CLASSICAL AND ADAPTIVE CLINICAL TRIAL DESIGNS USING EXPDESIGN STUDIO™
CLASSICAL AND ADAPTIVE CLINICAL TRIAL DESIGNS USING EXPDESIGN STUDIO™

Mark Chang
Millennium Pharmaceuticals, Inc.
CONTENTS

Preface ... xiii

Self-Study and Practice Guide xvii

1 ExpDesign Studio 1

1.1 Introduction 1

1.2 How to Design a Trial Using ExpDesign Studio 3

 1.2.1 How to Design a Classical Trial 4

 1.2.2 How to Design a Group Sequential Trial 4

 1.2.3 How to Design an Adaptive Trial 5

 1.2.4 How to Run Adaptive Trial Simulations 7

 1.2.5 How to Design a Multistage Trial 9

 1.2.6 How to Design a Dose-Escalation Trial 10

1.3 ExpDesign Menus 11

2 Clinical Trial Design 14

2.1 Introduction 14

2.2 Classical Clinical Trial Design 14

 2.2.1 Substantial Evidence 15

 2.2.2 Clinical Trial Endpoint 15

 2.2.3 Confirmatory Trials 15

 2.2.4 Exploratory Trials 16

 2.2.5 Multicenter Trials 16

 2.2.6 Trials to Show Superiority 16

 2.2.7 Trials to Show Equivalence or Noninferiority 16

 2.2.8 Trials to Show a Dose–Response Relationship 17

 2.2.9 Parallel Design 17

 2.2.10 Crossover Design 17

 2.2.11 Factorial Design 18

2.3 Selection of a Trial Design 18

 2.3.1 Balanced Versus Unbalanced Designs 18

 2.3.2 Crossover Versus Parallel Designs 19

 2.3.3 Dose Escalation Versus Titration Designs 21

 2.3.4 Bioavailability Versus Bioequivalence Designs 21
2.3.5 Equivalence Versus Bioequivalence 22
2.3.6 Sample-Size Determination 23

2.4 Adaptive Clinical Trial Design 23
2.4.1 Group Sequential Design 24
2.4.2 Sample-Size Reestimation Design 25
2.4.3 Drop-Loser Design 25
2.4.4 Response-Adaptive Randomization Design 25
2.4.5 Adaptive Dose-Escalation Design 26
2.4.6 Biomarker-Adaptive Design 26
2.4.7 Multistage Design of Single-Arm Trials 26

3 Classical Trial Design 27
3.1 Introduction 27
3.1.1 Hypothesis Test 27
3.1.2 Importance of Sample-Size Calculation 28
3.1.3 Factors Affecting Sample Size 29
3.1.4 Avoiding Under- or Overpowered Designs 29

3.2 How to Calculate Sample Size Using ExpDesign 30
3.2.1 Testing the Mean Difference Between Two Groups 30
3.2.2 Testing the Proportion Difference Between Two Groups 30
3.2.3 Testing the Survival Difference Between Two Groups 31
3.2.4 Testing the Survival Difference with a Follow-up Period 32
3.2.5 Exact Test for a One-Sample Proportion 33
3.2.6 McNemar’s Test for Paired Data 35
3.2.7 Noninferiority Test for Two Means 35
3.2.8 Bioequivalence Test for Two Means 36
3.2.9 Bioequivalence Test for Two Means of Lognormal Data 37
3.2.10 Equivalence Test Based on the Ratio of Two Means 38
3.2.11 Precision Method for the Mean Difference for a Paired Sample 39
3.2.12 Mantel–Haenszel Test for an Odds Ratio with Two Strata 39
3.2.13 Pearson’s Chi-Square Test for Rate Difference 41
3.2.14 One-Way ANOVA for Parallel Groups 41
3.2.15 Dose–Response Trial for a Myocardial Infarction 42

3.3 Mathematical Notes on Classical Design 43
3.3.1 Large-Sample-Size Calculation for Classical Design 43
3.3.2 Commonly Used Terms and Their Mathematical Expressions 45
3.3.3 Relationship Between Enrollment Rate and Number of Events 48

