FPGA PROTOTYPING
BY VERILOG EXAMPLES

Xilinx Spartan™-3 Version

Pong P. Chu

Cleveland State University

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

C1.jpg

This Page Intentionally Left Blank

FPGA PROTOTYPING
BY VERILOG EXAMPLES

This Page Intentionally Left Blank

FPGA PROTOTYPING
BY VERILOG EXAMPLES

Xilinx Spartan™-3 Version

Pong P. Chu

Cleveland State University

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chu, Pong P., 1959-

FPGA prototyping by Verilog examples / Pong P. Chu.

p. cm.
Includes index.
ISBN 978-0-470-18532-2 (cloth)
1. Field programmable gate arrays—Design and construction. 2. Prototypes,

Engineering. 3.Verilog (Computer hardware description language) I. Title.

TK7895.G36C484 2008

621.39'5—dc22 2008003732

Printed in the United States of America.

10987654321

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

In memory of my father, Chia Chi Chu

This Page Intentionally Left Blank

CONTENTS

Preface

Acknowledgments

PART | BASIC DIGITAL CIRCUITS

1 Gate-level combinational circuit

1.1 Introduction

1.2 General description

1.3 Basic lexical elements and data types
1.3.1 Lexical elements

1.4 Data types
1.4.1 Four-value system
1.4.2 Data type groups
1.4.3 Number representation
1.4.4 Operators

1.5 Program skeleton
1.5.1 Port declaration
1.5.2 Program body
1.5.3 Signal declaration
1.5.4 Another example

1.6 Structural description

1.7 Testbench

XXi

Xxvii

O 00 ~3 ~1 N L b bR W W N = -

—
N

vii

viii

1.8
1.9

CONTENTS

Bibliographic notes

Suggested experiments

1.9.1 Code for gate-level greater-than circuit
1.9.2 Code for gate-level binary decoder

2 Overview of FPGA and EDA software

2.1
22

23
24
2.5
2.6

2.7
2.8
29

Introduction

FPGA

2.2.1 Overview of a general FPGA device

2.2.2 Overview of the Xilinx Spartan-3 devices

Overview of the Digilent S3 board

Development flow

Overview of the Xilinx ISE project navigator

Short tutorial on ISE project navigator

2.6.1 Create the design project and HDL codes

2.6.2 Create a testbench and perform the RTL simulation

2.6.3 Add a constraint file and synthesize and implement the code
2.64 Generate and download the configuration file to an FPGA device
Short tutorial on the ModelSim HDL simulator

Bibliographic notes

Suggested experiments

2.9.1 Gate-level greater-than circuit

2.9.2 Gate-level binary decoder

3 RT-level combinational circuit

3.1
32

33

Introduction

Operators

3.2.1 Arithmetic operators

3.2.2 Shift operators

3.2.3 Relational and equality operators

3.2.4 Bitwise, reduction, and logical operators
3.2.5 Concatenation and replication operators
3.2.6 Conditional operators

3.2.7 Operator precedence

3.2.8 Expression bit-length adjustment

3.2.9 Synthesis of z and x values

Always block for a combinational circuit

3.3.1 Basic syntax and behavior

3.3.2 Procedural assignment

3.3.3 Variable data types

3.3.4 Simple examples

14
14
14
14

15

15
15
15
17
17
19
21
24
25
26
26
29
31
35
36
36
36

39

39
39
41
41
42
42
43
44
44
45
46
48
48
49
49
49

34

3.5

3.6

3.7

3.8

39

3.10
3.11

CONTENTS

If statement

34.1 Syntax

34.2 Examples

Case statement

3.5.1 Syntax

3.5.2 Examples

3.5.3 The casez and casex statements

3.5.4 The full case and parallel case

Routing structure of conditional control constructs
3.6.1 Priority routing network

3.6.2 Multiplexing network

General coding guidelines for an always block
3.7.1 Common errors in combinational circuit codes
3.7.2 Guidelines

