COMPUTATIONAL INTELLIGENCE AND FEATURE SELECTION
IEEE Press Editorial Board
Lajos Hanzo, Editor in Chief
R. Abari T. Chen O. Malik
J. Anderson T. G. Croda S. Nahavandi
S. Basu S. Farshchi M. S. Newman
A. Chatterjee B. M. Hammerli W. Reeve

Kenneth Moore, Director of IEEE Book and Information Services (BIS)
Steve Welch, IEEE Press Manager
Jeanne Audino, Project Editor

IEEE Computational Intelligence Society, Sponsor
IEEE-CIS Liaison to IEEE Press, Gary B. Fogel

Technical Reviewers
Chris Hinde, Loughborough University, UK
Hisao Ishibuchi, Osaka Prefecture University, Japan

Books in the IEEE Press Series on Computational Intelligence

Introduction to Evolvable Hardware: A Practical Guide for Designing Self-Adaptive Systems
Garrison W. Greenwood and Andrew M. Tyrrell
2007 978-0471-71977-9

Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, Third Edition
David B. Fogel
2006 978-0471-66951-7

Emergent Information Technologies and Enabling Policies for Counter-Terrorism
Edited by Robert L. Popp and John Yen
2006 978-0471-77615-4

Computationally Intelligent Hybrid Systems
Edited by Seppo J. Ovaska
2005 0-471-47668-4

Handbook of Learning and Appropriate Dynamic Programming
Edited by Jennie Si, Andrew G. Barto, Warren B. Powell, Donald Wunsch II
2004 0-471-66054-X

Computational Intelligence: The Experts Speak
Edited by David B. Fogel and Charles J. Robinson
2003 0-471-27454-2

Computational Intelligence in Bioinformatics
Edited by Gary B. Fogel, David W. Corne, Yi Pan
2008 978-0470-10526-9
COMPUTATIONAL INTELLIGENCE AND FEATURE SELECTION
Rough and Fuzzy Approaches

RICHARD JENSEN
QIANG SHEN
Aberystwyth University

IEEE Computational Intelligence Society, Sponsor

IEEE Press Series on Computational Intelligence
David B. Fogel, Series Editor

IEEE PRESS

A John Wiley & Sons, Inc., Publication
CONTENTS

PREFACE

1 THE IMPORTANCE OF FEATURE SELECTION

1.1. Knowledge Discovery / 1
1.2. Feature Selection / 3
 1.2.1. The Task / 3
 1.2.2. The Benefits / 4
1.3. Rough Sets / 4
1.4. Applications / 5
1.5. Structure / 7

2 SET THEORY

2.1. Classical Set Theory / 13
 2.1.1. Definition / 13
 2.1.2. Subsets / 14
 2.1.3. Operators / 14
2.2. Fuzzy Set Theory / 15
 2.2.1. Definition / 16
 2.2.2. Operators / 17
 2.2.3. Simple Example / 19
 2.2.4. Fuzzy Relations and Composition / 20
 2.2.5. Approximate Reasoning / 22
CONTENTS

2.2.6. Linguistic Hedges / 24
2.2.7. Fuzzy Sets and Probability / 25

2.3. Rough Set Theory / 25
2.3.1. Information and Decision Systems / 26
2.3.2. Indiscernibility / 27
2.3.3. Lower and Upper Approximations / 28
2.3.4. Positive, Negative, and Boundary Regions / 28
2.3.5. Feature Dependency and Significance / 29
2.3.6. Reducts / 30
2.3.7. Discernibility Matrix / 31

2.4. Fuzzy-Rough Set Theory / 32
2.4.1. Fuzzy Equivalence Classes / 33
2.4.2. Fuzzy-Rough Sets / 34
2.4.3. Rough-Fuzzy Sets / 35
2.4.4. Fuzzy-Rough Hybrids / 35

2.5. Summary / 37

3 CLASSIFICATION METHODS

3.1. Crisp Approaches / 40
3.1.1. Rule Inducers / 40
3.1.2. Decision Trees / 42
3.1.3. Clustering / 42
3.1.4. Naive Bayes / 44
3.1.5. Inductive Logic Programming / 45

