of 85 C-30-repressed genes were quorum-sensing-controlled major virulence factors. Additional experiments showed that growth of *P. aeruginosa* biofilms in the presence of C-30 resulted in biofilms that had lost their resistance to SDS and to tobramycin. Subsequent experiments demonstrated that C-30 was effective against *P. aeruginosa* in the lungs of infected mice: those mice that were treated had lung bacterial contents that were on average 1/1,000th those of untreated mice. Encouraging data obtained during the study included observations that the effect of C-30 was highly specific as it targeted only the *las* and *rhl* quorum sensors, and was effective against both planktonic and biofilm cultures. The authors suggested that an attack on expression of virulence was unlikely to create pressures for resistant mutants to develop.

New regulatory signals that are critical for virulence expression are being identified. For example, the enterohemorrhagic *E. coli* O157:H7 expresses the colonization genes encoded by the locus for enterocyte effacement (LEE) in response to a quorum-sensing regulatory molecule that was initially considered to be autoinducer 2 (AI-2) (Sperandio et al. 2001) but has now been shown to be a new autoinducer called AI-3 (Sperandio et al. 2003). Both AI-2 and AI-3 require LuxS for their synthesis. It is interesting that the mammalian hormones epinephrine and norepinephrine had the same effect as AI-3 in activating the LEE-encoded genes (Sperandio et al. 2003). Furthermore, either exogenous AI-3 or epinephrine could activate the LEE genes in a luxS mutant, and epinephrine antagonists could block this activation. These data suggest that AI-3 and epinephrine may use the same bacterial signaling pathway in cross talk between host and pathogen. Evidently, factors that influence the epinephrine/norepinephrine content in the intestine may play a significant role in expression of LEE and the virulence genes in EHEC. In *P. aeruginosa*, the quorum-sensing signal can act directly on host cells to stimulate production of the proinflammatory cytokine IL-8 (Smith and Iglewski 2003). It will be interesting to see whether in an analogous fashion AI-3 has a direct effect on host intestinal epithelial cells.

Signaling that affects host apoptosis pathways is a common aspect of pathogenesis of bacterial diseases. Bacterial products shown to induce apoptosis include outer membrane proteins, LPS, lipoproteins, lipooligosaccharides, phospholipid, and certain protein toxins. Macrophages, by their possession of receptors for conserved bacterial surface components such as LPS and lipoprotein, are highly vulnerable, as apoptosis may be triggered by reactions with these receptors.

Apoptosis is a common feature of pathogenesis in a wide range of pathogens including *Salmonella, Shigella, Escherichia, Yersinia, Campylobacter, Pseudomonas, Chlamydia, Mycobacterium, Staphylococcus, Streptococcus*, and *Listeria*. Apoptosis may provide benefits to the host by way of curtailing the primary immune response thereby limiting damage due to excessive release of cytokines and destructive neutrophil enzymes. On the other hand, it may be of value to the parasite by destroying host defense cells such as macrophages, thereby promoting bacterial invasion of tissues and prolonging infection.

Bacteria are able to induce apoptosis by stimulating pro-apoptotic molecules or inhibiting anti-apoptotic molecules (Grassme et al. 2001). Direct activation of pro-apoptotic signals is seen in infection by *Shigella flexneri, Salmonella*, and *S. aureus*. *S. flexneri* uses its TTSS to inject M cells with IpaB, which binds to caspase 1 and activates its proteolytic function, thereby inducing apoptosis. Simultaneous release of IL-1 by the M cells attracts neutrophils, and results in widening of the junction between epithelial cells, thus facilitating access to the basolateral surface of epithelial cells, a site that is vulnerable to invasion by *S. flexneri*. *Salmonella* Typhimurium also uses its TTSS to inject SipB, which activates caspase 1. The mechanisms by which *S. aureus* induces apoptosis are less well understood, but they involve activation of caspases, JUN-N-terminal kinases (JNK), and acid sphingomyelinase. Alpha toxin has been identified as the staphylococcal protein that initiates apoptosis.

A TTSS also features in induction of apoptosis in macrophages by *Yersinia*. These bacteria both activate pro-apoptotic pathways and inhibit anti-apoptotic pathways. Injection of YopP (*Y. enterocolitica*) or YopJ (*Y. pseudotuberculosis* and *Y. pestis*) into macrophages activates caspases and inhibits activation of MAP kinase and MAP kinase kinases as well as NFκB. Inhibition of the translocation of NFκB into the nucleus causes suppression of the production of TNF-alpha, a stimulator of apoptosis.

