The Engineering Handbook of Smart Technology for Aging, Disability, and Independence

Edited by

Abdelsalam (Sumi) Helal
Professor, University of Florida, Gainesville, FL, USA

Mounir Mokhtari
Associate Professor, Institut National des Télécommunications, Évry, France

Bessam Abdulrazak
Assistant Professor, Université de Sherbrooke, Québec, Canada
The Engineering Handbook of Smart Technology for Aging, Disability, and Independence
The Engineering Handbook of Smart Technology for Aging, Disability, and Independence

Edited by

Abdelsalam (Sumi) Helal
Professor, University of Florida, Gainesville, FL, USA

Mounir Mokhtari
Associate Professor, Institut National des Télécommunications, Évry, France

Bessam Abdulrazak
Assistant Professor, Université de Sherbrooke, Québec, Canada
Contents

Foreword xi
Preface xiii
Author Biography xvii
Contributors xix
Introduction to the Book 1
 Sumi Helal, Mounir Mokhtari, Bessam Abdulrazak, and Mark Schmalz

PART I DEFINITIONS, CLASSIFICATIONS, AND POLICIES 27

1. Technology for Successful Aging and Disabilities 29
 Amol Karmarkar, Eliana Chavez, and Rory A. Cooper

 Rene Jahiel

3. Technology for Individuals with Disabilities: Government and Market Policies 61
 Katherine D. Seelman

4. Assistive Technology and the International Classification of Functioning, Disability, and Health 81
 Jerome E. Bickenbach
5. Technology for Integration of Students with Disabilities in Higher Education
 Marci Kinas Jerome, Kristine Neuber, Brianna Stegall, Anna Emenova, and Michael Behrmann

6. ISO 9999 Assistive Products for Persons with Disability: Classification and Terminology
 Ir. Theo Bougie

PART II USERS, NEEDS, AND ASSISTIVE TECHNOLOGY

7. Low-Tech Assistive Technology
 Kathleen Laurin and Jill Sherman Pleasant

8. People with Visual Disabilities
 John Gill and Linda Jolliff

9. Assistive Devices for People with Visual Impairments
 John Gill

10. Assistive Devices for People with Hearing Loss
 Matthew H. Bakke

11. People with Cognitive Disabilities
 Mary Kay Rizzolo and David Braddock

12. Assistive Devices for People with Cognitive Impairments
 Hélène Pigot, Jérémy Bauchet, and Sylvain Giroux

PART III HUMAN–MACHINE INTERACTION AND ALTERNATIVE COMMUNICATION

13. Computer Access in the Workplace
 Karen Milchus and Carrie Bruce

14. Platforms and Operating System Accessibility
 Barry Feigenbaum and Kip Harris

15. Voice Interactive Systems
 Rudzionis Algimantas, Kastytis Ratkevicius, and Vytautas Rudzionis

16. The Communication Assistant (Alternative Communication)
 Leanne L. West

17. Wearable Systems Design Issues for Aging or Disabled Users
 Maribeth Gandy, Tracy Westeyn, Helene Brashear, and Thad Starner
18. Tactile Displays
 Stephen A. Brewster, Steven A. Wall, Lorna M. Brown, and Eve E. Hoggan

PART IV ASSISTIVE ROBOTICS

19. Assistive Robotics for Independent Living
 Bessam Abdulrazak and Mounir Mokhtari

20. Mobile Platform-Based Assistive Robot Systems
 Zeungnam Bien, Kwang-Hyun Park, Myung Jin Chung, Dae-Jin Kim,
 Jin-Woo Jung, Pyung-Hun Chang, and Jin-Oh Kim

21. Robot Therapy at Elder Care Institutions: Effects of Long-term
 Interaction with Seal Robots
 Takanori Shibata and Kazuyoshi Wada