4 Group Sequential Trial Design 51
4.1 Introduction 51
4.2 Basics of Group Sequential Design 51
4.3 How to Design Sequential Trials Using ExpDesign 53
4.3.1 Design Featuring Early Efficacy Stopping for Two Means 54
4.3.2 Design Featuring Early Futility Stopping for a Proportion 56
4.3.3 Design Featuring Early Stopping for a Survival Endpoint 58
4.3.4 Design Featuring Early Stopping for Paired Proportions 60
4.4 How to Monitor a Group Sequential Trial Using ExpDesign 62
4.4.1 Need for Trial Monitoring 62
4.4.2 Techniques for Monitoring a Sequential Trial 63
4.4.3 How to Monitor a Trial Using ExpDesign 64
4.5 Mathematical Notes on Sequential Trial Design 68
4.5.1 Unified Formulation for Sequential Trial Design 68
4.5.2 Calculation of Conditional Probability 72
4.5.3 Conditional and Predictive Power and RCI for Trial Monitoring 73
4.5.4 Bias-Adjusted Estimates 74

5 Adaptive Trial Design 75
5.1 Introduction 75
5.2 Basics of Adaptive Design Methods 75
5.3 How To Design a Sample-Size Reestimation Trial Using ExpDesign 77
5.3.1 Sample-Size Adjustment Based on the Effect-Size Ratio 78
5.3.2 Sample-Size Adjustment Based on Conditional Power 78
5.3.3 Adaptive Design for an Acute Ischemic Stroke Trial 78
5.3.4 Adaptive Design for an Asthma Study 81
5.3.5 Adaptive Design for an Oncology Trial 84
5.3.6 Noninferiority Design with a Binary Endpoint 86
5.4 How to Design a Drop-Loser Trial Using ExpDesign 90
 5.4.1 Drop-Loser Mechanism 90
 5.4.2 Seamless Design of an Asthma Trial 90
5.5 How to Design a Trial Using a Classifier Biomarker 93
 5.5.1 Biomarker Classifications 93
 5.5.2 Biomarker-Adaptive Design 94
5.6 How to Design a Play-the-Winner Trial Using ExpDesign 95
 5.6.1 Randomized Play-the-Winner Design 96
 5.6.2 Adaptive Randomization with a Normal Endpoint 98

6 Adaptive Trial Monitoring 103
 6.1 Introduction 103
 6.2 Error-Spending Approach 103
 6.3 How to Recalculate Stopping Boundaries Using ExpDesign 105
 6.4 Conditional Power and the Futility Index 109
 6.5 How to Reestimate Sample Size Using ExpDesign 112
 6.5.1 Calculating Conditional Power Using ExpDesign 112
 6.5.2 Reestimating Sample Size Using ExpDesign 113
 6.6 Trial Examples 114
 6.6.1 Changes in Number and Timing of the Analyses 114
 6.6.2 Recursive Two-Stage Adaptive Design 119
 6.6.3 Conditional Power and Sample-Size Reestimation 119

7 Oncology Adaptive Trial Design 123
 7.1 Multistage Trial Design 123
 7.1.1 Introduction 123
 7.1.2 How to Design a Multistage Design Using ExpDesign 124
 7.2 Dose-Escalation Trial Design 129
 7.2.1 Introduction 129
 7.2.2 Bayesian Continual Reassessment Method 134
 7.2.3 How to Design a Dose-Escalation Trial Using ExpDesign 135
 7.3 Dose-Escalation Trial Monitoring Using CRM 141
 7.4 Mathematical Notes on Multistage Design 143
 7.4.1 Decision Tree for a Multistage Trial 143
 7.4.2 Two-Stage Design 144
 7.4.3 Three-Stage Design 145
 7.5 Mathematical Notes on the CRM 146
 7.5.1 Probability Model for Dose–Response 146
7.5.2 Prior Distribution of a Parameter 147
7.5.3 Likelihood Function 147
7.5.4 Reassessment of a Parameter 147
7.5.5 Assignment of the Next Patient 147