The translocated intimin receptor (Tir) of EPEC has been identified as a TTSS-delivered molecule
that can trigger apoptosis in cultured epithelial cells (Malish et al. 2003). Tir was localized to the mitochondria, but its mechanism of induction of apoptosis is unknown. Shiga toxin injures host vascular endothelial cells by an apoptotic mechanism (Erwert et al. 2003). This activity is dependent on the A subunit of the toxin and is effected by inhibition of McI-1, a member of the Bcl-2 family of apoptotic proteins. *P. aeruginosa* depends on its TTSS to up-regulate expression on the surface of epithelial cells of CD95/CD95 ligand, a receptor/ligand pair that stimulates apoptosis through signaling of caspasases.

The end result of apoptotic changes varies in the different infections. For example, apoptosis triggered by *P. aeruginosa* appears to be critical for the host defense against lung infection, presumably by promoting phagocytosis of bacteria that are packaged in apoptotic bodies (Cannon et al. 2003). The muted inflammatory response involved in apoptosis may also be beneficial to the infected tissue and the host. In the intestine, the elimination of invading bacterial pathogens by an increased rate of apoptosis of intestinal epithelial cells may be an important mechanism for elimination of pathogens such as EPEC (Malish et al. 2003). At the same time, deeper tissues may become vulnerable to invasion by intestinal bacteria. In contrast, apoptosis by *S. flexneri* is a critical aspect of infection by the bacterium. It is needed for invasion of the intestinal epithelium.

Host cells also have elaborate mechanisms for identifying conserved bacterial structures and relaying this information to pathways that respond to the presence of bacteria. Pattern recognition receptors (PRRs) on the surface of innate immune cells permit the recognition of infectious agents through their possession of pathogen-associated molecular patterns (PAMPs) such as LPS, lipoproteins, peptidoglycans, and DNA with unmethylated CpG motifs. Included among the PRRs are the Toll-like receptors (TLRs), which are signal-transduction proteins that, among other actions, trigger the secretion of cytokines through activation of the transcription factor NFkB. Signaling by TLRs occurs primarily through the adaptor molecule MyD88. Recently, another adaptor molecule (Trif) was shown to be required for signals leading to production of interferon-β following activation of TLR3 or TLR4. TLR3 detects double-stranded RNA; TLR4 recognizes LPS; and TLR2 recognizes lipoproteins, peptidoglycans, and lipoteichoic acid. Flagellin binds to TLR5 and causes release of IL-8 from intestinal epithelial cells. It is interesting that TLR5 is expressed on the basolateral and not on the apical surface of intestinal epithelial cells so that the alarm is sounded only when bacterial invasion has occurred or bacterial products have reached this site. CpG-DNA interacts with TLR9, which is located intracellularly rather than at the cell surface. Internalization of CpG-DNA and endosomal maturation are necessary for activation of TLR9 (Ahmad-Nejad et al. 2002).

The TLRs help to link the innate immune response with the acquired immune response, as macrophages and dendritic cells that contact pathogens become activated, causing up-regulation of costimulatory cell surface molecules as well as class I and II major histocompatibility complex (MHC) molecules. Differential expression of TLRs on the various types of cells of the innate immune system and differences in the signals that are generated allow for a system in which the type of pathogen that is encountered is met with the appropriate Th1 or Th2 response (Wagner 2002). Innate immune responses that occur following binding of pathogen to a TLR include killing of the pathogen through antimicrobial compounds such as nitric oxide in macrophages and antimicrobial peptides at the surface of epithelial cells (Sieling and Modlin 2002). Adaptive immune responses are influenced through activation of B cell proliferation, release of chemokines, and adjuvant effects of the PAMPs.