22. Prostheses: Human Limbs and Their Artificial Replacements
 Richard F. ff. Weir

PART V USER MOBILITY

23. Wheelchairs within the Context of Smart House Design
 Dimitar Stefanov

24. People with Special Needs and Traffic Safety
 Nahid Shahmehri, Ioan Chisalita, and Johan Åberg

25. Blind Navigation and the Role of Technology
 Nicholas A. Giudice and Gordon E. Legge

26. Walker Systems
 Andrew Rentschler

27. Accessible Public Transportation Services in America
 Katharine M. Hunter-Zaworski

28. Transportation Services in Europe
 Isabelle Dussutour

29. Transportation Services in Asia
 Joseph Kwan and Eric Tam

PART VI TECHNOLOGIES FOR SMART ENVIRONMENTS

30. Modeling the Well-Being of Older People
 Andrew Sixsmith
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Context Awareness</td>
<td>Jadwiga Indulska and Karen Henricksen</td>
<td>585</td>
</tr>
<tr>
<td>32</td>
<td>Middleware for Smart Spaces</td>
<td>Daqing Zhang, Tao Gu, and Manli Zhu</td>
<td>607</td>
</tr>
<tr>
<td>33</td>
<td>Safety, Security, Privacy and Trust Issues</td>
<td>Abdallah M'hamed</td>
<td>619</td>
</tr>
<tr>
<td>34</td>
<td>Automated Medication Management Devices</td>
<td>R. J. Davies, Christopher Nugent, D. D. Finlay, N. D. Black, and D. Craig</td>
<td>631</td>
</tr>
<tr>
<td>35</td>
<td>Virtual Companions</td>
<td>Nahid Shahmehri, Johan Åberg, and Dennis Maciuszek</td>
<td>645</td>
</tr>
<tr>
<td>36</td>
<td>Textile Sensing and e-Textiles (Smart Textiles)</td>
<td>Rita Paradiso, Nicola Taccini, and Giannicola Loriga</td>
<td>673</td>
</tr>
<tr>
<td>37</td>
<td>The Gator Tech Smart House: A Programmable Pervasive Space</td>
<td>Sumi Helal, Raja Bose, Steven Pickles, Hicham Elzabadani, Jeffrey King, and Youssef Kaddourah</td>
<td>695</td>
</tr>
<tr>
<td>38</td>
<td>Health Application and Telecare</td>
<td>Mathijs Soede, Frank Vlaskamp, and Charles Willems</td>
<td>711</td>
</tr>
<tr>
<td>39</td>
<td>Immersive Telecare for Assisting People with Special Needs</td>
<td>Sumi Helal and Bessam Abdulrazak</td>
<td>727</td>
</tr>
<tr>
<td>40</td>
<td>Smart Systems in Personal Transportation</td>
<td>Aaron Steinfeld</td>
<td>737</td>
</tr>
<tr>
<td>42</td>
<td>Algorithms for Smart Spaces</td>
<td>Diane J. Cook, G. Michael Youngblood, and Gaurav Jain</td>
<td>767</td>
</tr>
<tr>
<td>43</td>
<td>User-Sensitive Design for Older and Disabled People</td>
<td>Alan Newell</td>
<td>787</td>
</tr>
</tbody>
</table>
44. Universal Design/Design for All: Practice and Method 803
 Edward Steinfeld

45. Design for Well-Being 819
 Andreas Larsson and Tobias Larsson

46. Technology Evaluation within Healthcare and Social Care 833
 Suzanne Martin, George Kernohan, Bernadette McCreight, and Christopher Nugent

47. Usability in Designing Assistive Technologies 855
 Jean-Claude Sperandio and Marion Wolff

48. Smart Home and Health Telematics: Standards for and with Users 867
 Milan Erbes

49. ICT Standardization for the Elderly and People with Disabilities in Japan 907
 Hajime Yamada

Index 921
Foreword

The disability and aging fields are dynamic. We are in a transition period, moving away from an old vision for disability to a new one. Older adults and people with disabilities were viewed as dependent and in need of consistent professional guidance. Increasingly, they are viewed as people with abilities, much like other people. The old model of disability focused solely on the individual level, and on approaches to disablement only at the body level. The new model of disability is universal, integrative and expansive. Technology innovation and the international human rights movement have provided much of the energy driving transition to a new integrative model of disability and aging. The Engineering Handbook of Smart Technology for Aging, Disability and Independence provides a comprehensive introduction to the new model and related challenges for research and development.

The integrative model is embodied in the World Health Organization’s (WHO) International Classification of Functioning, Disability and Health (ICF), adopted in 2001. Disablement is approached at the body, functional, social and environmental levels. The ICF components, body, activities, participation and environment, are in dynamic relationship to one another, therefore, generating interesting challenges for research and development (R&D) and measurement. Assessment measures assume a real world context of school, family and employment.