Parameter and constant

3.8.1 Constant

3.8.2 Parameter

3.8.3 Use of parameters in Verilog-1995

Design examples

3.9.1 Hexadecimal digit to seven-segment LED decoder
3.9.2 Sign-magnitude adder

3.9.3 Barrel shifter

394 Simplified floating-point adder
Bibliographic notes

Suggested experiments

3.11.1 Multifunction barrel shifter

3.11.2 Dual-priority encoder

3.11.3 BCD incrementor

3.11.4 Floating-point greater-than circuit

3.11.5 Floating-point and signed integer conversion circuit
3.11.6 Enhanced floating-point adder

4 Regular Sequential Circuit

4.1

42

Introduction

4.1.1 D FF and register

4.1.2 Synchronous system

4.1.3 Code development

HDL code of the FF and register

42.1 DFF

422 Register

4.2.3 Register file

4.2.4 Storage components in a Spartan-3 device X% specific

51
51
52
54
54
54
56
56
57
57
59
60
60
63
64
64
65
67
67
67
71
73
75
80
80
80
80
81
81
81
81

83

83
83
84
85
86
86
&9
90
91

X

CONTENTS

43

Simple design examples
4.3.1 Shift register
43.2 Binary counter and variant

4.4 Testbench for sequential circuits
4.5 Case study
4.5.1 LED time-multiplexing circuit
4.5.2 Stopwatch
4.5.3 FIFO buffer
4.6 Bibliographic notes
4.7 Suggested experiments
4.7.1 Programmable square-wave generator
472 PWM and LED dimmer
473 Rotating square circuit
4.7.4 Heartbeat circuit
4.7.5 Rotating LED banner circuit
4.7.6 Enhanced stopwatch
4777 Stack
FSM
5.1 Introduction
5.1.1 Mealy and Moore outputs
5.1.2 FSM representation
5.2 FSM code development
5.3 Design examples
5.3.1 Rising-edge detector
5.3.2 Debouncing circuit
5.3.3 Testing circuit
5.4 Bibliographic notes
5.5 Suggested experiments
5.5.1 Dual-edge detector
5.5.2 Alternative debouncing circuit
5.5.3 Parking lot occupancy counter
FSMD
6.1 Introduction
6.1.1 Single RT operation
6.1.2 ASMD chart
6.1.3 Decision box with a register
6.2 Code development of an FSMD

6.2.1 Debouncing circuit based on RT methodology
6.2.2 Code with explicit data path components

91
91
93
96
99
99
107
110
115
115
115
115
116
116
116
116
117

119

119
119
120
122
125
125
130
133
135
135
135
135
136

139

139
139
140
141
143
144
146

6.3

6.4
6.5

CONTENTS

6.2.3 Code with implicit data path components

6.2.4 Comparison

6.2.5 Testing circuit

Design examples

6.3.1 Fibonacci number circuit

6.3.2 Division circuit

6.3.3 Binary-to-BCD conversion circuit

6.3.4 Period counter

6.3.5 Accurate low-frequency counter

Bibliographic notes

Suggested experiments

6.5.1 Alternative debouncing circuit

6.5.2 BCD-to-binary conversion circuit

6.5.3 Fibonacci circuit with BCD 1/O: design approach 1
6.5.4 Fibonacci circuit with BCD I/O: design approach 2
6.5.5 Auto-scaled low-frequency counter

6.5.6 Reaction timer

6.5.7 Babbage difference engine emulation circuit

7 Selected Topics of Verilog

7.1

7.2

7.3

7.4

7.5

Blocking versus nonblocking assignment

7.1.1 Overview

7.1.2 Combinational circuit

7.1.3 Memory element

7.1.4 Sequential circuit with mixed blocking and nonblocking

assignments
Alternative coding style for sequential circuit
7.2.1 Binary counter
722 FSM
7.23 FSMD

7.24 Summary

Use of the signed data type

7.3.1 Overview

7.3.2 Signed number in Verilog-1995
7.3.3 Signed number in Verilog-2001
Use of function in synthesis

7.4.1 Overview

7.4.2 Examples

Additional constructs for testbench development
7.5.1 Always block and initial block
7.5.2 Procedural statements