PROMISE OF GENOMICS

“The enormous influx of information from genome sequencing projects is revolutionizing the science of pathogenesis, ranging from understanding the most basic aspects of gene content to elucidating the regulatory networks of virulence gene expression, to investigating the global patterns of host response to infection,” say Whittam and Bumbaugh (2002). Examining differences in specific genes between a pathogen and a closely related nonpathogen, or between parent and its offspring with a specific null mutation, has been a valuable approach for identification of virulence genes. The rate of recognition of potential virulence genes is increasing dramatically as genome sequences are now available for over two hundred bacteria, and genomic data and microarray analysis are now frequently combined to rapidly identify hundreds of potential virulence factors simultaneously. However, these potential virulence
Functional genomics can be used to investigate the transcriptome under specific conditions. Data from transcriptome studies are beginning to lead to a better understanding of memberships in virulence regulons and to identification of the complex environmental cues that modulate virulence expression. Ideally, bacterial mRNA collected from infected tissues would be examined. However, relatively low numbers of bacteria in most infected tissues, relatively small amounts of bacterial compared with host RNA, and instability of bacterial mRNA make this approach impractical for most infections. Hence, it has been necessary to use amplification methodologies such as selected capture of transcribed sequences (SCOTS) or to use in vitro conditions to simulate the in vivo setting. One of the challenges in these studies is to simulate accurately the host microenvironment. Currently, it is common for only one or two aspects of that environment to be examined in simulations (e.g., temperature, iron concentration, pH). It is likely that much more complex simulations will be attempted in the future.

Comparative genomics involving comparison of ORFs of genomes has been a valuable starting point in identification of virulence genes. For example, a comparison of the genomes of pathogenic Listeria monocytogenes and the closely related nonpathogenic L. innocua identified 270 genes that were specific to L. monocytogenes and 149 that were specific to L. innocua (Buchrieser et al. 2003). These genes were present in coding regions that were scattered over the genomes but typically different in G + C content than the 34% for Listeria-specific genes. The analysis has not so far identified new virulence genes. There are also exciting studies under way that exploit knowledge of the E. coli O157:H7 genome and the comparative virulence of other EHEC to identify genes that are associated with the extreme virulence of O157 EHEC compared with other STEC (M. A. Karmali, personal communication).

Genomic data in combination with microarray technologies have sometimes been used to probe not only bacterial metabolism in the host but also host changes in response to the presence of the bacteria. The enormous amount of data generated in these studies is often quite a challenge for analysis and interpretation. Typically, a large number of genes is up-regulated and down-regulated, and it is difficult to differentiate primary from secondary responses. The time at which a readout of mRNA is made is also critical as too long a delay may reveal only the steady state after much of the series of responses by bacteria and host has been completed. Like in vivo expression technology (IVET), these analyses identify genes expressed under certain conditions, and subsequent testing is needed to determine the subset of these genes that is essential for infection of the host and for disease.

Data mining of complete and incomplete genome sequences has been used to generate valuable information on virulence-related genes in bacteria. For example, 21 novel sequences that might encode ADP-ribosyltransferase activity were identified by this method in bacteria as diverse as Streptococcus pyogenes, Mycobacterium avium, Salmonella Typhi, and Mycoplasma pneumoniae (Pallen et al. 2001). There is, however, a large gap between genomic analyses and functional genomics. This is exemplified by the fact that only about 60% of the genes of E. coli and 56% of the genes of P. aeruginosa have known function. Besides, presence of gene sequences does not necessarily mean that functional proteins are produced.

EVOLUTION OF PATHOGENS—INSIGHTS INTO THE ROAD AHEAD

Evolutionary studies of pathogenic bacteria have shown that many have arisen by “quantum leaps” from nonpathogens as a result of acquisition of blocks of genetic material (that are sometimes very large) rather than by progressive mutations of existing genes. A large number of essential virulence genes is found on a variety of mobile genetic elements (bacteriophages, plasmids, transposons) that have been spread from other microbial sources through transformation, transduction or conjugation, or combinations of these processes. The discovery of blocks of virulence genes on pathogenicity islands in phage insertion chromosomal hot spots has been one of the major surprises in recent years, reinforcing the concept that the evolution of virulence can be characterized in many cases as a dramatic process of “evolution by jerks” rather than as a slow, long-term, progressive refinement (point mutations, rearrangements) of existing genes to improve survival in different niches (though this is also important). Clonal analysis of bacterial populations has been used to characterize the different times and populations in which these dramatic changes occurred.
For example, *Salmonella* evolved as a pathogen over the last one hundred million years in three distinct phases, and continues to evolve. Its infection by bacteriophages may have played a vital role in this process (Figueroa-Bossi et al. 2001). The first phase in this evolution involved acquisition of *Salmonella* pathogenicity island 1 (SPI 1). *Salmonella enterica* then diverged from *S. bongori* by acquisition of a second pathogenicity island (SPI 2). The final major phase was the process of branching into distinct phylogenetic groups, with a dramatic expansion of *S. enterica* subsp. I into warm-blooded animals (Bäumler et al. 1998). It may have thus evolved from a dinosaur into a mammalian pathogen. Some subsp. I serotypes further acquired the *Salmonella* virulence plasmid, which is characteristic of the major host-adapted serotypes, as well as the most virulent of the non-host-adapted serotypes Enteritidis and Typhimurium. Possession of the virulence plasmid and its *spv* operon makes these serotypes particularly pathogenic (Bäumler et al. 2000).

