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&PREFACE

During the course of the last century, it was realized that many properties of solids are
controlled not so much by the chemical composition or the chemical bonds linking
the constituent atoms in the crystal but by faults or defects in the structure. Over
the course of time the subject has, if anything, increased in importance. Indeed,
there is no aspect of the physics and chemistry of solids that is not decisively influ-
enced by the defects that occur in the material under consideration. The whole of
the modern silicon-based computer industry is founded upon the introduction of
precise amounts of specific impurities into extremely pure crystals. Solid-state
lasers function because of the activity of impurity atoms. Battery science, solid
oxide fuel cells, hydrogen storage, displays, all rest upon an understanding of
defects in the solid matrix.

As the way in which defects modify the properties of a solid has been gradually
understood, the concept of a defect has undergone considerable evolution. The earli-
est and perhaps simplest concept of a defect in a solid was that of a wrong atom, or
impurity, in place of a normal atom in a crystal—a so-called point defect. Not long
after the recognition of point defects, the concept of linear defects, dislocations,
was invoked to explain a number of diverse features including the mechanical prop-
erties of metals and the growth of crystals. In recent years it has become apparent that
defect interactions, aggregation, or clustering is of vital importance.

The advance in understanding of defects has been made hand in hand with the
spectacular development of sophisticated experimental techniques. The initial break-
through was in X-ray diffraction—a technique that still remains as the foundation of
most studies. A further change came with the development of transmission electron
microscopy that was able, for the first time, to produce images of defects at an atomic
scale of resolution. Since then, advances in computing techniques, together with the
availability of powerful graphics, have thrown quite new light on the defect structure
of materials.

Besides the multiplicity of defects that can be envisaged, there is also a wide range
of solid phases within which such defects can reside. The differences between an
alloy, a metallic sulfide, a crystalline fluoride, a silicate glass, or an amorphous
polymer are significant. Moreover, developments in crystal growth and the pro-
duction of nanoparticles have changed the perspective of earlier studies, which
were usually made on polycrystalline solids, sometimes with uncertain degrees of
impurity present.

All of these changes have meant that the view of defects in solids has changed
considerably over the last 20 years or so. This book is aimed at presenting an
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overview of this information. However, the topic encompasses a huge subject area,
and selection has been inevitable. Moreover, courses about defects in solids,
whether to undergraduate or postgraduate students in chemistry, physics, geology,
materials science, or engineering, are usually constrained to a relatively small part
of the curriculum. Nevertheless, the material included in this book has been
chosen so that not only basics are covered but also aspects of recent research
where exciting frontiers lie. Unfortunately, the influence of defects upon mechanical
properties is mostly excluded, and the important area of surfaces and surface defects
is only mentioned in passing. Similarly, the area of studies prefixed by nano- has been
bypassed. This is because the literature here is growing at an enormous rate, and time
was not available to sift through this mountain of data. Although these omissions
are regrettable, they leave scope for future volumes in this series. Finally, it must
be mentioned that most emphasis has been placed upon principles, leaving little
space for description of important experimental details. This is a pity, but within
the constraints of time and space, became inevitable. Again, a future volume could
correct this shortcoming.

The first four chapters introduce basic concepts that are developed to build up a
framework for understanding defect chemistry and physics. Thereafter, chapters
focus rather more on properties related to applications. Chapter 5 describes diffusion
in solids; Chapter 6, ionic conductivity; Chapters 7 and 8 the important topics of elec-
tronic conductivity, both intrinsic (Chapter 7) and extrinsic (Chapter 8). The final
chapter gives a selected account of magnetic and optical defects.

To assist in understanding, each chapter has been prefaced with three “introduc-
tory questions” that focus the reader upon some of the important points to be
raised in the following text. These are answered at the end of each chapter. In
addition, end-of-chapter questions aid understanding of the preceding material. The
first set of these consists of multiple choice questions—a “quick quiz,” to test knowl-
edge of terms and principles. This is followed by a number of more traditional prob-
lems and calculations to build skills and understanding in more depth. In addition,
supplementary material covering the fundamentals of relevant topics such as crystal-
lography and band theory are included so that, in the first instance, a reader will not
have to look elsewhere for this information.

Each chapter contains a short list of additional sources that expand or give a differ-
ent perspective on the material in the preceding chapter. Most of these are books or
original scientific literature, and only a few web sources are listed. The Internet pro-
vides a data bank of considerable power but has two drawbacks: It is easy to become
swamped by detail (often a simple search will throw up a million or more allegedly
relevant pages), and much of the information located has an ephemeral nature. Rather
than list a large number of sites, the reader is encouraged to use a search engine and
keywords such as “magnetic defects,” which will open an alternative perspective on
the subject to that presented in this book.

