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PREFACE 

HDL (hardware description language) and FPGA (field-programmable gate array) devices 
allow designers to quickly develop and simulate a sophisticated digital circuit, realize it 
on a prototyping device, and verify operation of the physical implementation. As these 
technologies mature, they have become mainstream practice. We can now use a PC and 
an inexpensive FPGA prototyping board to construct a complex and sophisticated digital 
system. This book uses a "learning by doing" approach and illustrates the FPGA and HDL 
development and design process by a series of examples. A wide range of examples is 
included, from a simple gate-level circuit to an embedded system with an 8-bit soft-core 
microcontroller and customized 110 peripherals. All examples can be synthesized and 
physically tested on a prototyping board. 

Focus and audience 

FOCUS The main focus of this book is on the effective derivation of hardware, not the 
syntax of HDL. Instead of explaining every language construct, the book focuses on a 
small synthesizable subset and uses about a dozen code templates to provide the skeletons 
of various types of circuits. These templates are general and can easily be integrated to 
construct a large, complex system. Although this approach limits the "freedom" of syntactic 
expression, it will not prevent us from developing innovative hardware architecture. Because 
of the generality and flexibility of HDL, the same circuit can usually be described by a 
wide variety of language constructs and coding styles. Many of these codes are intended 
for modeling. They may lead to unnecessarily complex hardware implementation and 
sometimes cannot be synthesized at all. The template approach actually forces us to think 
more about hardware and develop a good coding practice for synthesis. Since we are 
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more interested in hardware, it is more beneficial to spend time on developing 10 different 
hardware architectures with the same code template rather than describing the same circuit 
with 10 different versions of codes. 

There are two popular HDLs, VHDL and Verilog. Both languages are used widely and 
are IEEE standards. This book uses Verilog, and a separate book with a similar title uses 
VHDL. Despite the drastic syntactic differences in the two languages, their capabilities are 
very similar, particularly for our purposes. After we comprehend the design practice and 
coding methodology in one language, learning the other language is rather straightforward. 

Although the book is intended for beginning designers, the examples follow strict design 
guidelines and prepare readers for future endeavors. The coding and design practice is 
"forward compatible," which means that: 

The same practice can be applied to large design in the future. 
The same practice can aid other system development tasks, including simulation, 
timing analysis, verification, and testing. 
The same practice can be applied to ASIC technology and different types of FPGA 
devices. 
The code can be accepted by synthesis software from different vendors. 

In summary, the book is a hands-on, hardware-centric text that involves minimal HDL 
overhead and follows good design and coding practice to achieve maximal forward com- 
parability. 

Audience and perquisites The book contains three major parts: basic digital circuits, 
peripheral modules, and embedded microcontroller. The intended audience is students in 
an introductory or advanced digital system design course as well as practicing engineers 
who wish to learn FPGA- and HDL-based development. For the materials in the first two 
parts, readers need to have a basic knowledge of digital systems, usually a required course 
in electrical engineering and computer engineering curricula. For the materials in the third 
part, prior exposure to assembly language programming will be helpful. 

Logistics 

Although a major goal of this book is to teach readers to develop software-independent 
and device-neutral HDL codes, we have to choose a software package and a prototyping 
board to synthesize and implement the design examples. The synthesis software and FPGA 
devices from Xilinx, a leading manufacture in this area, are used in the book. 

Software The synthesis software used in the book is the Web version of the Xilinx 
ISE package. The functionality of this version is similar to that of the full version but 
supports only a limited number of devices. Most introductory development boards use 
FPGA devices from the inexpensive Spartan-3 family. Since the Web version supports 
the Spartan-3 device, it fits our needs. The simulation software used in the book is the 
starter version of Mentor Graphics' ModelSim XE 111 package. It is a customized edition 
of ModelSim. Both software packages are free and can be downloaded from Xilinx's Web 
site. 

FPGA prototyping board This book is prepared to be used with several entry-level 
FPGA prototyping boards manufactured by Digilent Inc., including the Spartan-3 Starter, 
Nexys-2, and Basys boards, all of which contain a Spartan-313E FPGA device and have 



similar 110 peripherals. The design examples in the book are based on the Spartan-3 Starter 
board (or simply the S3 board), but most of them can be used directly on other boards as 
well. The applicability of the HDL codes is summarized below. 