8 Adaptive Trial Simulator 149
8.1 Adjusting the Critical Region Method 149
8.2 Classical Design with Two Parallel Treatment Groups 151
8.3 Flexible Design with Sample-Size Reestimation 157
8.4 Design with Random-Play-the-Winner Randomization 160
8.5 Group Sequential Design with One Interim Analysis 161
8.6 Design Permitting Early Stopping and Sample-Size Reestimation 162
8.7 Classical Design with Multiple Treatment Groups 165
8.8 Multigroup Trial with Response-Adaptive Randomization 165
8.9 Adaptive Design Featuring Dropping Losers 166
8.10 Dose–Response Trial Design 168
8.11 Dose-Escalation Design for an Oncology Trial 168

9 Further Assistance from ExpDesign Studio 172
9.1 ExpDesign Probability Functions 172
9.2 Virtual Trial Data Generation Using ExpDesign Randomizor 177
 9.2.1 Random Number Generation Using ExpDesign 177
 9.2.2 How to Generate a Random Univariate Using ExpDesign 177
 9.2.3 How to Generate a Random Multivariate Using ExpDesign 179
 9.2.4 How to Generate a Random Multibinomial Using ExpDesign 181
9.3 ExpDesign Toolkits 182
 9.3.1 Graphic Calculator 183
 9.3.2 Statistical Calculator 185
 9.3.3 Confidence Interval Calculator 185

10 Classical Design Method Reference 187
10.1 Single-Group Design 187
 10.1.1 One/Paired-Sample Hypothesis Test for the Mean 187
 10.1.2 One/Paired-Sample Hypothesis Test for the Proportion 189
 10.1.3 One/Paired-Sample Hypothesis Test for Others 190
 10.1.4 Paired-Sample Equivalence Test for the Mean 192
 10.1.5 Paired-Sample Equivalence Test for the Proportion 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.6</td>
<td>One-Sample Confidence Interval for the Mean</td>
<td>193</td>
</tr>
<tr>
<td>10.1.7</td>
<td>One-Sample Confidence Interval for the Proportion</td>
<td>195</td>
</tr>
<tr>
<td>10.1.8</td>
<td>One-Sample Confidence Interval for Others</td>
<td>196</td>
</tr>
<tr>
<td>10.2</td>
<td>Two-Group Design</td>
<td>196</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Two-Sample Hypothesis Test for the Mean</td>
<td>196</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Two-Sample Hypothesis Test for the Proportion</td>
<td>199</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Two-Sample Hypothesis Test for Others</td>
<td>202</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Two-Sample Equivalence/Noninferiority Test for the Mean</td>
<td>205</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Two-Sample Equivalence/Noninferiority Test for the Proportion</td>
<td>207</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Two-Sample Equivalence/Noninferiority Test for Survival</td>
<td>207</td>
</tr>
<tr>
<td>10.2.7</td>
<td>Two-Sample Confidence Interval for the Mean</td>
<td>208</td>
</tr>
<tr>
<td>10.2.8</td>
<td>Two-Sample Confidence Interval for the Proportion</td>
<td>208</td>
</tr>
<tr>
<td>10.3</td>
<td>Multigroup Trial Design</td>
<td>209</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Multisample Hypothesis Test for the Mean</td>
<td>209</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Multisample Hypothesis Test for the Proportion</td>
<td>211</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Multisample Hypothesis Test for Others</td>
<td>212</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Multisample Confidence Interval for Others</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Afterword</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Appendix A: Validation of ExpDesign Studio</td>
<td>215</td>
</tr>
<tr>
<td>A.1</td>
<td>Validation Process for ExpDesign Studio</td>
<td>216</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Algorithm Validation</td>
<td>216</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Statistical Outcome Validation</td>
<td>216</td>
</tr>
<tr>
<td>A.1.3</td>
<td>Criteria for Passing Validation</td>
<td>217</td>
</tr>
<tr>
<td>A.1.4</td>
<td>Input and GUI Validation</td>
<td>217</td>
</tr>
<tr>
<td>A.2</td>
<td>Validation of the Classical Design Module</td>
<td>217</td>
</tr>
<tr>
<td>A.3</td>
<td>Validation of the Group Sequential Design Module</td>
<td>221</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Stopping Boundary and Type I Error Rate Validation</td>
<td>221</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Power and Sample-Size Validation</td>
<td>221</td>
</tr>
<tr>
<td>A.4</td>
<td>Validation of the Adaptive Design Module</td>
<td>224</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Stopping Boundary and Type I Error Rate Validation</td>
<td>224</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Validation of Adaptive Design Monitoring</td>
<td>226</td>
</tr>
<tr>
<td>A.5</td>
<td>Validation of the Multistage Design Module</td>
<td>226</td>
</tr>
<tr>
<td>A.6</td>
<td>Validation of the Traditional Dose-Escalation Design Module</td>
<td>228</td>
</tr>
<tr>
<td>A.6.1</td>
<td>Validation of the Traditional Escalation Rule</td>
<td>228</td>
</tr>
</tbody>
</table>
A.6.2 Validation of the Bayesian Continual Reassessment Method 228
A.7 Validation of the Trial Simulation Module 228
A.8 Validation of the Randomizor 228
A.9 Validation of the ExpDesign Toolkits 229
A.10 Computer Programs for Validations 231
 A.10.1 SAS Macro for Three-Stage Design Validation 231
 A.10.2 Traditional 3 + 3 Escalation Design Validation 232
 A.10.3 SAS Program for CRM Validation 232