3.2. Fuzzy Approaches / 45
3.2.1. Łukasiewicz’s Method / 46
3.2.2. Subsethood-Based Methods / 48
3.2.3. Fuzzy Decision Trees / 53
3.2.4. Evolutionary Approaches / 54

3.3. Rulebase Optimization / 57
3.3.1. Fuzzy Interpolation / 57
3.3.2. Fuzzy Rule Optimization / 58

3.4. Summary / 60

4 DIMENSIONALITY REDUCTION

4.1. Transformation-Based Reduction / 63
4.1.1. Linear Methods / 63
4.1.2. Nonlinear Methods / 65

4.2. Selection-Based Reduction / 66
CONTENTS

4.2.1. Filter Methods / 69
4.2.2. Wrapper Methods / 78
4.2.3. Genetic Approaches / 80
4.2.4. Simulated Annealing Based Feature Selection / 81
4.3. Summary / 83

5 ROUGH SET BASED APPROACHES TO FEATURE SELECTION / 85

5.1. Rough Set Attribute Reduction / 86
 5.1.1. Additional Search Strategies / 89
 5.1.2. Proof of QUICKREDUCT Monotonicity / 90
5.2. RSAR Optimizations / 91
 5.2.1. Implementation Goals / 91
 5.2.2. Implementational Optimizations / 91
5.3. Discernibility Matrix Based Approaches / 95
 5.3.1. Johnson Reducer / 95
 5.3.2. Compressibility Algorithm / 96
5.4. Reduction with Variable Precision Rough Sets / 98
5.5. Dynamic Reducts / 100
5.6. Relative Dependency Method / 102
5.7. Tolerance-Based Method / 103
 5.7.1. Similarity Measures / 103
 5.7.2. Approximations and Dependency / 104
5.8. Combined Heuristic Method / 105
5.9. Alternative Approaches / 106
5.10. Comparison of Crisp Approaches / 106
 5.10.1. Dependency Degree Based Approaches / 107
 5.10.2. Discernibility Matrix Based Approaches / 108
5.11. Summary / 111

6 APPLICATIONS I: USE OF RSAR / 113

6.1. Medical Image Classification / 113
 6.1.1. Problem Case / 114
 6.1.2. Neural Network Modeling / 115
 6.1.3. Results / 116
6.2. Text Categorization / 117
 6.2.1. Problem Case / 117
 6.2.2. Metrics / 118
 6.2.3. Datasets Used / 118
CONTENTS

6.2.4. Dimensionality Reduction / 119
6.2.5. Information Content of Rough Set Reducts / 120
6.2.6. Comparative Study of TC Methodologies / 121
6.2.7. Efficiency Considerations of RSAR / 124
6.2.8. Generalization / 125

6.3. Algae Estimation / 126
6.3.1. Problem Case / 126
6.3.2. Results / 127

6.4. Other Applications / 128
6.4.1. Prediction of Business Failure / 128
6.4.2. Financial Investment / 129
6.4.3. Bioinformatics and Medicine / 129
6.4.4. Fault Diagnosis / 130
6.4.5. Spatial and Meteorological Pattern Classiﬁcation / 131
6.4.6. Music and Acoustics / 131

6.5. Summary / 132

7 ROUGH AND FUZZY HYBRIDIZATION / 133

7.1. Introduction / 133
7.2. Theoretical Hybridization / 134
7.3. Supervised Learning and Information Retrieval / 136
7.4. Feature Selection / 137
7.5. Unsupervised Learning and Clustering / 138
7.6. Neurocomputing / 139
7.7. Evolutionary and Genetic Algorithms / 140
7.8. Summary / 141

8 FUZZY-ROUGH FEATURE SELECTION / 143

8.1. Feature Selection with Fuzzy-Rough Sets / 144
8.2. Fuzzy-Rough Reduction Process / 144
8.3. Fuzzy-Rough QUICKREDUCT / 146
8.4. Complexity Analysis / 147
8.5. Worked Examples / 147
8.5.1. Crisp Decisions / 148
8.5.2. Fuzzy Decisions / 152
8.6. Optimizations / 153
8.7. Evaluating the Fuzzy-Rough Metric / 154
8.7.1. Compared Metrics / 155
11.1.4. Probabilistic / 205
11.1.5. Term Reduction / 206