The integrative model is participatory. Participation of end users and stakeholders has implications for R&D and the education and training of professionals. Throughout the world, people with disabilities and older adults have an expressed preference to live as independently as possible in their communities. As the Handbook illustrates, they often need technological supports to realize their everyday living objectives. End users of technology will be more involved in the planning and implementation of studies that generate quality of life outcomes. The technology development process must become proactive in initiating participatory design that receives feedback from end users, industry and regulators. Engineering curricula must be adapted to teach our students about the
integrative model of disability, participatory design and the importance of social factors such as end user acceptance and stakeholder markets and regulation.

Breakthroughs in biomedical and technological sciences and their applications are ongoing. Applications have improved the quality of life for some but not all older adults and people with disabilities. Human rights advocacy for full citizenship and community inclusion have permeated the international arena. The World Health Organization has estimated the disability population as approximately one billion, mostly living in lower resource countries. Without commitment to accessibility, affordability, availability and usability, technology will not benefit the many around the world that need it to pursue active lives, to study, to work and live in their communities.

The Handbook sets out a framework in which engineering innovation is complemented by exploration of contextual factors such as human rights, standards, policy and the role of international organizations. While the engineering community may grasp the potential of technology to improve quality of life, it also has an important role in the realization of the new vision for older adults and people with disabilities through its education and advocacy within the technical community. Engineering innovation must be further harnessed to effect social good.

Kate Seelman
2008
Aging and disability have begun to impact our quality of life. Elderly people and those living with disabilities [people with special needs (PwSN)] are loosing their independence and overall wellbeing. The growing PwSN population is too large to be cared for through traditional government programs. The cost associated with such programs and the lack of a skilled caregiver workforce makes it very difficult to meet the needs of this segment of the population. It is therefore inevitable that we resort to technology in our search for solutions to the costly and challenging problems facing PwSN.

This handbook presents a broad overview of multidisciplinary research and development aiming at achieving independence and wellbeing for PwSN. The book covers the user population, the various impairments and disabilities, and state-of-the-art assistive technology, ranging from simple assistive devices to comprehensive assistive environments. A unique aspect of this book is presenting the readers with a uniform and coherent treatment of a large number (over 50) of cross-disciplinary, diverse research topics—all centered around PwSN.

AUDIENCE

This book has been designed for two audiences. The first includes professionals, researchers, and students seeking an understanding of the PwSN population and their needs, and the existing body of research and practice focusing on improving PwSN wellbeing and independence. This audience spans several engineering disciplines, including computer science engineering, electrical engineering, biomedical engineering, and rehabilitation engineering. It also spans geriatricians, occupational therapists, physical therapists, clinical and health psychologists, behavioral scientists, and physicians.

The second audience comprises anyone who has interest in assistive technologies for people with special needs and wants to know what is currently available, and what will be possible in the near and more distant future. This group includes but is not limited to
the public health policymakers, health services professionals, national and state funding agencies, government health departments, and specialized institutions. This audience also includes the PwSN themselves.

BOOK ORGANIZATION

The book is divided into eight parts, each consists of several chapters. The purpose of each part is summarized below:

Part I: Definitions, Classifications, and Policies. This part presents the most important definitions related to disabilities and aging and the technologies dedicated to this population. It also discusses policy-related issues.

Part II: Users, Needs, and Assistive Technology. This part addresses user needs for the elderly and people with disabilities. It covers the various user populations, including statistics, such as population size, growth rate, government spending on population programs, research and development (R&D), and health, among other statistics. This part also introduces devices and systems developed for PwSN in support of communicating, writing, reading, studying, among other things.

Part III: Human–Machine Interaction and Alternative Communication. This part addresses research experiences focused on improvement of the human–machine interaction in terms of aging and disabilities. It also covers innovative systems, generic interfaces, systems adaptations, and virtual reality. This part also covers speech prosthesis, talking calculators, and tactile or voice output measuring devices. Communication boards or books, multilevel voice output devices with levels, dynamic displays, icon sequencing, among other systems are also discussed.

Part IV: Assistive Robotics. This part discusses robotic solutions and the latest advances in assistive devices. Such systems can now, or will in the future, serve many of the “personal assistance” needs of older persons with disabilities. This part covers robots that assist people in daily life tasks (eating and drinking, applying makeup, etc.), robots for therapy, robots for training, and robots for sport rehabilitation.

Part V: User Mobility. This part discusses user mobility issues and solutions that could help users overcome their lost mobility. It also addresses issues and approaches to driver safety, testing, and remediation, and the role of technology in enabling mobility and providing alternatives transportation systems. Finally, this part outlines many domains related to user mobility such as new wheelchair designs, smart wheelchairs, driving dilemmas, and adaptation of public transportation systems.