Spartan3 Starter (S3) board. The S3 board contains all the peripherals and no 
additional accessory module is needed. All HDL codes and discussions can be 
applied to this board directly. 
Nexys-2 board. The Nexys-2 board is a newer board, which contains a larger FPGA 
device and a larger memory chip. Its peripherals are similar to those on the S3 board. 
There are two differences. First, the "color depth" of its VGA interface is expanded 
from 3 bits to 8 bits. Thus, the output of the VGA interface circuits discussed in 
Chapters 13 and 14 needs to be modified accordingly. Second, the Nexys-2 board 
contains a more sophisticated external memory device. Although the device can be 
configured as an asynchronous SRAM, the timing characteristics are different from 
those of the S3 board's memory device, and thus the HDL codes for the memory 
controller in Chapter 1 1 cannot be used directly. However, the same design principle 
can be applied to construct a new controller. 
Basys board. The Basys board is a simpler board. It lacks the RS-232 connector. 
To implement the UART module and the serial interface discussed in Chapter 8, we 
need Digilent's RS-232 converterperipheral module. The Basys board has no external 
memory devices, and thus the discussion of the memory controller in Chapter 11 is 
not applicable. 
Other FPGA boards. Most peripherals discussed in this book are de facto industrial 
standards, and the corresponding HDL codes can be used as long as a board provides 
proper analog interface circuits and connectors. Except for the Xilinx-specific por- 
tions, the codes can be applied to the boards based on the FPGA devices from other 
manufacturers as well. 

PC Accessories The design examples include interfaces to several PC peripheral de- 
vices. A keyboard, a mouse, and a VGA monitor are required for the respective modules, 
and a "straight-through" serial cable (the most commonly used type) is required for the 
UART module. These accessories are widely available and can probably be obtained from 
an old PC. 

Book organization 

The book is divided into three major parts. Part I introduces the elementary HDL constructs 
and their hardware counterparts, and demonstrates the construction of a basic digital circuit 
with these constructs. It consists of six chapters: 

Chapter 1 describes the skeleton of an HDL program, basic language syntax, and 
logical operators. Gate-level combinational circuits are derived with these language 
constructs. 
Chapter 2 provides an overview of an FPGA device, prototyping board, and devel- 
opment flow. The development process is demonstrated by a tutorial on Xilinx ISE 
synthesis software and a tutorial on Mentor Graphics ModelSim simulation software. 
Chapter 3 introduces HDL's relational and arithmetic operators and routing constructs. 
These correspond to medium-sized components, such as comparators, adders, and 
multiplexers. Module-level combinational circuits are derived with these language 
constructs. 
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Chapter 4 covers the codes for memory elements and the construction of "regular" 
sequential circuits, such as counters and shift registers, in which the state transitions 
exhibit a regular pattern. 
Chapter 5 discusses the construction of a finite state machine (FSM), which is a 
sequential circuit whose state transitions do not exhibit a simple, regular pattern. 
Chapter 6 presents the construction of an FSM with data path (FSMD). The FSMD is 
used to implement register transfer (RT) methodology, in which the system operation 
is described by data transfers and manipulations among registers. 
Chapter 7 discusses several more advanced topics on language constructs and coding 
techniques and introduces the development of more sophisticated testbenches. This 
chapter can be skipped without affecting the remaining chapters. 

Part I1 applies the techniques from Part I to design an array of peripheral modules for the 
prototyping board. Each chapter covers the development, implementation, and verification 
of an individual peripheral. These modules can be incorporated to a larger project. Part I1 
consists of seven chapters: 

Chapter 8 discusses the design of a universal asynchronous receiver and transmitter 
(UART), which provides a serial link to receive and transmit data via the prototyping 
board's RS-232 port. 
Chapter 9 covers the design of a keyboard interface, which reads scan code from a 
keyboard. The keyboard is connected via the prototyping board's PS2 port. 
Chapter 10 covers the design ofa  mouse interface, which obtains the button and move- 
ment information from a mouse. The mouse is also connected via the prototyping 
board's PS2 port. 
Chapter 11 discusses the implementation and timing issues of a memory controller. 
The controller is used to read data from and write data to the two static random access 
memory (SRAM) devices on the S3 board. 
Chapter 12 discusses the inference and application of Spartan-3 device-specific com- 
ponents. The focus is on the FPGA's internal memory blocks. 
Chapter 13 presents the design and implementation of a video controller. The discus- 
sion covers the generation of video synchronization signals and shows the construc- 
tion of simple bit- and object-mapped graphical interfaces. The monitor is connected 
to the prototyping board's VGA port. 
Chapter 14 continues development of the video controller. The discussion illustrates 
the construction of text interface and general tile-mapped scheme. 