11.2. System Overview / 207

11.3. Bookmark Classification / 208
 11.3.1. Existing Systems / 209
 11.3.2. Overview / 210
 11.3.3. Results / 212

11.4. Web Site Classification / 214
 11.4.1. Existing Systems / 214
 11.4.2. Overview / 215
 11.4.3. Results / 215

11.5. Summary / 218

12 APPLICATIONS III: COMPLEX SYSTEMS MONITORING

12.1. The Application / 221
 12.1.1. Problem Case / 221
 12.1.2. Monitoring System / 221

12.2. Experimental Results / 223
 12.2.1. Comparison with Unreduced Features / 223
 12.2.2. Comparison with Entropy-Based Feature Selection / 226
 12.2.3. Comparison with PCA and Random Reduction / 227
 12.2.4. Alternative Fuzzy Rule Inducer / 230
 12.2.5. Results with Feature Grouping / 231
 12.2.6. Results with Ant-Based FRFS / 233

12.3. Summary / 236

13 APPLICATIONS IV: ALGAE POPULATION ESTIMATION

13.1. Application Domain / 238
 13.1.1. Domain Description / 238
 13.1.2. Predictors / 240

13.2. Experimentation / 241
 13.2.1. Impact of Feature Selection / 241
 13.2.2. Comparison with RELIEF / 244
 13.2.3. Comparison with Existing Work / 248

13.3. Summary / 248

14 APPLICATIONS V: FORENSIC GLASS ANALYSIS

14.1. Background / 259
14.2. Estimation of Likelihood Ratio / 261
 14.2.1. Exponential Model / 262
 14.2.2. Biweight Kernel Estimation / 263
 14.2.3. Likelihood Ratio with Biweight and Boundary Kernels / 264
 14.2.4. Adaptive Kernel / 266

14.3. Application / 268
 14.3.1. Fragment Elemental Analysis / 268
 14.3.2. Data Preparation / 270
 14.3.3. Feature Selection / 270
 14.3.4. Estimators / 270

14.4. Experimentation / 270
 14.4.1. Feature Evaluation / 272
 14.4.2. Likelihood Ratio Estimation / 272

14.5. Glass Classification / 274

14.6. Summary / 276

15 SUPPLEMENTARY DEVELOPMENTS AND INVESTIGATIONS

15.1. RSAR-SAT / 279
 15.1.1. Finding Rough Set Reducts / 280
 15.1.2. Preprocessing Clauses / 281
 15.1.3. Evaluation / 282

15.2. Fuzzy-Rough Decision Trees / 283
 15.2.1. Explanation / 283
 15.2.2. Experimentation / 284

15.3. Fuzzy-Rough Rule Induction / 286

15.4. Hybrid Rule Induction / 287
 15.4.1. Hybrid Approach / 288
 15.4.2. Rule Search / 289
 15.4.3. Walkthrough / 291
 15.4.4. Experimentation / 293

15.5. Fuzzy Universal Reducts / 297

15.6. Fuzzy-Rough Clustering / 298
 15.6.1. Fuzzy-Rough c-Means / 298
 15.6.2. General Fuzzy-Rough Clustering / 299

15.7. Fuzzification Optimization / 299

15.8. Summary / 300
The main purpose of this book is to provide both the background and fundamental ideas behind feature selection and computational intelligence with an emphasis on those techniques based on rough and fuzzy sets, including their hybridizations. For those readers with little familiarity with set theory, fuzzy set theory, rough set theory, or fuzzy-rough set theory, an introduction to these topics is provided. Feature selection (FS) refers to the problem of selecting those attributes that are most predictive of a given problem, which is encountered in many areas such as machine learning, pattern recognition, systems control, and signal processing. FS intends to preserve the meaning of selected attributes; this forms a sharp contrast with those approaches that reduce problem complexity by transforming the representational forms of the attributes.

Feature selection techniques have been applied to small- and medium-sized datasets in order to locate the most informative features for later use. Many FS methods have been developed, and this book provides a critical review of these methods, with particular emphasis on their current limitations. To help the understanding of the readership, the book systematically presents the leading methods reviewed in a consistent algorithmic framework. The book also details those computational intelligence based methods (e.g., fuzzy rule induction and swarm optimization) that either benefit from joint use with feature selection or help improve the selection mechanism.