Part VI: Technologies for Smart Environments. This part discusses technologies that enable the creation of smart environments. It covers: home networking, home automation, middleware technologies, service infrastructures, context-aware frameworks, tracking, behavior analysis, among others technologies.

Part VII: Smart Environments and Cyberinfrastructures. This part discusses the integration of advanced technologies into the daily life of user environments (home, work, public places, public administrations, etc.) that enable the creation of an assistive environment. It also addresses issues and approaches to smart technology
applications. This part also covers the use of Information and Communication Technology (ICT) and services to promote organizational performance and quality of life, telehealth applications and patient monitoring, information, and education.

Part VIII: Emerging Standards, Guidelines, and Design Methods. This part discusses methods related to designing products that fit the user’s needs and capacities. It also discusses new tools and concepts, and other issues related to the provision of usable and accessible technology that promotes independent and safe living. This part also discusses emerging standards and guidelines to build accessible devices, tools, and environments.

HOW TO USE THIS BOOK

The book is a compendium of a broad set of research areas, all centered around PwSN. The main intended use of the book is as a field reference for “one-stop shopping” by researchers and practitioners. The book has been organized into parts to enable readers to use it as a supplemental material in many courses on engineering and the health professions. Policymakers, governments, and health service professionals can use the book as a source for the latest information on PwSN and the related technologies available to them.

We hope that you find the book both valuable and interesting.

SUMI HELAL

University of Florida

MOUNIR MOKHTARI

Institute Nationale de Télécommunications

BESSAM ABDULRAZAK

Université de Sherbrooke
ABDELSALAM (SUMI) HELAL, Ph.D., is a Professor in the Computer and Information Science and Engineering Department (CISE) at the University of Florida (UF), Gainesville. His research interests span the areas of pervasive computing, mobile computing, as well as networking and Internet computing. He directs the Mobile and Pervasive Computing Laboratory and leads several government-funded research projects on “Smart Homes” and “Health Telematics for Successful Aging and Personal Health.” He is cofounder and director of the Gator Tech Smart House, a UF experimental home for applied pervasive computing research in the domain of elder care. Additionally, he is founder, president, and CEO of Phoneomena, Inc., a mobile application and middleware company, and founder and president of Pervasa, Inc., a UF startup focused on platform and middleware products for sensor networks.

Dr. Helal is a cofounder and an editorial board member of the IEEE Pervasive Computing magazine. He is the editor of the magazine’s column on “Standards, Tools and Emerging Technologies”. He is also the networking area editor for the IEEE Computer magazine. He has published over 200 books, book chapters, journal articles, and conference or workshop papers. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) as well as a member of the Association for Computing Machinery (ACM) and the USENIX Association. Dr. Helal received his B. Eng. degree from Alexandria University, Egypt, and his Master’s and Ph.D. degrees in computer science from Purdue University, West Lafayette, Indiana.

MOUNIR MOKHTARI, Ph.D., is an associate professor at the Institut TELECOM (ex GET/INT), France. He obtained his Master’s degree from Paris 12 Val de Marne University, France, in 1992, and a Master’s of Research degree in networking from INT in 1994. He collaborated with Pierre and Marie Curie University and INSERM Laboratory to obtain his Ph.D. degree in computer science in 1997. His research activity focuses mainly on human-machine interaction, rehabilitation robotics, and health telematics. Dr. Mokhtari, who is leading several European and national projects, is the head
and founder of Handicom Lab (Handicap Engineering and Communication Lab, which was founded in 1999).

BESSAM ABDULRAZAK, Ph.D., is an assistant professor of computer and information science engineering at the University of Sherbrooke, Quebec, Canada. Previously, he was a postdoctoral candidate at the University of Florida, Gainesville, and before that, at Telecom-SudParis, France. He received his Ph.D. degree in computer science from Telecom-SudParis; M.S. degree in robotics from Paris VI, France; and B.Sc./Ing degree from USTHB, Algeria. His research interests include ubiquitous and pervasive computing, ambient intelligence, smart spaces, assistive technologies, and rehabilitation robotics.
Contributors

BESSAM ABDULRAZAK, Université de Sherbrooke, Département d’Informatique, Faculté des Sciences, Sherbrooke, Québec, Canada