The basis of the marked even further host adaption of certain serotypes of *Salmonella* is unclear but may relate to the relative plasticity of the *Salmonella* genome afforded by phage-mediated transfer of a small number of host-specific virulence factors (Rabsch et al. 2002). It is in part a function of the presence of different types of specific fimbrial adhesins that recognize intestinal surfaces. For example, *S. Typhimurium* definitive phage type (DT) 49 and DT104 appear to have a broad host range. However, in contrast, in Rock doves, *S. Typhimurium* var. Copenhagen is considered to be a specifically adapted subtype, with DT2 and DT99 being isolated almost exclusively from this species in Europe and North America (Rabsch et al. 2002). Certain strains of *S. Typhimurium*, particularly DT40 and DT160, may have become adapted to certain species of songbirds.

Not only has horizontal gene transfer through mobile genetic elements played a key role in the evolution of virulence, but many bacterial species are naturally competent for DNA molecules, so that DNA taken up from lysed bacteria within microcolonies can lead through homologous recombination to mosaic genomes that may give an advantage to their host. This may have both long- and short-term benefits to the organism. A classic example of immediate benefit is the formation of antigenically distinct variants of fimbrial adhesins by *Neisseria gonorrhoeae* selected out by the immune response of the host to the older major antigenic type.

In other cases, there has been an orderly buildup of virulence-related genes by horizontal transfer. This has been shown for *V. cholerae*, EHEC, and EPEC. In EPEC and EHEC, there has been clear evidence of selection for increasing virulence over time (Reid et al. 2000). The main advantages of the ability to induce diarrhea in the host are presumed to be an increase in opportunity for acquisition of DNA in the intestine as colonization results in large numbers of pathogenic *E. coli* and enhanced transmission of bacteria in fluid stool. It is possible that there is coevolution to greater fitness, but this aspect has not been explored.

Bacteriophages encode many virulence, notably toxin, genes. Classic examples include botulinum toxin, cholera toxin, diphtheria toxin, Shiga toxin, and the superantigen genes of *S. aureus* and *S. pyogenes*. Phages may also transfer pathogenicity islands. The extensive recombination that is characteristic of bacteriophages may explain the variety of related toxin genes that they may encode. Plasmids may carry virulence genes that can be transferred through conjugation; in addition, plasmids commonly carry insertion sequences or transposons that can further mobilize virulence genes to the chromosome or to other plasmids. Plasmids, transposons, and integrons may carry antimicrobial resistance genes, some of which may be linked to virulence genes, raising the suggestion that use of antimicrobial drugs in animals may drive not only the evolution of resistance but possibly also the evolution of pathogens. The mechanisms of bacterial change are the same.

The wide dissemination of families of virulence genes in unrelated bacterial populations may be explained by horizontal transfer. One example is the thiol-activated cholesterol-binding cytolysins found particularly among gram-positive bacteria (e.g., listeriolysin, perfringolysin, pyolysin, streptolysin).

There is inherent competition between the ability of a bacterium to evolve through acquisition of virulence genes horizontally and fitness genes through mutation and rearrangement, and the need to maintain the integrity of the genome through the stabilizing mechanisms of DNA mutation repair, DNA restriction or modification, and other genetic barriers. As characterized by their diversity of hosts, their ability to cause quite diverse diseases, their ability to colonize different ecological niches, or their ability to acquire antimicrobial resistance genes, successful pathogens such as *E. coli* and *Salmonella enterica* may be concluded to have an inherently greater ability to evolve, for example