From this background the book introduces the original approach to feature selection using conventional rough set theory, exploiting the rough set ideology in that only the supplied data and no other information is used. Based on
demonstrated applications, the book reviews the main limitation of this approach in the sense that all data must be discrete. The book then proposes and develops a fundamental approach based on fuzzy-rough sets. It also presents optimizations, extensions, and further new developments of this approach whose underlying ideas are generally applicable to other FS mechanisms.

Real-world applications, with worked examples, are provided that illustrate the power and efficacy of the feature selection approaches covered in the book. In particular, the algorithms discussed have proved to be successful in handling tasks that involve datasets containing huge numbers of features (in the order of tens of thousands), which would be extremely difficult to process further. Such applications include Web content classification, complex systems monitoring, and algae population estimation. The book shows the success of these applications by evaluating the algorithms statistically with respect to the existing leading approaches to the reduction of problem complexity.

Finally, this book concludes with initial supplementary investigations to the associated areas of feature selection, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories. This research opens up many new frontiers for the continued development of the core technologies introduced in the field of computational intelligence.

This book is primarily intended for senior undergraduates, postgraduates, researchers, and professional engineers. However, it offers a straightforward presentation of the underlying concepts that anyone with a nonspecialist background should be able to understand and apply.

Acknowledgments

Thanks to those who helped at various stages in the development of the ideas presented in this book, particularly: Colin Aitken, Stuart Aitken, Malcolm Beynon, Chris Cornelis, Alexios Chouchoulas, Michelle Galea, Knox Haggie, Joe Halliwell, Zhiheng Huang, Jeroen Keppens, Pawan Lingras, Javier Marin-Blazquez, Neil Mac Parthalain, Khairul Rasmani, Dave Robertson, Changjing Shang, Andrew Tuson, Xiangyang Wang, and Greg Zadora. Many thanks to the University of Edinburgh and Aberystwyth University where this research was undertaken and compiled.

Thanks must also go to those friends and family who have contributed in some part to this work; particularly Elaine Jensen, Changjing Shang, Yuan Shen, Sarah Sholl, Mike Gordon, Andrew Herrick, Iain Langlands, Tossapon Boongoen, Xin Fu, and Ruqing Zhao.

The editors and staff at IEEE Press were extremely helpful. We particularly thank David Fogel and Steve Welch for their support, enthusiasm, and encouragement. Thanks also to the anonymous referees for their comments and suggestions
that have enhanced the work presented here, and to Elsevier, Springer, and World Scientific for allowing the reuse of materials previously published in their journals. Additional thanks go to those authors whose research is included in this book, for their contributions to this interesting and ever-developing area.

RICHARD JENSEN AND QIANG SHEN

Aberystwyth University
17th June 2008
CHAPTER 1

THE IMPORTANCE OF FEATURE SELECTION

1.1 KNOWLEDGE DISCOVERY

It is estimated that every 20 months or so the amount of information in the world doubles. In the same way, tools for use in the various knowledge fields (acquisition, storage, retrieval, maintenance, etc.) must develop to combat this growth. Knowledge is only valuable when it can be used efficiently and effectively; therefore knowledge management is increasingly being recognized as a key element in extracting its value. This is true both within the research, development, and application of computational intelligence and beyond.

Central to this issue is the knowledge discovery process, particularly knowledge discovery in databases (KDD) [10,90,97,314]. KDD is the nontrivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. Traditionally data was turned into knowledge by means of manual analysis and interpretation. For many applications manual probing of data is slow, costly, and highly subjective. Indeed, as data volumes grow dramatically, manual data analysis is becoming completely impractical in many domains. This motivates the need for efficient, automated knowledge discovery. The KDD process can be decomposed into the following steps, as illustrated in Figure 1.1:

- Data selection. A target dataset is selected or created. Several existing datasets may be joined together to obtain an appropriate example set.
Data cleaning/preprocessing. This phase includes, among other tasks, noise removal/reduction, missing value imputation, and attribute discretization. The goal is to improve the overall quality of any information that may be discovered.

Data reduction. Most datasets will contain a certain amount of redundancy that will not aid knowledge discovery and may in fact mislead the process. The aim of this step is to find useful features to represent the data and remove nonrelevant features. Time is also saved during the data-mining step as a result.