JOHAN ÅBERG, Laboratory for Intelligent, Information Systems, Department of Computer and Information Science (IDA), Linköpings Universitet, Linköping, Sweden

RUDZIONIS ALGIMANTAS, Kaunas University of Technology, Siaures, Kaunas, Lithuania

MATTHEW H. BAKKE, Gallaudet University, Department of Hearing, Speech and Language Sciences, Washington, DC, USA

JÉRÉMY BAUCHET, University of Sherbrooke, Département d’Informatique, Faculté des sciences Sherbrooke, Sherbrooke Québec, Canada

MICHAEL BEHRMANN, George Mason University, Helen A. Kellar Center for Human Disabilities, University Drive, Washington, DC, USA

JEROME E. BICKENBACH, Department of Philosophy, and Faculties of Law and Medicine, Queen’s University, Kingston, Ontario, Canada

ZEUNGNAM BIEN, Department of Electrical Engineering and Computer Science, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea, South Korea

ND BLACK, Faculty of Engineering, University of Ulster, Northern Ireland

IR. THEO BOUGIE, Bougie Revalidatie Technologie, Postbus, The Netherlands

RAJA BOSE, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA

DAVID BRADDOCK, Coleman Professor in Psychiatry and Executive Director, Coleman Institute for cognitive Disabilities, University of Colorado, Discovery Drive, Boulder, CA, USA

HELENE BRASHEAR, TSRB/IMTC, Atlanta, GA, USA

STEPHEN A. BREWSTER, Department of Computing Science, University of Glasgow, Glasgow, United Kingdom

LORNA M. BROWN, Department of Computing Science, University of Glasgow, Glasgow, United Kingdom

CARRIE BRUCE, Georgia Institute of Technology, CATEA/Georgia Institute of Technology, Atlanta, GA, USA

PYUNG-HUN CHANG, Department of Mechanical Engineering, KAIST, Guseong-dong, Yuseong-gu, Daejeon, South Korea
CONTRIBUTORS

