HANDBOOK OF LARGE TURBO-GENERATOR OPERATION AND MAINTENANCE
Books in the IEEE Press Series on Power Engineering

M.E. El-Hawary

Pulse Width Modulation for Power Converters: Principles and Practice
D. Grahame Holmes and Thomas Lipo

Analysis of Electric Machinery and Drive Systems, Second Edition
Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff

Risk Assessment for Power Systems: Models, Methods, and Applications
Wenyuan Li

Optimization Principles: Practical Applications to the Operations of Markets of the Electric Power Industry
Narayan S. Rau

Electric Economics: Regulation and Deregulation
Geoffrey Rothwell and Tomas Gomez

Electric Power Systems: Analysis and Control
Fabio Saccomanno

Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair
Greg Stone, Edward A. Boulter, Ian Culbert, and Hussein Dhirani

Signal Processing of Power Quality Disturbances
Math H. J. Bollen and Irene Y. H. Gu

Instantaneous Power Theory and Applications to Power Conditioning
Hirofumi Akagi, Edson H. Watanabe and Mauricio Aredes

Maintaining Mission Critical Systems in a 24/7 Environment
Peter M. Curtis

Elements of Tidal-Electric Engineering
Robert H. Clark

Handbook of Large Turbo-Generator Operation and Maintenance, Second Edition
Geoff Klempner and Isidor Kerszenbaum
To our families:
Susan Klempner,
Jackie, Livi, and Yigal Kerszenbaum
CONTENTS

Preface xix
Acknowledgments xxiii

I THEORY, CONSTRUCTION, AND OPERATION

1 Principles of Operation of Synchronous Machines 3
 1.1 Introduction to Basic Notions on Electric Power 3
 1.1.1 Magnetism and Electromagnetism 3
 1.1.2 Electricity 6
 1.2 Electrical–Mechanical Equivalence 7
 1.3 Alternating Current (ac) 8
 1.4 Three-Phase Circuits 15
 1.5 Basic Principles of Machine Operation 16
 1.5.1 Faraday’s Law of Electromagnetic Induction 18
 1.5.2 Ampere–Biot–Savart’s Law of Electromagnetic
 Induced Forces 18
 1.5.3 Lenz’s Law of Action and Reaction 18
 1.5.4 Electromechanical Energy Conversion 20
 1.6 The Synchronous Machine 21
 1.6.1 Background 21
 1.6.2 Principles of Construction 24
 1.6.3 Rotor Windings 26
 1.6.4 Stator Windings 28
 1.7 Basic Operation of the Synchronous Machine 30
 1.7.1 No-Load Operation 32
 1.7.2 Motor Operation 34
 1.7.3 Generator Operation 35
 1.7.4 Equivalent Circuit 35
 1.7.5 Machine Losses 36
 Additional Reading 38
2 Generator Design and Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Stator Core</td>
<td>41</td>
</tr>
<tr>
<td>2.2 Stator Frame</td>
<td>46</td>
</tr>
<tr>
<td>2.3 Flux and Armature Reaction</td>
<td>48</td>
</tr>
<tr>
<td>2.4 Electromagnetics</td>
<td>51</td>
</tr>
<tr>
<td>2.5 End-Region Effects and Flux Shielding</td>
<td>56</td>
</tr>
<tr>
<td>2.6 Stator Core and Frame Forces</td>
<td>62</td>
</tr>
<tr>
<td>2.7 Stator Windings</td>
<td>63</td>
</tr>
<tr>
<td>2.8 Stator Winding Wedges</td>
<td>73</td>
</tr>
<tr>
<td>2.9 End-Winding Support Systems</td>
<td>76</td>
</tr>
<tr>
<td>2.10 Stator Winding Configurations</td>
<td>77</td>
</tr>
<tr>
<td>2.11 Stator Terminal Connections</td>
<td>80</td>
</tr>
<tr>
<td>2.12 Rotor Forging</td>
<td>81</td>
</tr>
<tr>
<td>2.13 Rotor Winding</td>
<td>89</td>
</tr>
<tr>
<td>2.14 Rotor Winding Slot Wedges</td>
<td>95</td>
</tr>
<tr>
<td>2.15 Amortisseur Winding</td>
<td>96</td>
</tr>
<tr>
<td>2.16 Retaining Rings</td>
<td>97</td>
</tr>
<tr>
<td>2.17 Bore Copper and Terminal Connectors</td>
<td>105</td>
</tr>
<tr>
<td>2.18 Slip-Collector Rings and Brush Gear</td>
<td>106</td>
</tr>
<tr>
<td>2.19 Rotor Shrink Coupling</td>
<td>107</td>
</tr>
<tr>
<td>2.20 Rotor Turning Gear</td>
<td>108</td>
</tr>
<tr>
<td>2.21 Bearings</td>
<td>109</td>
</tr>
<tr>
<td>2.22 Air and Hydrogen Cooling</td>
<td>111</td>
</tr>
<tr>
<td>2.23 Rotor Fans</td>
<td>112</td>
</tr>
<tr>
<td>2.24 Hydrogen Containment</td>
<td>113</td>
</tr>
<tr>
<td>2.25 Hydrogen Coolers</td>
<td>118</td>
</tr>
<tr>
<td>References</td>
<td>118</td>
</tr>
</tbody>
</table>