Data mining. A data-mining method (the extraction of hidden predictive information from large databases) is selected depending on the goals of the knowledge discovery task. The choice of algorithm used may be dependent on many factors, including the source of the dataset and the values it contains.

Interpretation/evaluation. Once knowledge has been discovered, it is evaluated with respect to validity, usefulness, novelty, and simplicity. This may require repeating some of the previous steps.

The third step in the knowledge discovery process, namely data reduction, is often a source of significant data loss. It is this step that forms the focus of attention of this book. The high dimensionality of databases can be reduced using suitable techniques, depending on the requirements of the future KDD processes. These techniques fall into one of two categories: those that transform the underlying meaning of the data features and those that preserve the semantics. Feature selection (FS) methods belong to the latter category, where a smaller set of the original features is chosen based on a subset evaluation function. In knowledge discovery, feature selection methods are particularly desirable as these facilitate the interpretability of the resulting knowledge.
1.2 FEATURE SELECTION

There are often many features in KDD, and combinatorially large numbers of feature combinations, to select from. Note that the number of feature subset combinations with \(m \) features from a collection of \(N \) total features can be extremely large (with this number being \(N!/[m!(N-m)!] \) mathematically). It might be expected that the inclusion of an increasing number of features would increase the likelihood of including enough information to distinguish between classes. Unfortunately, this is not true if the size of the training dataset does not also increase rapidly with each additional feature included. This is the so-called curse of dimensionality [26]. A high-dimensional dataset increases the chances that a data-mining algorithm will find spurious patterns that are not valid in general. Most techniques employ some degree of reduction in order to cope with large amounts of data, so an efficient and effective reduction method is required.

1.2.1 The Task

The task of feature selection is to select a subset of the original features present in a given dataset that provides most of the useful information. Hence, after selection has taken place, the dataset should still have most of the important information still present. In fact, good FS techniques should be able to detect and ignore noisy and misleading features. The result of this is that the dataset quality might even increase after selection.

There are two feature qualities that must be considered by FS methods: relevancy and redundancy. A feature is said to be relevant if it is predictive of the decision feature(s); otherwise, it is irrelevant. A feature is considered to be redundant if it is highly correlated with other features. An informative feature is one that is highly correlated with the decision concept(s) but is highly uncorrelated with other features (although low correlation does not mean absence of relationship). Similarly subsets of features should exhibit these properties of relevancy and nonredundancy if they are to be useful.

In [171] two notions of feature relevance, strong and weak relevance, were defined. If a feature is strongly relevant, this implies that it cannot be removed from the dataset without resulting in a loss of predictive accuracy. If it is weakly relevant, then the feature may sometimes contribute to accuracy, though this depends on which other features are considered. These definitions are independent of the specific learning algorithm used. However, this no guarantee that a relevant feature will be useful to such an algorithm.

It is quite possible for two features to be useless individually, and yet highly predictive if taken together. In FS terminology, they may be both redundant and irrelevant on their own, but their combination provides invaluable information. For example, in the exclusive-or problem, where the classes are not linearly separable, the two features on their own provide no information concerning this separability. It is also the case that they are uncorrelated with each other. However, when taken together, the two features are highly informative and can provide
THE IMPORTANCE OF FEATURE SELECTION

good class separation. Hence in FS the search is typically for high-quality feature subsets, and not merely a ranking of features.

1.2.2 The Benefits

There are several potential benefits of feature selection:

1. **Facilitating data visualization.** By reducing data to fewer dimensions, trends within the data can be more readily recognized. This can be very important where only a few features have an influence on data outcomes. Learning algorithms by themselves may not be able to distinguish these factors from the rest of the feature set, leading to the generation of overly complicated models. The interpretation of such models then becomes an unnecessarily tedious task.

2. **Reducing the measurement and storage requirements.** In domains where features correspond to particular measurements (e.g., in a water treatment plant [322]), fewer features are highly desirable due to the expense and time-costliness of taking these measurements. For domains where large datasets are encountered and manipulated (e.g., text categorization [162]), a reduction in data size is required to enable storage where space is an issue.

3. **Reducing training and utilization times.** With smaller datasets, the runtimes of learning algorithms can be significantly improved, both for training and classification phases. It can sometimes be the case that the computational complexity of learning algorithms even prohibits their application to large problems. This is remedied through FS, which can reduce the problem to a more manageable size.