Appendix B: Sample-Size Calculation Methods: Classical Design 235
References 240
Index 251

System Requirements, Software Installation, and Software License Agreement 259
Drug development is shifting from the classical approaches to more dynamic or adaptive approaches. The pharmaceutical industry and the U.S. Food and Drug Administration (FDA) has been seeking efficient methods of drug development as indicated in the FDA’s critical path document. Many people believe that the innovative approach of adaptive design is a major pathway to success in drug development in today’s challenging drug development environment.

In a book that I co-authored, *Adaptive Design Methods in Clinical Trials* (Chow and Chang, 2006), various adaptive design methods were introduced. Six months later I authored a second book, *Adaptive Design Theory and Implementation Using SAS and R* (Chang, 2007a), which provided in-depth and unified theory regarding adaptive designs and implementations, with many trial examples. These two books require a strong statistical background and clinical trial experience.

However, based on feedback from recent adaptive design workshops and conferences, I realize that there are many practitioners who are very good at strategic thinking and solution of practical problems but little interested in or lacking time to study the theory. Although I have kept the SAS and R program units as small as possible, with a clear logic flow from my previous books, there are still minimal requirements for knowledge of SAS or R. Also, many statisticians who are familiar with SAS would prefer to have software with a graphic user interface that can provide user-friendly tools for both classical and adaptive designs and monitoring. Among other options, I believe that ExpDesign Studio® fits the practical needs and provides a one-stop-shopping experience (CTriSoft, www.CTriSoft.net). This book, which avoids dealing with theory, is complementary to the two books mentioned earlier. Readers can jump-start to adaptive design without difficulty if they have one or two years of clinical trial design experience. However, for readers interested in the mathematical details, the mathematical notes at the end of each chapter will provide the key formulations for each method, or they can review *Adaptive Design Theory and Implementation Using SAS and R* (Chang, 2007a) for an in-depth understanding of the theory and algorithms for computer implementation.

ExpDesign is commercial software used by major pharmaceutical companies, universities, and research institutes worldwide. With ExpDesign you can design a classical or adaptive design literately in two minutes if you have the parameters ready. The ExpDesign enterprise version can also generate SAS and R code for an adaptive design.
The book has been written with practitioners in mind. It is not intended to teach adaptive design theory nor to function as a simple software user manual. The objective of the book is to demonstrate the use of ExpDesign in trial design, to assist strategic decision making, and to help solve issues related to classical and adaptive trials. It is written as a tutorial, a self-learning textbook (see the Self-Study and Practice Guide following the preface). Readers are expected to master the basic adaptive trial techniques in about one week. The book, together with the software, makes learning easy and fun. The accompanying software is a fully professional version of ExpDesign Studio 5.0, not a typical trial version. The book and the software, covering both classical and adaptive designs, can be used to leverage drug development in such a way that statisticians and other parties have more freedom and time to focus on the real issues, not the calculation or theory. The book is organized as follows:

In Chapter 1 we present an overview of the software ExpDesign Studio, provide a feeling for what it can do in trial designs, demonstrate simple design examples from classical, group sequential, adaptive, and other trials with ExpDesign Studio, and explain the basic operation of the software.