Eliana Chavez, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
Ioan Chisalita, Laboratory for Intelligent Information Systems, Department of Computer and Information Science (IDA), Linköpings Universitet, Linköping, Sweden
Myung-Jin Chung, Department of Electrical Engineering and Computer Science, KAIST, Guseong-dong, Yuseong-gu, Daejeon, South Korea
Diane J. Cook, School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
Rory A. Cooper, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
D Craig, Queens University of Belfast, Northern Ireland
RJ Davies, Faculty of Engineering, University of Ulster, Northern Ireland
Isabelle Dussutour, Mission ITS, Conseil Général des Côtes d’Armor, place du Général de Gaulle, Saint Brieuc, France
Hicham Elzabadani, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA
Anna Emenova, George Mason University, Helen A. Kellar Center for Human Disabilities, Fairfax, VA, USA
Milan Erbes, av. du General Leclerc, Bourg la Reine, France
BARRY FEIGENBAUM, IBM Research, Human Ability and Accessibility Center—IBM Research, Austin, TX, USA
DD Finlay, Faculty of Engineering, University of Ulster, Northern Ireland
Maribeth Gandy, TSRB/IMTC, Atlanta, GA, USA
John Gill, Royal National Institute of the Blind, London, United Kingdom
Sylvain Giroux, University of Sherbrooke, Département d’Informatique, Faculté des sciences Sherbrooke, Sherbrooke Québec, Canada
Nicholas A. Giudice, University of California, Santa Barbara, Department of Psychology, Santa Barbara, CA, USA
Tao Gu, Institute for Infocomm Research, I2R, Heng Mui King Terrace, Singapore
Kip Harris, IBM Accessibility Center, Austin, TX, USA
Sumi Helal, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA
Karen Henrickson, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
Eve E. Hoggan, Department of Computing Science, University of Glasgow, Glasgow, United Kingdom
Katharine M. Hunter-Zaworski, National Center for Accessible Transportation, Apperson Hall, Oregon State University, Corvallis, OR, USA
Jadwiga Indulska, School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
Stephen Intille, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Rene Jahiel, University of Connecticut-International Health Policy Research, Hartford, CT, USA
Gaurav Jain, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
Youssef Kaddourah, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA
Marc Kinas Jerome, Helen A. Kellar Institute for Human Disabilities, George Mason University, Washington, DC, USA
Jin-Woo Jung, Human-Friendly Welfare Robot System Engineering Research Center, KAIST, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
Amol Karmarkar, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
George Kernohan, School of Nursing, University of Ulster, Jordanstown Campus, Shore Road, Newtownabbey, Co. Antrim, Northern Ireland
Jeffrey King, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA
Dae-Jin Kim, Human-Friendly Welfare Robot System Engineering Research Center, KAIST, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
Jin-Oh Kim, Department of Information and Control Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul, Republic of Korea
Joseph Kwan, The Jockey Club Rehabilitation Engineering Centre (REC), Hong Kong Polytechnic University, Hong Hom, Kowloon, Hong Kong, SAR
Kent Larson, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Andreas Larsson, Division of Computer Aided Design, Luleå University of Technology, Sweden
Tobias Larsson, Division of Computer Aided Design, Luleå University of Technology, Sweden
Kathleen Laurin, Arizona Technology Access Program, Northern Arizona University, Phoenix, AZ, USA
Gordon E. Legge, University of Minnesota, Minneapolis, MN, USA
Giannicola Loriga, Milior SPA, Prato, Pistoiese, Prato, Italy
Dennis Maciuszek, Department of Computer and Information Science (IDA), Linköpings Universitet, Linköping, Sweden
Suzanne Martin, School of Health Sciences, University of Ulster, Jordanstown campus, Newtownabbey, Co. Antrim, Northern Ireland
Bernadette McCrighth, School of Sociology and Applied Social Studies, University of Ulster, Jordanstown campus, Shore Road, Newtownabbey, Co. Antrim, Northern Ireland
Abdallah M'hamed, Institut National des Télécommunications, rue Charles Fourier, Évry, France
Karen Milchus, Georgia Institute of Technology, CATEA/Georgia Institute of Technology, Atlanta, GA, USA
Mounir Mokhtari, Institut National des Télécommunications, rue Charles Fourier, Évry cedex, France
Kristine Neuber, George Mason University, Helen A. Kellar Center for Human Disabilities, University Drive, Fairfax, VA, USA
Alan Newell, Queen Mother Research Centre, Applied Computing, University of Dundee, Dundee, Scotland
Linda Jolliff, Royal National Institute of the Blind, London, United Kingdom
Christopher Nugent, School of Computing and Mathematics, Faculty of Engineering, University of Ulster, Jordanstown Campus, Newtownabbey, Co. Antrim, Northern Ireland
Steven Pickles, CSE Building, CISE Department, University of Florida, Gainesville, FL, USA
Rita Paradiso, Presently on leave at Milior s.p.a., Prato, Italy, Milior SPA, Prato, Pistoiese, Prato, Italy
KWANG-HYUN PARK, Department of Electrical Engineering and Computer Science, KAIST, Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea
HÉLÈNE PIGOT, University of Sherbrooke, Département d’Informatique, Faculté des sciences Sherbrooke, Sherbrooke, Québec, Canada
KASTYTIS RATKEVICIUS, Kaunas University of Technology, Kaunas, Lithuania
ANDREW RENTSCHLER, CED Accident Analysis, Jacksonville, FL, USA
MARY KAY RIZZOLI, Department of Disability and Human Development (DHD), College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL, USA
VYTAUTAS RUDZIONIS, Vilnius University of Technology, Kaunas, Lithuania
KATHERINE D. SEELEMAN, University of Pittsburgh, School of Health and Rehabilitation Sciences, Pittsburgh, PA, USA
MARK SCHMALZ, University of Florida, Gainesville, FL, USA
NAHID SHAHMENRI, Laboratory for Intelligent Information Systems, Department of Computer and Information Science (IDA), Linköpings Universitet, Linköping, Sweden
JILL SHERMAN PLEASANT, University of Montana Rural Institute, Missoula, MT, USA
TAKANORI SHIBATA, Ministry of Economy, Trade and Industry (METI), Tsukuba, Japan
ANDREW SIXSMITH, Division of Primary Care, University of Liverpool, Liverpool, United Kingdom
MATHIJS SOEDE, iRV, Institute for Rehabilitation Research, -Kenniscentrum voor Revalidatie en handicap-, Zandbergsweeg, Hoensbroek, The Netherlands
JEAN-CLAUDE SPERANDIO, University of Paris, Laboratoire d’Érgonomie Informatique, Paris Cedex, France
THAD STARNER, TSRB/IMTC, Atlanta, GA, USA
DIMITAR STEFANOV, University of Coventry, Priory Street, Coventry, United Kingdom
BRIANNA STEGALL, George Mason University, Helen A. Kellar Center for Human Disabilities, Fairfax, VA, USA
AARON STEINFELD, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
EDWARD STEINFELD, State University of New York at Buffalo, School of Architecture and Planning, Buffalo, NY, USA
NICOLA TACCINI, Milior SPA, Prato, Pistoiesi, Prato, Italy
ERIC TAM, The Jockey Club Rehabilitation Engineering Centre (REC), Hong Kong Polytechnic University, Hong Hom, Kowloon, Hong Kong, SAR
FRANK VLASKAMP, iRV, Institute for Rehabilitation Research, -Kenniscentrum voor Revalidatie en Handicap-, Zandbergsweeg, Hoensbroek, The Netherlands
KAZUYOSHI WADA, Tokyo Metropolitan University, Tokyo, Japan
STEVEN A. WALL, Department of Computing Science, University of Glasgow, Glasgow, United Kingdom
RICHARD F. FF. WEIR, Northwestern University, Rehabilitation Engineering Research Center and Prosthetics Research Laboratory, Chicago, IL, USA
LEANNE WEST, Georgia Institute of Technology, Atlanta, GA, USA
TRACY WESTEYN, TSRB/IMTC, Atlanta, GA, USA
CHARLES WILLEMS, iRV, Institute for Rehabilitation Research, -Kenniscentrum voor Revalidatie en handicap-, Zandbergsweeg, Hoensbroek, The Netherlands
MARION WOLFF, University of Paris, Laboratoire d’Érgonomie Informatique, Paris Cedex, France
HAJIME YAMADA, Department of Economics, Toyo University Hakusan, Bunkyo Tokyo, Japan
G. Michael Youngblood, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
Daqing Zhang, Institute for Infocomm Research, I2R, Heng Mui Keng Terrace, Singapore
Manli Zhu, Institute for Infocomm Research, I2R, Heng Mui Keng Terrace, Singapore
Introduction to the Book