4. **Improving prediction performance.** Classifier accuracy can be increased as a result of feature selection, through the removal of noisy or misleading features. Algorithms trained on a full set of features must be able to discern and ignore these attributes if they are to produce useful, accurate predictions for unseen data.

For those methods that extract knowledge from data (e.g., rule induction) the benefits of FS also include improving the readability of the discovered knowledge. When induction algorithms are applied to reduced data, the resulting rules are more compact. A good feature selection step will remove unnecessary attributes which can affect both rule comprehension and rule prediction performance.

1.3 ROUGH SETS

The use of rough set theory (RST) [261] to achieve data reduction is one approach that has proved successful. Over the past 20 years RST has become a topic of great interest to researchers and has been applied to many domains (e.g.,
classification [54,84,164], systems monitoring [322], clustering [131], and expert systems [354]; see *LNCS Transactions on Rough Sets* for more examples). This success is due in part to the following aspects of the theory:

- Only the facts hidden in data are analyzed.
- No additional information about the data is required such as thresholds or expert knowledge on a particular domain.
- It finds a minimal knowledge representation.

The work on RST offers an alternative, and formal, methodology that can be employed to reduce the dimensionality of datasets, as a preprocessing step to assist any chosen modeling method for learning from data. It helps select the most information-rich features in a dataset, without transforming the data, all the while attempting to minimize information loss during the selection process. Computationally, the approach is highly efficient, relying on simple set operations, which makes it suitable as a preprocessor for techniques that are much more complex. Unlike statistical correlation-reducing approaches [77], it requires no human input or intervention. Most importantly, it also retains the semantics of the data, which makes the resulting models more transparent to human scrutiny.

Combined with an automated intelligent modeler, say a fuzzy system or a neural network, the feature selection approach based on RST not only can retain the descriptive power of the learned models but also allow simpler system structures to reach the knowledge engineer and field operator. This helps enhance the interoperability and understandability of the resultant models and their reasoning.

As RST handles only one type of imperfection found in data, it is complementary to other concepts for the purpose, such as fuzzy set theory. The two fields may be considered analogous in the sense that both can tolerate inconsistency and uncertainty—the difference being the type of uncertainty and their approach to it. Fuzzy sets are concerned with vagueness; rough sets are concerned with indiscernibility. Many deep relationships have been established, and more so, most recent studies have concluded at this complementary nature of the two methodologies, especially in the context of granular computing. Therefore it is desirable to extend and hybridize the underlying concepts to deal with additional aspects of data imperfection. Such developments offer a high degree of flexibility and provide robust solutions and advanced tools for data analysis.

1.4 APPLICATIONS

As many systems in a variety of fields deal with datasets of large dimensionality, feature selection has found wide applicability. Some of the main areas of application are shown in Figure 1.2.

Feature selection algorithms are often applied to optimize the classification performance of image recognition systems [158,332]. This is motivated by a peaking phenomenon commonly observed when classifiers are trained with a limited
set of training samples. If the number of features is increased, the classification rate of the classifier decreases after a peak. In melanoma diagnosis, for instance, the clinical accuracy of dermatologists in identifying malignant melanomas is only between 65% and 85% [124]. With the application of FS algorithms, automated skin tumor recognition systems can produce classification accuracies above 95%.

Structural and functional data from analysis of the human genome have increased many fold in recent years, presenting enormous opportunities and challenges for AI tasks. In particular, gene expression microarrays are a rapidly maturing technology that provide the opportunity to analyze the expression levels of thousands or tens of thousands of genes in a single experiment. A typical classification task is to distinguish between healthy and cancer patients based on their gene expression profile. Feature selectors are used to drastically reduce the size of these datasets, which would otherwise have been unsuitable for further processing [318,390,391]. Other applications within bioinformatics include QSAR [46], where the goal is to form hypotheses relating chemical features of molecules to their molecular activity, and splice site prediction [299], where junctions between coding and noncoding regions of DNA are detected.