Chapter 2 provides an overview of a variety of clinical trial designs, their advantages and disadvantages, and when different classical and adaptive designs can be used.

Chapter 3 focuses on classical designs. After a discussion as to how sample size should be determined and on the variety of factors that affect the decision as to what sample size to use in a trial, examples are given on how to utilize ExpDesign to calculate sample size. Among nearly 150 sample-size calculation methods available in ExpDesign, the examples are carefully chosen to include a variety of designs, types of endpoints, and phases of clinical trials.

In Chapter 4 we discuss group sequential design (GSD), a commonly used and probably the simplest adaptive design. Starting with an overview of group sequential design, how to design and monitor a GSD trial using ExpDesign Studio is discussed. Finally, the key mathematic formulations for GSD are summarized for those interested in the mathematical details.

In Chapter 5 we discuss adaptive trial designs and introduce the stagewise test statistic and stopping rules. Interim analysis and trial monitor tools such as conditional power are described. We also discuss how to use ExpDesign Studio to design sample-size reestimation, drop-loser, biomarker-adaptive, response-adaptive randomization, and adaptive dose-finding trials. The mathematic formulations are summarized in the final section.

In Chapter 6 we discuss the specific design of early-phase oncology trials, because of its uniqueness. It includes multiple-stage single-arm design and dose-escalation design for maximum tolerated dose and show how to use ExpDesign to design oncology trials and how to compare and evaluate different designs based on their operating characteristics.

In Chapter 7 we focus on adaptive trial monitoring. The importance of trial monitoring and mathematic tools for monitoring is discussed, and how to use
the trial monitor in ExpDesign to monitor an adaptive trial is described in detail using real-world examples.

In Chapter 8 we present a computer simulation approach in which the test statistic is the same as the classical design. The simulation module in ExpDesign allows for any combinations of the following adaptations: early futility and/or efficacy stopping, sample-size reestimation, drop-loser, and response-adaptive randomization based on the dose–response relationship. Step-by-step instructions are presented with trial examples.

In Chapter 9 we discuss how to get further assistance from ExpDesign. ExpDesign provides many toolkits for design, monitoring, and analysis of trials: the graphical calculator, which allows you to plot complicated mathematical expressions, the probability calculator for probability and percentile calculations, and the confidence interval calculator for exact confidence interval calculations. For advanced users, we also discuss how to use ExpDesign to generate univariate and multivariate data that can be used for various purposes of trial design, monitoring, and risk assessment.

In Chapter 10 we present notes on technique for nearly 100 methods for sample-size calculation, grouped by the number of arms, the trial endpoint, and the analysis basis. We describe the purpose of each method, information about the methods, such as when and how to use each one, the formula and/or references, and the assumptions or limitations of the methods.

Appendix A is about validation of ExpDesign. Several reviewers have indicated the importance of software validation and suggested including the validation information in the book. The validation document is also meant to support pharmaceutical end users to meet FDA 21 CFR part 11 requirements.

Installation instructions for the software CD and the license agreement appear at the end of the pages.

Mark Chang

Lexington, Massachusetts
Winter 2007
www.Statisticians.org
SELF-STUDY AND PRACTICE GUIDE

Day 1

• ExpDesign Studio 5.0 Installation (10 minutes)
• Chapter 1: ExpDesign Studio (30 minutes of reading and practice)
• Chapter 2: Clinical Trial Design (3 hours of reading)
• Chapter 3: Classical Trial Design (4 hours of reading and practice)
• Chapter 10: Classical Design Method Reference (15 minutes of reading)
• Appendix A: Validation of ExpDesign Studio (15 minutes of reading)

Day 2

• Chapter 4: Group Sequential Trial Design (8 hours of reading and practice) The classical group sequential design and simplest adaptive design are discussed. Make sure you understand the basic concepts of group sequential design, such as the notion of early stopping, error inflation due to multiple looks, different types of stopping boundaries, and different scales for stopping boundaries. Go through all the trial examples using ExpDesign; it helps you get “hands-on” experience. Trial monitoring requires your effort, which will give you the feeling of running an actual group sequential trial.