7.5.3 Timing control

xi

148
150
152
153
153
157
160
164
167
170
170
170
171
171
171
172
172
173

175

175
175
177
179

180
182
182
185
186
188
188
188
189
190
191
191
192
193
194
194
196

xii CONTENTS
7.54 Delay control
7.5.5 Event control
7.5.6 Wait statement
7.5.7 Timescale directive
7.5.8 System functions and tasks
7.5.9 User-defined functions and tasks
7.5.10 Example of a comprehensive testbench
7.6 Bibliographic notes
7.7 Suggested experiments
7.7.1 Shift register with blocking and nonblocking assignments
7.7.2 Alternative coding style for BCD counter
7.7.3 Alternative coding style for FIFO buffer
7.74 Alternative coding style for Fibonacci circuit
7.7.5 Dual-mode comparator
7.7.6 Enhanced binary counter monitor
7.7.7 Testbench for FIFO buffer
PART Il 1/O MODULES
8 UART
8.1 Introduction
8.2 UART receiving subsystem
8.2.1 Oversampling procedure
8.2.2 Baud rate generator
8.2.3 UART receiver
8.2.4 Interface circuit
8.3 UART transmitting subsystem
8.4 Overall UART system
8.4.1 Complete UART core
8.4.2 UART verification configuration
8.5 Customizing a UART
8.6 Bibliographic notes
8.7 Suggested experiments

8.7.1 Full-featured UART

8.7.2 UART with an automatic baud rate detection circuit

8.7.3 UART with an automatic baud rate and parity detection circuit
8.7.4 UART-controlled stopwatch

8.7.5 UART-controlled rotating LED banner

9 PS2 Keyboard

9.1
9.2

Introduction
PS2 receiving subsystem

196
197
197
197
198
202
204
210
210
210
211
211
211
211
212
212

215

215
216
216
217
217
220
223
226
226
228
230
232
232
232
233
233
233
234

235

235
236

10

11

9.3

9.4

9.5
9.6

CONTENTS

9.2.1 Physical interface of a PS2 port

9.2.2 Device-to-host communication protocol
9.2.3 Design and code

PS2 keyboard scan code

9.3.1 Overview of the scan code

9.3.2 Scan code monitor circuit

PS2 keyboard interface circuit

9.4.1 Basic design and HDL code

9.4.2 Verification circuit

Bibliographic notes

Suggested experiments

9.6.1 Alternative keyboard interface I

9.6.2 Alternative keyboard interface I1

9.6.3 PS2 receiving subsystem with watchdog timer
9.6.4 Keyboard-controlled stopwatch

9.6.5 Keyboard-controlled rotating LED banner

PS2 Mouse

10.1
10.2

10.3

10.4

10.5

10.6
10.7

Introduction

PS2 mouse protocol

10.2.1 Basic operation

10.2.2 Basic initialization procedure

PS2 transmitting subsystem

10.3.1 Host-to-PS2-device communication protocol
10.3.2 Design and code

Bidirectional PS2 interface

10.4.1 Basic design and code

10.4.2 Verification circuit

PS2 mouse interface

10.5.1 Basic design

10.5.2 Testing circuit

Bibliographic notes

Suggested experiments

10.7.1 Keyboard control circuit

10.7.2 Enhanced mouse interface

10.7.3 Mouse-controlled seven-segment LED display

External SRAM

11.1
11.2

Introduction
Specification of the IS61LV25616AL SRAM
11.2.1 Block diagram and I/O signals

xiit

236
236
236
240
240
241
244
244
246
248
248
248
249
249
249
249

251

251
252
252
252
253
253
254
259
259
260
263
263
265
266
266
267
267
267

269

269
270
270

xiv CONTENTS

11.2.2 Timing parameters 270

11.3 Basic memory controller 274
11.3.1 Block diagram 274
11.3.2 Timing requirement 275
11.3.3 Register file versus SRAM 276

11.4 A safe design 276
11.4.1 ASMD chart 276
11.4.2 Timing analysis 271
11.4.3 HDL implementation 278
11.4.4 Basic testing circuit 281
11.4.5 Comprehensive SRAM testing circuit 283

11.5 More aggressive design 288
11.5.1 Timing issues 288
11.5.2 Alternative design I 288
11.5.3 Alternative design II 290
11.5.4 Alternative design III 291
11.5.5 Advanced FPGA featuresX ilin® specific 293

11.6 Bibliographic notes 294
11.7 Suggested experiments 294
11.7.1 Memory with a 512K-by-16 configuration 294
11.7.2 Memory with a IM-by-8 configuration 295
11.7.3 Memory with an 8M-by-1 configuration 295
11.7.4 Expanded memory testing circuit 295
11.7.5 Memory controller and testing circuit for alternative design I 295
11.7.6 Memory controller and testing circuit for alternative design Il 295
11.7.7 Memory controller and testing circuit for alternative design III 295
11.7.8 Memory controller with DCM 295
11.7.9 High-performance memory controller 296