The most common approach to developing expressive and human readable representations of knowledge is the use of if-then production rules. Yet real-life problem domains usually lack generic and systematic expert rules for mapping feature patterns onto their underlying classes. In order to speed up the rule
induction process and reduce rule complexity, a selection step is required. This reduces the dimensionality of potentially very large feature sets while minimizing the loss of information needed for rule induction. It has an advantageous side effect in that it removes redundancy from the historical data. This also helps simplify the design and implementation of the actual pattern classifier itself, by determining what features should be made available to the system. In addition the reduced input dimensionality increases the processing speed of the classifier, leading to better response times [12,51].

Many inferential measurement systems are developed using data-based methodologies; the models used to infer the value of target features are developed with real-time plant data. This implies that inferential systems are heavily influenced by the quality of the data used to develop their internal models. Complex application problems, such as reliable monitoring and diagnosis of industrial plants, are likely to present large numbers of features, many of which will be redundant for the task at hand. Additionally there is an associated cost with the measurement of these features. In these situations it is very useful to have an intelligent system capable of selecting the most relevant features needed to build an accurate and reliable model for the process [170,284,322].

The task of text clustering is to group similar documents together, represented as a bag of words. This representation raises one severe problem: the high dimensionality of the feature space and the inherent data sparsity. This can significantly affect the performance of clustering algorithms, so it is highly desirable to reduce this feature space size. Dimensionality reduction techniques have been successfully applied to this area—both those that destroy data semantics and those that preserve them (feature selectors) [68,197].

Similar to clustering, text categorization views documents as a collection of words. Documents are examined, with their constituent keywords extracted and rated according to criteria such as their frequency of occurrence. As the number of keywords extracted is usually in the order of tens of thousands, dimensionality reduction must be performed. This can take the form of simplistic filtering methods such as word stemming or the use of stop-word lists. However, filtering methods do not provide enough reduction for use in automated categorizers, so a further feature selection process must take place. Recent applications of FS in this area include Web page and bookmark categorization [102,162].

1.5 STRUCTURE

The rest of this book is structured as follows (see Figure 1.3):

- *Chapter 2: Set Theory*. A brief introduction to the various set theories is presented in this chapter. Essential concepts from classical set theory, fuzzy set theory, rough set theory, and hybrid fuzzy-rough set theory are presented and illustrated where necessary.
• **Chapter 3: Classification Methods.** This chapter discusses both crisp and fuzzy methods for the task of classification. Many of the methods presented here are used in systems later in the book.

• **Chapter 4: Dimensionality Reduction.** A systematic overview of current techniques for dimensionality reduction with a particular emphasis on feature selection is given in this chapter. It begins with a discussion of those
reduction methods that irreversibly transform data semantics. This is followed by a more detailed description and evaluation of the leading feature selectors presented in a unified algorithmic framework. A simple example illustrates their operation.

- **Chapter 5: Rough Set-based Approaches to Feature Selection.** This chapter presents an overview of the existing research regarding the application of rough set theory to feature selection. Rough set attribute reduction (RSAR), the precursor to the developments in this book, is described in detail. However, these methods are unsuited to the problems discussed in Section 5.11. In particular, they are unable to handle noisy or real-valued data effectively—a significant problem if they are to be employed within real-world applications.

- **Chapter 6: Applications I: Use of RSAR.** This chapter looks at the applications of RSAR in several challenging domains: medical image classification, text categorization, and algae population estimation. Details of each classification system are given with several comparative studies carried out that investigate RSAR’s utility. Additionally a brief introduction to other applications that use a crisp rough set approach is provided for the interested reader.

- **Chapter 7: Rough and Fuzzy Hybridization.** There has been great interest in developing methodologies that are capable of dealing with imprecision and uncertainty. The large amount of research currently being carried out in fuzzy and rough sets is representative of this. Many deep relationships have been established, and recent studies have concluded at the complementary nature of the two methodologies. Therefore it is desirable to extend and hybridize the underlying concepts to deal with additional aspects of data imperfection. Such developments offer a high degree of flexibility and provide robust solutions and advanced tools for data analysis. A general survey of this research is presented in the chapter, with a focus on applications of the theory to disparate domains.

- **Chapter 8: Fuzzy-Rough Feature Selection.** In this chapter the theoretical developments behind this new feature selection method are presented together with a proof of generalization. This novel approach uses fuzzy-rough sets to handle many of the problems facing feature selectors outlined previously. A complexity analysis of the main selection algorithm is given. The operation of the approach and its benefits are shown through the use of two simple examples. To evaluate this new fuzzy-rough measure of feature significance, comparative investigations are carried out with the current leading significance measures.