Days 3

• Chapter 5: Adaptive Trial Design (8 hours of reading and practice)
• You will learn various adaptive designs. Make sure that you understand the three commonly used statistical methods. Again, go through the trial practice using ExpDesign for hands-on experiences. The practices are straightforward and should take no more than 20 minutes each.

Day 4

• Chapter 6: Adaptive Trial Monitoring (8 hours of reading and practice) Adaptive trial monitoring can be considered as the most challenging part
of this book. It is about how you make actual adaptations for an ongoing trial based on the design without undermining the validity and integrity of the trial. Play around with the trial examples using ExpDesign, and spend extra time if needed.

Day 5

- Chapter 7: Oncology Adaptive Trial Design (5 hours of reading and practice)
- Chapter 8: Adaptive Trial Simulator (2 hours of optional reading and practice)
- Chapter 9: Further Assistance with ExpDesign Studio (1 hour of reading and practice)

The mathematical notes in Chapters 3, 4, and 7 are not meant to be studied in your first reading; rather, they are for future reference. Similarly, Chapter 10 and Appendix A can be read as needed.
1 ExpDesign Studio

1.1 INTRODUCTION

ExpDesign Studio (ExpDesign) is an integrated environment for designing experiments or clinical trials. It is a powerful and user-friendly statistical software product that has seven integrated main components: classical design (CD), sequential design (SD), multistage design (MSD), dose-escalation design (DED), adaptive design (AD), adaptive trial monitoring (ATM), and dose-escalation trial monitoring (DTM) modules. In addition, the ExpDesign randomizer can generate random variates from a variety of distributions. The ExpDesign toolkit provides features for distributional calculation, confidence intervals, and function and data plotting (Figure 1.1).

Classical trials are the most commonly used in practice. ExpDesign provides nearly 150 methods for sample-size calculations in CD for different trial designs. It includes methods for single-, two-, and multiple-group designs, and for superiority, noninferiority, and equivalence designs with various endpoints. See the list of classical design methods in Appendix B.

Group sequential trials are advanced designs with multiple analyses. A group sequential trial is usually a cost-effective design compared to a classical design. SD covers a broad range of sequential trials with different endpoints and different types of stopping boundaries.

A multistage design is an exact method for group sequential trials with a binary response, whereas group sequential design uses an asymptotic approach. MSD provides three optimal designs among others: MinMax, MinExp, and MaxUtility, which minimize the maximum sample size, minimize the expected sample size, and maximize the utility index, respectively.

A dose-escalation trial in aggressive disease areas such as oncology has unique characteristics. Due to the toxicity of the testing drug, researchers are allowed to use fewer patients to obtain as much information as possible about the toxicity profile or maximum tolerable dose. By means of computer simulations, DED provides researchers with an efficient way to search for an optimal design for dose-escalation trials with a variety of criteria. It includes traditional escalation rules, restricted escalation rules, two-stage...
escalation algorithms, and the Bayesian continual reassessment method (CRM).

AD in ExpDesign Studio allows you to design and simulate various adaptive trial, such as sample-size reestimation, dropping a loser, response-adaptive randomization, and biomarker-adaptive designs. You can use response-adaptive randomization to assign more patients to superior treatment groups or to drop a “loser” or inferior group. You may stop a trial prematurely to claim efficacy or futility based on the data observed. You may modify the sample size based on the treatment difference observed. All design reports are generated through an automation procedure that has built-in knowledge of statistical experts in a clinical trial.

ATM and DTM assist in monitoring an ongoing trial. They inform the user if the stopping boundary has been crossed and will also generate interim results such as conditional power, new sample size required, and dynamic randomization to instruct the user to make appropriate adaptations.

Indeed, ExpDesign Studio covers broad statistical tools needed to design a trial. To try ExpDesign, the user simply needs to know the functions of the icons on the toolbar. The black–white icons on the left-hand side of the toolbar are standard for all word processors. The first five icons of the second group of seven icons are used to launch five different types of designs: classical trial...
design, sequential trial design, multistage trial design, dose-escalation trial design, and adaptive design (see Figure 1.2). Alternatively, the user can click one of the nine buttons in the ExpDesign start window to start the corresponding design. The next set of three icons is for launching a design example, computing design parameters, and generating a design report. Following these are five color icons for the toolkits, including a graphic calculator, a distribution calculator, a confidence interval calculator, a word splitter, and TipDay. The mouse can be moved over any icon on the toolbar to see the Tiptext, which describes what the icon is for. We are now ready to design a trial.