12 Xilinx Spartan-3 Specific Memory 297
12.1 Introduction 297
12.2 Embedded memory of Spartan-3 device 297
12.2.1 Overview 297
12.2.2 Comparison 298

12.3 Method to incorporate memory modules 298
12.3.1 Memory module via HDL component instantiation 299
12.3.2 Memory module via Core Generator 299
12.3.3 Memory module via HDL inference 300

12.4 HDL templates for memory inference 300
12.4.1 Single-port RAM 300
12.4.2 Dual-port RAM 303

124.3 ROM 305

CONTENTS XV

12.5 Bibliographic notes 307
12.6 Suggested experiments 307
12.6.1 Block-RAM-based FIFO 307
12.6.2 Block-RAM-based stack 307
12.6.3 ROM-based sign-magnitude adder 307
12.6.4 ROM-based sin(z) function 308
12.6.5 ROM-based sin(z) and cos(x) functions 308

13 VGA controller I: graphic 309
13.1 Introduction 309
13.1.1 Basic operation of a CRT 309
13.1.2 VGA port of the S3 board 311
13.1.3 Video controller 311

13.2 VGA synchronization 312
13.2.1 Horizontal synchronization 312
13.2.2 Vertical synchronization 314
13.2.3 Timing calculation of VGA synchronization signals 315
13.2.4 HDL implementation 315
13.2.5 Testing circuit 318

13.3 Overview of the pixel generation circuit 319
13.4 Graphic generation with an object-mapped scheme 319
13.4.1 Rectangular objects 320
13.4.2 Non-rectangular object 325
13.4.3 Animated object 326

13.5 Graphic generation with a bit-mapped scheme 332
13.5.1 Dual-port RAM implementation 332
13.5.2 Single-port RAM implementation 337

13.6 Bibliographic notes 337
13.7 Suggested experiments 337
13.7.1 VGA test pattern generator 337
13.7.2 SVGA mode synchronization circuit 338
13.7.3 Visible screen adjustment circuit 338
13.7.4 Ball-in-a-box circuit 338
13.7.5 Two-balls-in-a-box circuit 339
13.7.6 Two-player pong game 339
13.7.7 Breakout game 339
13.7.8 Full-screen dot trace 339
13.7.9 Mouse pointer circuit 340
13.7.10 Small-screen mouse scribble circuit 340
13.7.11 Full-screen mouse scribble circuit 340

14 VGA controlier II: text 341

xvi CONTENTS

14.1
14.2

14.3
14.4

14.5
14.6

Introduction

Text generation

14.2.1 Character as a tile

14.2.2 Font ROM

14.2.3 Basic text generation circuit
14.2.4 Font display circuit

14.2.5 Font scaling

Full-screen text display

The complete pong game

14.4.1 Text subsystem

14.4.2 Modified graphic subsystem
14.4.3 Auxiliary counters

14.4.4 Top-level system
Bibliographic notes

Suggested experiments

14.6.1 Rotating banner

14.6.2 Underline for the cursor
14.6.3 Dual-mode text display
14.6.4 Keyboard text entry

14.6.5 UART terminal

14.6.6 Square-wave display

14.6.7 Simple four-trace logic analyzer
14.6.8 Complete two-player pong game
14.6.9 Complete breakout game

PART Il PICOBLAZE MICROCONTROLLERX!LINX SPECIFIC

15 PicoBlaze Overview

15.1
15.2

15.3

15.4
15.5

Introduction

Customized hardware and customized software
15.2.1 From special-purpose FSMD to general-purpose microcontroller
15.2.2 Application of microcontroller
Overview of PicoBlaze

15.3.1 Basic organization

15.3.2 Top-level HDL modules

Development flow

Instruction set

15.5.1 Programming model

15.5.2 Instruction format

15.5.3 Logical instructions

15.5.4 Arithmetic instructions

15.5.5 Compare and test instructions

341
341
341
342
344
345
347
348
352
352
358
359
361
366
366
366
366
366
366
366
367
367
368
368

37

371
372
372
374
374
374
376
377
377
379
379
380
381
382

15.6

15.7

15.5.6 Shift and rotate instructions
15.5.7 Data movement instructions
15.5.8 Program flow control instructions
15.5.9 Interrupt related instructions
Assembler directives