- **Chapter 9: New Developments of FRFS.** Fuzzy-rough set-based feature selection has been shown to be highly useful at reducing data dimensionality, but possesses several problems that render it ineffective for datasets possessing tens of thousands of features. This chapter presents three new approaches to fuzzy-rough feature selection (FRFS) based on
fuzzy similarity relations. The first employs the new similarity-based fuzzy lower approximation to locate subsets. The second uses boundary region information to guide search. Finally, a fuzzy extension to crisp discernibility matrices is given in order to discover fuzzy-rough subsets. The methods are evaluated and compared using benchmark data.

- **Chapter 10: Further Advanced FS Methods.** This chapter introduces two promising areas in feature selection. The first, feature grouping, is developed from recent work in the literature where groups of features are selected simultaneously. By reasoning with fuzzy labels, the search process can be made more intelligent allowing various search strategies to be employed. The second, ant-based feature selection, seeks to address the nontrivial issue of finding the smallest optimal feature subsets. This approach to feature selection uses artificial ants and pheromone trails in the search for the best subsets. Both of these developments can be applied within feature selection, in general, but are applied to the specific problem of subset search within FRFS in this book.

- **Chapter 11: Applications II: Web Content Categorization.** With the explosive growth of information on the Web, there is an abundance of information that must be dealt with effectively and efficiently. This area, in particular, deserves the attention of feature selection due to the increasing demand for high-performance intelligent Internet applications. This motivates the application of FRFS to the automatic categorization of user bookmarks/favorites and Web pages. The results show that FRFS significantly reduces data dimensionality by several orders of magnitude with little resulting loss in classification accuracy.

- **Chapter 12: Applications III: Complex Systems Monitoring.** Complex application problems, such as reliable monitoring and diagnosis of industrial plants, are likely to present large numbers of features, many of which will be redundant for the task at hand. With the use of FRFS, these extraneous features can be removed. This not only makes resultant rulesets generated from such data much more concise and readable but can reduce the expense due to the monitoring of redundant features. The monitoring system is applied to water treatment plant data, producing better classification accuracies than those resulting from the full feature set and several other reduction methods.

- **Chapter 13: Applications IV: Algae Population Estimation.** Biologists need to identify and isolate the chemical parameters of rapid algae population fluctuations in order to limit their detrimental effect on the environment. This chapter describes an estimator of algae populations, a hybrid system involving FRFS that approximates, given certain water characteristics, the size of algae populations. The system significantly reduces computer time and space requirements through the use of feature selection. The results show that estimators using a fuzzy-rough feature selection step produce more accurate predictions of algae populations in general.

- **Chapter 14: Applications V: Forensic Glass Analysis.** The evaluation of glass evidence in forensic science is an important issue. Traditionally this
has depended on the comparison of the physical and chemical attributes of an unknown fragment with a control fragment. A high degree of discrimination between glass fragments is now achievable due to advances in analytical capabilities. A random effects model using two levels of hierarchical nesting is applied to the calculation of a likelihood ratio (LR) as a solution to the problem of comparison between two sets of replicated continuous observations where it is unknown whether the sets of measurements shared a common origin. This chapter presents the investigation into the use of feature evaluation for the purpose of selecting a single variable to model without the need for expert knowledge. Results are recorded for several selectors using normal, exponential, adaptive, and biweight kernel estimation techniques. Misclassification rates for the LR estimators are used to measure performance.

Chapter 15: Supplementary Developments and Investigations. This chapter offers initial investigations and ideas for further work, which were developed concurrently with the ideas presented in the previous chapters. First, the utility of using the problem formulation and solution techniques from propositional satisfiability for finding rough set reducts is considered. This is presented with an initial experimental evaluation of such an approach, comparing the results with a standard rough set-based algorithm, RSAR. Second, the possibility of universal reducts is proposed as a way of generating more useful feature subsets. Third, fuzzy decision tree induction based on the fuzzy-rough metric developed in this book is proposed. Other proposed areas of interest include fuzzy-rough clustering and fuzzy-rough fuzzification optimization.