I have been particularly helped in the compilation of this book by family, friends,
and colleagues. Professor R. B. King first suggested the project, and Drs. E. E. M.
Tyler, G. J. Tilley, and R. D. Tilley made suggestions about contents and scope.
Professor F. S. Stone offered encouragement and kindly offered to read sections in
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draft form, resulting in invaluable advice and comment that added substantially to the
clarity and balance. Mr. A. Coughlin was constantly encouraging and gave assistance
when mathematical discussions of topics such as polynomials or random walks
became opaque and provided valued help into the proofs. The staff of the
Trevithick Library, University of Cardiff, have been helpful at all times and continu-
ally located obscure references. The staff at Wiley, gave constant advice, help, and
encouragement. Dr. John Hutchison, University of Oxford, provided stunning micro-
graphs for which I am greatly indebted. Finally, my gratitude to my wife Anne cannot
be understated. Her tolerance of my neglect and her continued encouragement has
allowed this project to reach a conclusion.

Comments and queries will be gratefully received and can be sent to
tilleyrj@cardiff.ac.uk or rjdtilley@yahoo.co.uk.

R. J. D. TILLEY
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&CHAPTER 1

Point Defects

What is a point defect?

What is the “effective charge” on a defect?

What is an antisite defect?

1.1 INTRODUCTION

Defects play an important part in both the chemical and physical behavior of solids,
and much of modern science and technology centers upon the exploitation or sup-
pression of the properties that defects confer upon a solid. Batteries, fuel cells, dis-
plays, data storage, and computer memories all directly utilize, or have evolved
from, an understanding and manipulation of defects in inorganic materials. This tech-
nology has been developed over some 80–100 years and started with the simplest
concepts. However, as the effect of defects upon the properties of the solid gradually
became appreciated, the concept of a defect has undergone considerable evolution.
The simplest notion of a defect in a solid was the idea of a mistake such as a
missing atom or an impurity in place of a normal atom. These structurally simple
defects are called point defects. Not long after the recognition of point defects, the
concept of more complex structural defects, such as linear defects termed dislo-
cations, was invoked to explain the mechanical properties of metals. In the same
period it became apparent that planar defects, including surfaces and grain bound-
aries, and volume defects such as rods, tubes, or precipitates, have important roles
to play in influencing the physical and chemical properties of a solid.

Defects can thus be arranged in a dimensional hierarchy (Fig. 1.1a–1.1d ):

1. Zero-dimensional defects—point defects

2. One-dimensional (linear) defects—dislocations

3. Two-dimensional (planar) defects—external and internal surfaces

4. Three-dimensional (volume) defects—point defect clusters, voids, precipitates.

This and the following chapter are concerned with point defects.

Defects in Solids, by Richard J. D. Tilley
Copyright # 2008 John Wiley & Sons, Inc.
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In addition to the defects listed above, which may be termed structural defects, there
are also electronic defects. The first of these are electrons that are in excess of those
required for chemical bonding and that, in certain circumstances, constitute charged
defects that can carry current. In addition, current in somematerials is carried by particles

Figure 1.1 Defects in crystalline solids: (a) point defects (interstitials); (b) a linear defect
(edge dislocation); (c) a planar defect (antiphase boundary); (d ) a volume defect (precipitate);
(e) unit cell (filled) of a structure containing point defects (vacancies); and ( f ) unit cell (filled)
of a defect-free structure containing “ordered vacancies.”
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that behave rather like positive electrons, and these form the second type of electronic
defect.1 They are called electron holes, positive holes, or more often just holes.

Besides the multiplicity of defects that can be envisaged, there is a wide range of
host solid phases within which such defects can reside. The differences between an
alloy, a metallic sulfide, a crystalline fluoride, or a silicate glass are significant from

Figure 1.1 (Continued).

1These are not the positive equivalent of an electron, a positron, because such a particle would be elimi-
nated instantaneously by combination with an ordinary electron, but are virtual particles equivalent to the
absence of an electron. They can be considered to be analogs of a vacancy, which is the absence of an atom.
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both a chemical or physical viewpoint. By default, defects have come to be associated
with crystalline solids because a crystal has a regular repetition of atoms throughout its
volume.2 A disturbance of this regularity then constitutes the defect (Fig. 1.1a–1.1d ).
In this sense, the nature of a defect in, for example, a glass or amorphous polymer, is
more difficult to picture.