Sumi Helal and Mark Schmalz
University of Florida, Gainesville, FL

Mounir Mokhtari
Institut National des Télécommunications, Évry, France

Bessam Abdulrazak
Université de Sherbrooke, Québec, Canada

According to the World Health Organization (WHO), there are between 750 million and 1 billion people with special needs (PwSN) in our world today. This includes the growing elder population and people living with disabilities. In 2002 it was estimated that 20% of the US population and 13% of the European population are PwSN. In the United States, over 35 million Americans (12% of the population) are over the age of 65. This 65+ population is expected to double by 2030. In fact, the oldest population (85+) is the most rapidly growing segment of our population. In 1900 there were only 100,000 persons 85+; in 2000, there were 4.2 million; in 2050, there will be 21 million (Fig. I.1). The significance of these numbers is that there is a strong correlation between elders’ disability and age; at least 62% of elders 85+ have difficulty with one or more core activities of daily living. Consider dementia alone and how it degrades the quality of life for elders, adversely impacting their independence. Approximately 10% of people age 65+ have cognitive impairments that impair functional abilities. Alzheimer’s disease is the most common cause of dementia in persons over 65, causing progressive decline in abilities.

Aging and disability pose challenging and costly problems needy of urgent solutions that cannot be solved by traditional government programs alone. This book focuses on technology and its promise in promoting independence for people with special needs. The use of devices, computers, robots, and other established assistive technology (AT) can potentially increase the autonomy of PwSN, by compensating for physical limitations and circumventing difficulties with normal activities of daily living (ADL).
INTRODUCTION TO THE BOOK

I.1 THE POPULATION

Numerous researchers have attempted to define the concept of disability in diverse historical or geographic settings, with regard to attributes or modulating factors such as impairment, health condition, and individual–environment interaction. Since the 1960s, numerous such attempts have led to significantly varying definitions. The first international classification of impairment, disease, and handicap (ICIDH) [1] developed by the World Health Organization (WHO), which has been used worldwide for more than twenty years, defines a handicap as “a disadvantage for a given individual, resulting from an impairment or a disability, that limits or prevents the fulfillment of a role that is normal for that individual” [1].

The Disabled People’s International (DPI) organization defines disability as “the loss or limitation of opportunities to take part in the normal life of the community on an equal level with others due to physical and social barriers” [2].