1.2 HOW TO DESIGN A TRIAL USING EXPDESIGN STUDIO

1. Double-click on the ExpDesign Studio icon or click the Start button. A menu will appear. Click on Programs in the Start button. The list of available programs will appear. Then click ExpDesign Studio.
2. On the ExpDesign Start window (Figure 1.2), select one of the following tasks you want to do: classical, sequential, adaptive, multistage, dose-escalation design, adaptive trial monitoring, random number generation, adaptive trial simulation, or dose-escalation trial monitoring.

1.2.1 How to Design a Classical Trial

1. Click Classical Design or to start a classical design.

2. Select options for Number of Groups, Analysis Basis, Trial Endpoint, and Sample Allocations in the design option panel.

3. Select a method from the list of methods available.

4. Enter appropriate values for your design (click Example for an example).

5. Click on Compute to calculate the sample size required.

6. Click the report icon on the toolbar to view the design report.

7. Click to print the design form or click to print the report.

8. You can click Copy Graph to copy the graph for the stopping boundaries and use Paste-Special to paste it to other applications.

9. Click to save the design specification or report (see Figure 1.3).

1.2.2 How to Design a Group Sequential Trial

1. Click Sequential Design or on the toolbar to start a group sequential design.

2. Select options for Number of Groups, Analysis Basis, Trial Endpoint, and Potential Interim Claim in the design option panel.

3. Select a method from the list of methods available.

4. Enter appropriate values for your design or click Example.

5. Click Compute to generate the design.

6. Click the report icon on the toolbar to view the design report.
HOW TO DESIGN A TRIAL USING EXPDESIGN STUDIO

7. Click \(\text{Print}\) to print the design form or click \(\text{Share}\) to print the report.

8. You can click \(\text{Copy Graph}\) to copy the graph for the stopping boundaries and use \(\text{Paste-Special}\) to paste it to other applications.

9. Click \(\text{Save}\) to save the design specification or report (see Figure 1.4).

1.2.3 How to Design an Adaptive Trial

1. Click \(\text{Adaptive Design}\) or \(\text{Adaptive Design}\) on the toolbar; the Adaptive Design–Step 1 window will appear (see Figure 1.5).

2. Select the Sample-Size Reestimation option in the Type of Adaptive Design panel.

3. Select the Proportion option in the Endpoint panel.

4. Enter appropriate values for the Response Under Ha in the Hypotheses panel, the noninferiority margin for the noninferiority trial, One-Sided Alpha, and Power.

5. Click \(\text{Next}\); the Adaptive Design–Step 2 window will appear.
Figure 1.4 Group sequential design window.

Figure 1.5 Sample size reestimation step 1 window.
In the Adaptive Design–Step 2 window, do the following (Figure 1.6):

1. Enter values for the initial number of stages and Information Time for Analyses.
2. Choose stopping boundaries using the arrow near O’Brien or Pocock.
3. Enter values for N Simulations and N/group.
4. Select a statistical method in the panel.
5. Enter values for Maximum N/group Allowed for SSR and Targeted Conditional Power for SSR.
6. Click Run to start the simulation.

After the simulation is completed, the window in Figure 1.7 will pop up to remind you to click the report icon on the toolbar to view the report that is generated automatically for the adaptive design. Figure 1.8 is an example of the report for the adaptive design.

1.2.4 How to Run Adaptive Trial Simulations

1. Click to set up adaptive trial simulations.
2. Follow the steps specified in the Simulation Setup panel.
3. Specify parameters in each of the steps or click \textit{Example}.

4. Click \textit{Run} to generate the simulation results.

5. Click the report icon \textit{View} to view the design report.

6. Click \textit{Print} to print the design form or click \textit{Print} to print the report.

7. Click \textit{Save} to save the design specification or report, whichever is highlighted (see Figure 1.9).