15.6.1 The KCPSM3 directives

15.6.2 The PBlazelDE directives
Bibliographic notes

16 PicoBlaze Assembly Code Development

16.1
16.2

16.3

16.4

16.5

16.6

16.7
16.8

Introduction

Useful code segments

16.2.1 KCPSM3 conventions
16.2.2 Bit manipulation

16.2.3 Multiple-byte manipulation
16.2.4 Control structure
Subroutine development

Program development

16.4.1 Demonstration example
16.4.2 Program documentation
Processing of the assembly code
16.5.1 Compiling with KCSPM3
16.5.2 Simulation by PBlazelDE
16.5.3 Reloading code via the JTAG port
16.5.4 Compiling by PBlazelDE
Syntheses with PicoBlaze
Bibliographic notes

Suggested experiments

16.8.1 Signed multiplication
16.8.2 Multi-byte multiplication
16.8.3 Barrel shift function
16.8.4 Reverse function

16.8.5 Binary-to-BCD conversion
16.8.6 BCD-to-binary conversion
16.8.7 Heartbeat circuit

16.8.8 Rotating LED circuit
16.8.9 Discrete LED dimmer

17 PicoBlaze l/O Interface

17.1
17.2

Introduction
Output port

CONTENTS

xvii

383
384
386
389
390
390
390
391

393

393
393
393
394
395
396
398
399
400
404
406
406
407
410
410
411
412
412
412
412
413
413
413
413
413
413
413

415

415
416

xviii CONTENTS

17.2.1 Output instruction and timing 416
17.2.2 Output interface 417

17.3 Input port 418
17.3.1 Input instruction and timing 418
17.3.2 Input interface 419

17.4 Square program with a switch and seven-segment LED display interface 421
17.4.1 Output interface 421
17.4.2 Input interface 422
17.4.3 Assembly code development 424
17.4.4 HDL code development 431

17.5 Square program with a combinational multiplier and UART console 434
17.5.1 Multiplier interface 434
17.5.2 UART interface 435
17.5.3 Assembly code development 436
17.5.4 HDL code development 446

17.6 Bibliographic notes 449
17.7 Suggested experiments 449
17.7.1 Low-frequency counter | 449
17.7.2 Low-frequency counter Il 449
17.7.3 Auto-scaled low-frequency counter 449
17.7.4 Basic reaction timer with a software timer 449
17.7.5 Basic reaction timer with a hardware timer 450
17.7.6 Enhanced reaction timer 450
17.7.7 Small-screen mouse scribble circuit 450
17.7.8 Full-screen mouse scribble circuit 450
17.7.9 Enhanced rotating banner 450
17.7.10 Pong game 450
17.7.11 Text editor 451

18 PicoBlaze interrupt Interface 453
18.1 Introduction 453
18.2 Interrupt handling in PicoBlaze 453
18.2.1 Software processing 454
18.2.2 Timing 455

18.3 External interface 456
18.3.1 Single interrupt request 456
18.3.2 Multiple interrupt requests 456

18.4 Software development considerations 457
18.4.1 Interrupt as an alternative scheduling scheme 457
18.4.2 Development of an interrupt service routine 458

18.5 Design example 458

18.5.1 Interrupt interface 458

18.6
18.7

CONTENTS

18.5.2 Interrupt service routine development
18.5.3 Assembly code development

18.5.4 HDL code development

Bibliographic notes

Suggested experiments

18.7.1 Alternative timer interrupt service routine
18.7.2 Programmable timer

18.7.3 Set-button interrupt service routine

18.7.4 Interrupt interface with two requests
18.7.5 Four-request interrupt controller

Appendix A: Sample Verilog templates

A.1 Numbers and operators
A.1.1 Sized and unsized numbers
A.1.2 Operators
A.2 General Verilog constructs
A.2.1 Overall code structure
A.2.2 Component instantiation
A.3 Routing with conditional operator and if and case statements
A.3.1 Conditional operator and if statement
A.3.2 Case statement
A4 Combinational circuit using an always block
A.4.1 Always biock without default output assignment
A.4.2 Always block with default output assignment
A.5 Memory Components
A.5.1 Register template
A.5.2 Register file
A.6 Regular sequential circuits
A.7 FSM
A8 FSMD
A.9 83 board constraint file (s3.ucf)
References