People with disabilities (also referred to as disabled persons) are “persons who are atypical in body, intellect, or emotions and who are categorized by society as disabled by a process of examination, explanation for their difference, and legitimization of their role in society and the resources that society puts at their disposal” [3].

The WHO revision of the ICIDH, the International Classification of Functioning, Disability and Health (ICF), provides a handicap with medical and contextual dimensions. Further, the handicap is seen as a result of an interaction between personal characteristics (health condition) and social and environmental factors [4].

I.1.1 Handicap and Wellbeing

Wellbeing or quality of life is an important concern for PwSN, who, like every person, is seeking to be well, happy, healthy, and prosperous. PwSN have several important components of wellbeing. A key activity is independent living with convenient access to goods and services, as well as being socially active and enjoying self-esteem and dignity. In modern societies, PwSN can attain some components of wellbeing such as access to services using assistive technology (AT). Other components, such as freedom of navigation and travel, are much more difficult because of environmental obstacles encountered by the disabled.
I.1.2 Handicap and the International Classification of Functioning, Disability, and Health (ICF)

The World Health Organization (WHO) ICF addresses the situation of being handicapped, in a diverse way. The WHO classification adopts a functional approach [4], focusing on the level of health and functional capacity, without limiting consideration to the deficiency–incapacity–disadvantage chain, where handicap results from physical deficiency or disease [1]. Since an individual’s functioning and disability occurs in a social and environmental context, ICF also includes environmental factors.

In summary, ICF combines two approaches: medical and social. The medical approach is traditional, where the handicap is perceived as an endogenous congenital problem, or as a direct consequence of a disease or disorder that requires medical care. The social approach focuses on the patient’s environment. Here, a handicap is perceived as a problem created by society or the individual’s environment, where the handicap represents incomplete social integration of the handicapped individual.

Social classification stresses models of human operation (Fig. I.2), where a handicap results from dynamic interaction between a patient’s health condition (diseases, trauma, wounds, etc.) and other contextual factors. Examples of contextual factors include personal and environmental factors, which are considered concurrently. To summarize, the ICF defines a person with a disability as “a person with one or more impairments, one or more activity limitations, one or more participation restrictions or a combination” [4].

I.1.3 Needs of People with Special Needs (PwSN)

Analyzing the human beings, Maslow has identified five categories of needs, with different priority levels (Fig. I.3), in the following order: survival (physiological), safety, social needs, esteem, and self-actualization (fulfillment). Maslow’s model is also valid for PwSN, whose needs are similar to those of ordinary persons. Nevertheless, many of
these needs are not fulfilled, so PwSN seek to fulfill these need and reach a state of well-being. Initially, PwSN attempt to fulfill the first level of needs (survival). The survival needs are formed by the physiological needs and include the biological requirements for feeding, performing hygiene, sleeping, ADL, and so on. When PwSN fulfill their survival needs, they will look for situations that keep them safe, before moving up the chain and fulfill their needs to be part of society and to achieve [5].

As an example of needs in terms of safety, consider a person with visual impairment who wishes to cross the street safely. In contrast, for the elderly, safety might represent the ability to obtain emergency help after falling and not being able to stand again. Social need is a key element that PwSN would like to develop continuously [6]. For example, a person with a hearing impairment suffers from a diminution of social contact, while someone with a motor disability feels excluded from social activities.

The third level of the pyramid relates to esteem, both self-esteem and being favorably recognized by others. Esteem is often related to the capability of achieving things, contributing to a work activity and being autonomous. In particular, PwSN in a dependent situation feel the need for increased autonomy, as well as the opportunity to prove their worth to themselves and others through work or other activities [6].

I.1.4 Types of Impairment

PwSN live with impairments that impact their abilities to conduct activities of daily living (ADL). An impairment can limit or restrict one or more ADLs, including moving from one place to another (e.g., navigation, locomotion, transfer), maintaining a position (e.g., standing, sitting, sleeping), interacting with the environment (e.g., controlling systems, gripping objects), communicating (e.g., speaking, writing, hand gestures), feeding (chewing, swallowing, etc.), and perceiving the external world (by movement of the eyes, the head, etc.).

Many older persons face one or more impairments. Their situation is often similar to that of people with disabilities. Their needs are similar to those people with multiple handicaps with a decrease in the muscular, vision, hearing and cognitive capacities [7].

A review of all impairments and handicaps of PwSN is not possible in a single chapter. We briefly describe the most common and known handicaps and impairments.