When circumstances permit, defects can order. This may happen at low tempera-
tures, for example, when defect interactions overcome the disordering effect due to
temperature. From a diffraction point of view the ordered sample no longer contains
defects, as the characteristic signs disappear. For example, in X-ray analysis broad-
ened diffraction spots and diffuse scattering, both characteristic of disordered crystals,
disappear, to be replaced by additional sharp reflections. In such cases the defects are
incorporated or assimilated into the crystal structure and so effectively vanish. The
original unit cell of the defect-containing phase is replaced by a new unit cell in
which the original “defects” are now integral components of the structure
(Fig. 1.1e and 1.1f ).

1.2 POINT AND ELECTRONIC DEFECTS IN
CRYSTALLINE SOLIDS

The simplest localized defect in a crystal is a mistake at a single atom site in a pure
monatomic crystal, such as silicon or iron. Such a defect is called a point defect. Two
different types of simple point defect can occur in a pure crystal of an element, M. An
atom can be imagined to be absent from a normally occupied position, to leave a
vacancy, given the symbol VM (Fig. 1.2). This may occur, for instance, during
crystal growth. A second defect can also be envisaged; namely an extra atom
incorporated into the structure, again, say, during crystallization. This extra atom is
forced to take up a position in the crystal that is not a normally occupied site: it is
called an interstitial site, and the atom is called an interstitial atom (or more often
simply an interstitial), given the symbol Mi, (Fig. 1.2). If it is necessary to stress
that the interstitial atom is the same as the normal atoms in the structure, it is
called a self-interstitial atom.

The various point defects present in a crystal as grown, for example, vacancies,
interstitials, excess electrons, holes, and other arrangements, are called native
defects. These native defects can arise in several ways. They can be introduced
during crystal growth, as mentioned above, especially if this is rapid and crystalliza-
tion is far removed from equilibrium. Defects can also form after the crystal is devel-
oped if the crystal is subjected to irradiation by high-energy particles or other forms
of radiation. Defects that result from such processes are called induced defects. When
a pure crystal is heated at a moderate temperature for a long period, a process called
annealing, the number of native defects will gradually change. However, no matter
how long the sample is annealed, a population of point defects will always remain,
even in the purest crystal. These point defects are in thermodynamic equilibrium

2An introduction to crystal structures and nomenclature is given in the Supplementary Material Section S1.
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(Chapter 2) and cannot be eliminated from the solid. They are called intrinsic point
defects. This residual population is also temperature dependent, and, as treated later
(Chapter 2), heating at progressively higher temperature increases the number of
defects present.

As well as these intrinsic structural defect populations, electronic defects (excess
electrons and holes) will always be found. These are also intrinsic defects and are
present even in the purest material. When the equilibria among defects are con-
sidered, it is necessary to include both structural and electronic defects.

Turning to pure compounds, such as CaO, MgAl2O4, or FeS, the same intrinsic
defects as described above can occur, but in these cases there is more than one set
of atoms that can be affected. For example, in a crystal of formula MX, vacancies
might occur on metal atom positions, written VM, or on nonmetal atom positions,
given the symbol VX, or both. Similarly, it is possible to imagine that interstitial
metal atoms, written Mi, or nonmetal atoms, written Xi, might occur (Fig. 1.3).
The different sets of atom types are frequently called a sublattice, so that one
might speak of vacancies on the metal sublattice or on the nonmetal sublattice.

No material is completely pure, and some foreign atoms will invariably be present.
If these are undesirable or accidental, they are termed impurities, but if they have been
added deliberately, to change the properties of the material on purpose, they are called
dopant atoms. Impurities can form point defects when present in low concentrations,
the simplest of which are analogs of vacancies and interstitials. For example, an
impurity atom A in a crystal of a metal M can occupy atom sites normally occupied
by the parent atoms, to form substitutional point defects, written AM, or can occupy
interstitial sites, to form interstitial point defects, written Ai (Fig. 1.4). The doping of
aluminum into silicon creates substitutional point defects as the aluminum atoms
occupy sites normally filled by silicon atoms. In compounds, the impurities can
affect one or all sublattices. For instance, natural sodium chloride often contains

Figure 1.2 Point defects in a pure monatomic crystal of an element M, a vacancy, VM, and a
self-interstitial, Mi.