Part 111 introduces an FPGA-based soft-core microcontroller, known as PicoBlaze, and 
demonstrates the integration of a general-purpose processor and customized circuit. It 
includes four chapters: 

Chapter 15 provides an overview of the organization and instruction set of PicoBlaze. 
Chapter 16 introduces the basic assembly programming and provides an overview of 
the development process. 
Chapter 17 discusses PicoBlaze's 110 feature and illustrates the procedure to derive 
customized circuits to interface other 110 peripherals. 
Chapter 18 discusses PicoBlaze's interrupt capability and demonstrates the construc- 
tion of a customized interrupt-handling circuit. 

In addition to regular chapters, the appendix summarizes and lists all code templates. 

special m a r k s x i l i n x  s p e c i f i c  We use two special paragraph marks in the book: one 
for a Xilinx-specijic featzrre and one for Verilog-1995 constructs. While the examples 
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described in the book are implemented on a Xilinx-based prototyping board and the codes 
are synthesized by Xilinx ISE software, we try to make the HDL codes as device independent 
and software neutral as possible. Most discussions and codes can be applied to different 
target devices and different synthesis software as well. However, certain codes or device 
features are unique to Xilinx ISE software or Spartan-3 FPGA devices. We use the Xilinx 
spec@ superscript, as in the heading of this section, to indicate that the discussion in the 
corresponding section or chapter is unique to Xilinx. 

Similarly, we use marginal notes, as shown on the outer edge, to indicate that the dis- 
cussion in a paragraph is unique to Xilinx. This note indicates that the code or design is no Xilinx 
longer portable and needs to be revised when a different software package or target device specific 
is used. 

The Verilog language was first ratified in 1995 (referred to as Verilog-1995) and then 
revised in 2001 (referred to as Verilog-2001). Many useful enhancements are added in the 
revised version. We use Verilog-2001 in this book. If a language construct differs in the two 
versions, we describe the old syntax briefly in a separate paragraph and use a marginal note, 
as shown on the outer edge, for this type of discussion. It indicates "for your information" FYI 
and the materials are included to help readers understand the older Verilog codes. 

Instructional use 

The book can be a good companion text for an introductory digital systems course or 
an advanced project-oriented course. In an introductory digital systems course, the book 
supplies the lab portion of the curriculum. The chapters in Part I basically follow the 
sequence of a typical curriculum and can be presented along with regular lectures. One or 
two peripheral modules can be selected as case studies, and corresponding experiments can 
be used as term projects. 

In an advanced project-oriented course, the book provides a base for independent projects. 
The materials in Part I should be treated as an overview or refresher, which provides a gen- 
eral background on HDL, synthesis, and FPGA boards. Some modules in Part I1 can be 
used to demonstrate the design of more complex circuits. These modules can also be con- 
sidered as building blocks (i.e., IPS) or subsystems to be integrated into final projects. The 
PicoBlaze microcontroller discussed in Part 111 can be used as a general-purpose processor 
if an embedded-system type of project is desired. 

Companion Web site 

An accompanying Web site (http://acadernic.csuohio.edu/chu~p/rtl) provides additional in- 
formation, including the following materials: 

Errata 
Code templates 
HDL code listing and relevant files 
Links to synthesis and simulation software 
Links to referenced materials 
Additional project ideas 

Errata The book is self-prepared, which means that the author has produced all aspects 
of the text, including illustrations, tables, code listings, indexing, and formatting. As errors 
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are always bound to happen, the accompanying Web site provides an updated errata sheet 
and a place to report errors. 

Cleveland, Ol~io 

January 2008 
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