Topic Index

xix

459
459
461
464
464
464
464
465
465
465

467

467
467
468
469
469
470
470
470
471
472
472
472
473
473
474
474
476
478
480

485

487

This Page Intentionally Left Blank

PREFACE

HDL (hardware description language) and FPGA (field-programmable gate array) devices
allow designers to quickly develop and simulate a sophisticated digital circuit, realize it
on a prototyping device, and verify operation of the physical implementation. As these
technologies mature, they have become mainstream practice. We can now use a PC and
an inexpensive FPGA prototyping board to construct a complex and sophisticated digital
system. This book uses a “learning by doing™ approach and illustrates the FPGA and HDL
development and design process by a series of examples. A wide range of examples is
included, from a simple gate-level circuit to an embedded system with an 8-bit soft-core
microcontroller and customized 1I/O peripherals. All examples can be synthesized and
physically tested on a prototyping board.

Focus and audience

Focus The main focus of this book is on the effective derivation of hardware, not the
syntax of HDL. Instead of explaining every language construct, the book focuses on a
small synthesizable subset and uses about a dozen code templates to provide the skeletons
of various types of circuits. These templates are general and can easily be integrated to
construct a large, complex system. Although this approach limits the “freedom” of syntactic
expression, it will not prevent us from developing innovative hardware architecture. Because
of the generality and flexibility of HDL, the same circuit can usually be described by a
wide variety of language constructs and coding styles. Many of these codes are intended
for modeling. They may lead to unnecessarily complex hardware implementation and
sometimes cannot be synthesized at all. The template approach actually forces us to think
more about hardware and develop a good coding practice for synthesis. Since we are

xxi

xxXii PREFACE

more interested in hardware, it is more beneficial to spend time on developing 10 different
hardware architectures with the same code template rather than describing the same circuit
with 10 different versions of codes.

There are two popular HDLs, VHDL and Verilog. Both languages are used widely and
are IEEE standards. This book uses Verilog, and a separate book with a similar title uses
VHDL. Despite the drastic syntactic differences in the two languages, their capabilities are
very similar, particularly for our purposes. After we comprehend the design practice and
coding methodology in one language, learning the other language is rather straightforward.

Although the book is intended for beginning designers, the examples follow strict design
guidelines and prepare readers for future endeavors. The coding and design practice is
“forward compatible,” which means that:

e The same practice can be applied to large design in the future.

e The same practice can aid other system development tasks, including simulation,
timing analysis, verification, and testing,

o The same practice can be applied to ASIC technology and different types of FPGA
devices.

e The code can be accepted by synthesis software from different vendors.

In summary, the book is a hands-on, hardware-centric text that involves minimal HDL
overhead and follows good design and coding practice to achieve maximal forward com-
parability.

Audience and perquisites The book contains three major parts: basic digital circuits,
peripheral modules, and embedded microcontroller. The intended audience is students in
an introductory or advanced digital system design course as well as practicing engineers
who wish to learn FPGA- and HDL-based development. For the materials in the first two
parts, readers need to have a basic knowledge of digital systems, usually a required course
in electrical engineering and computer engineering curricula. For the materials in the third
part, prior exposure to assembly language programming will be helpful.

Logistics

Although a major goal of this book is to teach readers to develop software-independent
and device-neutral HDL codes, we have to choose a software package and a prototyping
board to synthesize and implement the design examples. The synthesis software and FPGA
devices from Xilinx, a leading manufacture in this area, are used in the book.

Software The synthesis software used in the book is the Web version of the Xilinx
ISE package. The functionality of this version is similar to that of the full version but
supports only a limited number of devices. Most introductory development boards use
FPGA devices from the inexpensive Spartan-3 family. Since the Web version supports
the Spartan-3 device, it fits our needs. The simulation software used in the book is the
starter version of Mentor Graphics’ ModelSim XE Il package. It is a customized edition
of ModelSim. Both software packages are free and can be downloaded from Xilinx’s Web
site.