1.2 POINT AND ELECTRONIC DEFECTS IN CRYSTALLINE SOLIDS 5



potassium impurities as substitutional defects on sites normally occupied by sodium
ions, written KNa, that is, the impurities are associated with the metal sublattice.
Impurities are called extrinsic defects. In principle, extrinsic defects can be
removed by careful processing, but in practice this is very difficult to achieve
completely.

Impurities can carry a charge relative to the host structure, as, for example, with
a Ca2þ ion substituted on a Naþ site in NaCl or F2 substituted for O22 in CaO. In
essence, this means that the impurity carries a different chemical valence, that is,

Figure 1.3 Point defects in a crystal of a pure compound, MX, VM, a metal vacancy; VX a
nonmetal vacancy; Mi, a metal (self-)interstitial; and Xi a nonmetal (self-)interstitial.

Figure 1.4 Impurity or dopant (A) point defects in a crystal of material M, substitutional,
AM; interstitial, Ai.
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it comes from a different group of the periodic table than the host atoms. Deliberate
introduction of such impurities is called aliovalent or altervalent doping. The intro-
duction of charged impurities will upset the charge neutrality of the solid, and this
must be balanced in some way so as to restore the electronic neutrality of the
crystal. One way in which this compensation can be achieved is by the incorporation
of other vacancies or interstitial atoms that carry a balancing charge. The substitution
of a Ca2þ ion for Naþ in NaCl can be balanced, for example, by the introduction at
the same time, of a sodium ion vacancy, VNa, at the same time. This mechanism is
called ionic compensation, structural compensation, or less often self-compensation.
However, compensation can also take place electronically by the introduction of
appropriate numbers of electrons or holes. For example, the substitution of F2 for
O22 in CaO could be balanced by the introduction of an equivalent number of elec-
trons, one per added F2. Impurities that are compensated by excess electrons in this
way are called donors or donor impurities, while those that are compensated by
addition of holes are called acceptors or acceptor impurities. One consequence of
these alternatives is that the electrons and holes present in the solid must be included
in the overall accounting system used for assessing the defects present in a solid.

The importance of point defects in a crystal cannot be overstated. They can change
the physical properties of a solid significantly. To introduce the range of changes
possible, Sections 1.3–1.6 outline some of the physical properties that are influenced
in this way.

1.3 ELECTRONIC PROPERTIES: DOPED SILICON
AND GERMANIUM AS EXAMPLES

Silicon, Si, lies at the heart of most current electronic devices. Both silicon and the
similar semiconductor element germanium, Ge, crystallize with the diamond structure
(Fig. 1.5). In this structure each atom is surrounded by four others arranged at the
corners of a tetrahedron. Each atom has four outer electrons available for chemical
bonding, and these are completely taken up by creating a network of tetrahedrally
oriented sp3-hybrid bonds. Although pure silicon and germanium are intrinsic semi-
conductors, these properties are inadequate for the creation of sophisticated electronic
materials for which selected impurity doping is necessary. The resulting materials are
called extrinsic semiconductors because of the extrinsic nature of the defects that give
rise to the important conductivity changes.

Impurity atoms will upset the orderly arrangement of bonding electrons and this
changes the electronic properties. Doping with a very small amount of an impurity
from the next higher neighboring group of the periodic table, phosphorus (P),
arsenic (As), or antimony (Sb), results in the formation of substitutional point
defects in which the impurities occupy normal sites, for example, a phosphorus
atom on a site normally occupied by a silicon atom, PSi (Fig. 1.6a). Each of these
atoms has five valence electrons available for bonding, and after using four to
form the four sp3-hybrid bonds, one electron per impurity atom is left over. These
electrons are easily liberated from the impurity atoms by thermal energy and are
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then (more or less) free to move through the crystal under the influence of an external
electric field. Each dopant atom contributes one extra electron to the crystal. They are
defects, and are given the symbol e0 (the superscript indicates a single negative charge
relative to the surroundings) to differentiate them from ordinary electrons. The doped
material conducts mainly using these electrons, and, as they are negatively charged,
the solid is called is called an n-type semiconductor. The atoms P, As, or Sb in silicon
or germanium are called donors as they donate extra electrons to the crystal. In terms
of band theory they are said to occupy states in the conduction band (Supplementary
Material S2), the donors themselves being represented by localized energy levels just
below the conduction band in the crystal (Fig. 1.6b).