FPGA prototyping board This book is prepared to be used with several entry-level
FPGA prototyping boards manufactured by Digilent Inc., including the Spartan-3 Starter,
Nexys-2, and Basys boards, all of which contain a Spartan-3/3E FPGA device and have

PREFACE xxiii

similar [/O peripherals. The design examples in the book are based on the Spartan-3 Starter
board (or simply the S3 board), but most of them can be used directly on other boards as
well. The applicability of the HDL codes is summarized below.

e Spartan-3 Starter (S3) board. The S3 board contains all the peripherals and no
additional accessory module is needed. All HDL codes and discussions can be
applied to this board directly.

e Nexys-2 board. The Nexys-2 board is a newer board, which contains a larger FPGA
device and a larger memory chip. Its peripherals are similar to those on the S3 board.
There are two differences. First, the “color depth” of its VGA interface is expanded
from 3 bits to 8 bits. Thus, the output of the VGA interface circuits discussed in
Chapters 13 and 14 needs to be modified accordingly. Second, the Nexys-2 board
contains a more sophisticated external memory device. Although the device can be
configured as an asynchronous SRAM, the timing characteristics are different from
those of the S3 board’s memory device, and thus the HDL codes for the memory
controller in Chapter 11 cannot be used directly. However, the same design principle
can be applied to construct a new controller.

e Basys board. The Basys board is a simpler board. It lacks the RS-232 connector.
To implement the UART module and the serial interface discussed in Chapter §, we
need Digilent’s RS-232 converter peripheral module. The Basys board has no external
memory devices, and thus the discussion of the memory controller in Chapter 11 is
not applicable.

o Other FPGA boards. Most peripherals discussed in this book are de facto industrial
standards, and the corresponding HDL codes can be used as long as a board provides
proper analog interface circuits and connectors. Except for the Xilinx-specific por-
tions, the codes can be applied to the boards based on the FPGA devices from other
manufacturers as well.

PC Accessories The design examples include interfaces to several PC peripheral de-
vices. A keyboard, a mouse, and a VGA monitor are required for the respective modules,
and a “straight-through” serial cable (the most commonly used type) is required for the
UART module. These accessories are widely available and can probably be obtained from
an old PC.

Book organization

The book is divided into three major parts. Part I introduces the elementary HDL constructs
and their hardware counterparts, and demonstrates the construction of a basic digital circuit
with these constructs. It consists of six chapters:

e Chapter 1 describes the skeleton of an HDL program, basic language syntax, and
logical operators. Gate-level combinational circuits are derived with these language
constructs.

e Chapter 2 provides an overview of an FPGA device, prototyping board, and devel-
opment flow. The development process is demonstrated by a tutorial on Xilinx ISE
synthesis software and a tutorial on Mentor Graphics ModelSim simulation software.

e Chapter 3 introduces HDL’s relational and arithmetic operators and routing constructs.
These correspond to medium-sized components, such as comparators, adders, and
multiplexers. Module-level combinational circuits are derived with these language
constructs.

xxiv PREFACE

e Chapter 4 covers the codes for memory elements and the construction of “regular”
sequential circuits, such as counters and shift registers, in which the state transitions
exhibit a regular pattern.

e Chapter 5 discusses the construction of a finite state machine (FSM), which is a
sequential circuit whose state transitions do not exhibit a simple, regular pattern.

e Chapter 6 presents the construction of an FSM with data path (FSMD). The FSMD is
used to implement register transfer (RT) methodology, in which the system operation
is described by data transfers and manipulations among registers.

o Chapter 7 discusses several more advanced topics on language constructs and coding
techniques and introduces the development of more sophisticated testbenches. This
chapter can be skipped without affecting the remaining chapters.

Part II applies the techniques from Part I to design an array of peripheral modules for the
prototyping board. Each chapter covers the development, implementation, and verification
of an individual peripheral. These modules can be incorporated to a larger project. Part 11
consists of seven chapters:

e Chapter § discusses the design of a universal asynchronous receiver and transmitter
(UART), which provides a serial link to receive and transmit data via the prototyping
board’s RS-232 port.

e Chapter 9 covers the design of a keyboard interface, which reads scan code from a
keyboard. The keyboard is connected via the prototyping board’s PS2 port.

o Chapter 10 covers the design of a mouse interface, which obtains the button and move-
ment information from a mouse. The mouse is also connected via the prototyping
board’s PS2 port.

e Chapter 11 discusses the implementation and timing issues of a memory controller.
The controller is used to read data from and write data to the two static random access
memory (SRAM) devices on the S3 board.

o Chapter 12 discusses the inference and application of Spartan-3 device-specific com-
ponents. The focus is on the FPGA’s internal memory blocks.

e Chapter 13 presents the design and implementation of a video controller. The discus-
sion covers the generation of video synchronization signals and shows the construc-
tion of simple bit- and object-mapped graphical interfaces. The monitor is connected
to the prototyping board’s VGA port.

e Chapter 14 continues development of the video controller. The discussion illustrates
the construction of text interface and general tile-mapped scheme.

Part III introduces an FPGA-based soft-core microcontroller, known as PicoBlaze, and
demonstrates the integration of a general-purpose processor and customized circuit. It
includes four chapters:

o Chapter 15 provides an overview of the organization and instruction set of PicoBlaze.

e Chapter 16 introduces the basic assembly programming and provides an overview of
the development process.

e Chapter 17 discusses PicoBlaze’s [/O feature and illustrates the procedure to derive
customized circuits to interface other I/O peripherals.

e Chapter 18 discusses PicoBlaze’s interrupt capability and demonstrates the construc-
tion of a customized interrupt-handling circuit.

In addition to regular chapters, the appendix summarizes and lists all code templates.

Special marksXiine specific e yse two special paragraph marks in the book: one
for a Xilinx-specific feature and one for Verilog-1995 constructs. While the examples

PREFACE XXV

described in the book are implemented on a Xilinx-based prototyping board and the codes
are synthesized by Xilinx ISE software, we try to make the HDL codes as device independent
and software neutral as possible. Most discussions and codes can be applied to different
target devices and different synthesis software as well. However, certain codes or device
features are unique to Xilinx ISE software or Spartan-3 FPGA devices. We use the Xilinx
specific superscript, as in the heading of this section, to indicate that the discussion in the
corresponding section or chapter is unique to Xilinx.

Similarly, we use marginal notes, as shown on the outer edge, to indicate that the dis-
cussion in a paragraph is unique to Xilinx. This note indicates that the code or design is no
longer portable and needs to be revised when a different software package or target device
is used.

The Verilog language was first ratified in 1995 (referred to as Verilog-1995) and then
revised in 2001 (referred to as Verilog-2001). Many useful enhancements are added in the
revised version. We use Verilog-2001 in this book. If a language construct differs in the two
versions, we describe the old syntax briefly in a separate paragraph and use a marginal note,
as shown on the outer edge, for this type of discussion. It indicates “for your information”
and the materials are included to help readers understand the older Verilog codes.

Instructional use

The book can be a good companion text for an introductory digital systems course or
an advanced project-oriented course. In an introductory digital systems course, the book
supplies the lab portion of the curriculum. The chapters in Part I basically follow the
sequence of a typical curriculum and can be presented along with regular lectures. One or
two peripheral modules can be selected as case studies, and corresponding experiments can
be used as term projects.

Inan advanced project-oriented course, the book provides a base for independent projects.
The materials in Part I should be treated as an overview or refresher, which provides a gen-
eral background on HDL, synthesis, and FPGA boards. Some modules in Part Il can be
used to demonstrate the design of more complex circuits. These modules can also be con-
sidered as building blocks (i.e., IPs) or subsystems to be integrated into final projects. The
PicoBlaze microcontroller discussed in Part Il can be used as a general-purpose processor
if an embedded-system type of project is desired.

Companion Web site

An accompanying Web site (http://academic.csuohio.edu/chu_p/rtl) provides additional in-
formation, including the following materials:

Errata

Code templates

HDL code listing and relevant files

Links to synthesis and simulation software

Links to referenced materials

Additional project ideas

Errata The book is self-prepared, which means that the author has produced all aspects
of the text, including illustrations, tables, code listings, indexing, and formatting. As errors

Xilinx
specific

FYI

xXxvi PREFACE

are always bound to happen, the accompanying Web site provides an updated errata sheet
and a place to report errors.

P. P. CHU

Cleveland, Ohio
January 2008

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor George L. Kramerich for his
encouragement and help.

The author also thanks John Wiley & Sons, Inc. for giving permission to use Figures 3.1,
3.2,4.2,4.10,4.11, 6.5, and 7.2 from my text RTL Hardware Design Using VHDL: Coding
Jor Efficiency, Portability, and Scalability, and Xilinx, Inc. for giving permission to use
Figures 2.3 and 9.3 from the Spartan-3 Starter Kit Board User Guide.

Alltrademarks used or referred to in this book are the property of their respective owners.

P.P. Chu

xxvii

This Page Intentionally Left Blank