An analogous situation arises on doping silicon or germanium with elements from
the next lower neighboring periodic table group, aluminum (Al), gallium (Ga), and
indium (In). The impurity atoms again form substitutional defects, such as AlSi
(Fig. 1.6c). In this case the impurities have only three outer bonding electrons avail-
able, which are not sufficient to complete four bonds to the surrounding atoms. One
bond is an electron short. It simplifies understanding if the missing electron is regarded
as a hole, represented by the symbol h†. The superscript indicates that the hole carries a

Figure 1.5 Diamond structure: (a) unit cell and (b) viewed with [111] vertical.
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positive charge relative to the surroundings. Each impurity atom introduces one
positive hole into the array of bonds within the crystal. Thermal energy is sufficient
to allow the holes to leave the impurity atom, and these can also move quite
freely throughout the crystal. The doped material conducts mainly using these holes,
and, as they are positively charged, the solid is called a p-type semiconductor. The
impurities are termed acceptors because they can be thought of as accepting electrons
from the otherwise full valence band. On an energy band diagram the acceptors are rep-
resented by normally vacant energy levels just above the top of the valence band
(Fig. 1.6d), which become occupied by electrons from that band on thermal
excitation. The holes thereby created in the valence band provide the means
for conductivity.

The idea of a hole is widely used throughout electronics, but its exact definition
varies with circumstances. It is frequently convenient to think of a hole as a real par-
ticle able to move throughout the crystal, a sort of positive electron. It is equally poss-
ible to think of a hole as an electron missing from a localized site such as an atom or a
covalent bond. Thus a metal cation M2þ could be regarded as a metal atom plus two
localized holes (M þ 2 h†). In band theory, a hole is generally regarded as an electron
missing from the top of the valence band. All of these designations are more or less
equivalent, and the most convenient of them will be adopted in any particular case.

Figure 1.6 (a) Donor impurity (PSi) in a silicon crystal. (b) Donor energy levels below the
conduction band. (c) Acceptor impurity (AlSi) in a silicon crystal. (d ) Acceptor energy
levels above the valence band.
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The unique electronic properties of semiconductor devices arise at the regions
where p-type and n-type materials are in close proximity, as in p–n junctions.
Typical impurity levels are about 0.0001 at %, and their inclusion and distribution
need to be very strictly controlled during preparation. Without these deliberately
introduced point defects, semiconductor devices of the type now commonly available
would not be possible.

1.4 OPTICAL PROPERTIES: F CENTERS AND
RUBY AS EXAMPLES

Point defects can have a profound effect upon the optical properties of solids. The
most important of these in everyday life is color,3 and the transformation of transpar-
ent ionic solids into richly colored materials by F centers, described below, provided
one of the first demonstrations of the existence of point defects in solids.

Defects can impart color to an otherwise transparent solid if they interact with
white light. In general the interaction between a defect and the incident light is via
electrons or holes. These may pick up some specific frequency of the incident illumi-
nation and in so doing are excited from the low-energy ground state, E0, to one or
more higher energy excited states E1, E2, E3 (Fig. 1.7a). The light that leaves the
crystal is thus depleted in some frequencies and appears a different color to the inci-
dent light. The reverse also happens. When electrons drop from the excited states to
the ground state E0, they release this energy and the same light frequencies will be
emitted (Fig. 1.7b). The relationship between the energy gained or lost, DEn, and
the frequency, n, or the wavelength, l, of the light absorbed or emitted, is

En � E0 ¼ DEn ¼ hnn ¼ hc

ln

where En is the energy of the higher energy level (n ¼ 1, 2, 3, . . .), h is Planck’s
constant, and c is the speed of light.

The first experiments that connected color with defects were carried out in the
1920s and 1930s by Pohl, who studied synthetic alkali halide crystals. A number
of ways were discovered by which the colorless starting materials could be made
to display intense colors. These included irradiation by X rays, electrolysis (with
color moving into the crystal from the cathode), or heating the crystals at high temp-
eratures in the vapor of an alkali metal. Pohl was a strict empiricist who did not
openly speculate upon the mechanics of color formation, which he simply attributed
to the presence of Farbzentren (lit. color centers), later abbreviated to F centers.

Leading theoreticians were, however, attracted to the phenomenon and soon
suggested models for F centers. In 1930 Frenkel suggested that an F center was an
electron trapped in a distorted region of crystal structure, an idea that was incorrect
in this instance but led directly to development of the concepts of excitons and

3Color is the name given to the perception of radiation in the electromagnetic spectrum with a wavelength
of between 400 and 700 nm, for an average eye. If all wavelengths in this range are present in a distribution
similar to that of radiation from the sun, the light is called white light.
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