3 Generator Auxiliary Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Lube-Oil System</td>
<td>122</td>
</tr>
<tr>
<td>3.2 Hydrogen Cooling System</td>
<td>122</td>
</tr>
<tr>
<td>3.3 Seal-Oil System</td>
<td>125</td>
</tr>
<tr>
<td>3.4 Stator Cooling Water System</td>
<td>128</td>
</tr>
<tr>
<td>3.4.1 System Components</td>
<td>128</td>
</tr>
<tr>
<td>3.4.2 Stator Cooling Water Chemistry</td>
<td>132</td>
</tr>
<tr>
<td>3.4.3 Stator Cooling Water System Conditions</td>
<td>134</td>
</tr>
<tr>
<td>3.5 Exciter Systems</td>
<td>136</td>
</tr>
<tr>
<td>3.5.1 Types of Excitation Systems</td>
<td>137</td>
</tr>
<tr>
<td>3.5.2 Excitation System Performance Characteristics</td>
<td>139</td>
</tr>
<tr>
<td>3.5.3 Voltage Regulators</td>
<td>141</td>
</tr>
</tbody>
</table>

4 Operation and Control

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Basic Operating Parameters</td>
<td>143</td>
</tr>
<tr>
<td>4.1.1 Machine Rating</td>
<td>144</td>
</tr>
<tr>
<td>4.1.2 Apparent Power</td>
<td>145</td>
</tr>
</tbody>
</table>
4.5.5 Parallel Operation of Generators 203
4.5.6 Stability 206
4.5.7 Sudden Short Circuits 211

4.6 System Considerations 213
4.6.1 Voltage and Frequency Variation 214
4.6.2 Negative-Sequence Current 214
4.6.3 Overcurrent 224
4.6.4 Current Transients 224
4.6.5 Overspeed 224

4.7 Grid-Induced Torsional Vibrations 224
4.7.1 Basic Principles of Shaft Torsional Vibration 224
4.7.2 Spring Model of a Turbo-Generator Shaft Train 226
4.7.3 Determination of Shaft Torque and Shaft Torsional Stress 229
4.7.4 Material Changes due to Torsional Vibrations 229
4.7.5 Types of Grid-Induced Events 229
4.7.6 Monitoring of Torsional Vibration Events 234
4.7.7 Industry Experience and Alleviation Techniques 236

4.8 Excitation and Voltage Regulation 237
4.8.1 The Exciter 237
4.8.2 Excitation Control 238

4.9 Performance Curves 238
4.9.1 Losses Curves 238
4.9.2 Efficiency Curve 239

4.10 Sample of Generator Operating Instructions 239
References 250

5 Monitoring and Diagnostics 251
5.1 Generator Monitoring Philosophies 252
5.2 Simple Monitoring with Static High-Level Alarm Limits 253
5.3 Dynamic Monitoring with Load-Varying Alarm Limits 254
5.4 Artificial Intelligence Diagnostic Systems 257
5.5 Monitored Parameters 260
5.5.1 Generator Electrical Parameters 261
5.5.2 Stator Core and Frame 265
5.5.3 Stator Winding 276
5.5.4 Rotor 293
5.5.5 Excitation System 313
5.5.6 Hydrogen Cooling System 315
5.5.7 Lube-Oil System 319
5.5.8 Seal-Oil System 321
5.5.9 Stator Cooling Water System 324

References 330

6 Generator Protection 333
6.1 Basic Protection Philosophy 333
6.2 Generator Protective Functions 334
6.3 Brief Description of Protective Functions
6.3.1 Synchronizer and Sync-Check Relays (Functions 15 and 25)
6.3.2 Short-Circuit Protection (Functions 21, 50, 51, 51V, and 87)
6.3.3 Volts/Hertz Protection (Function 24)
6.3.4 Over- and Undervoltage Protection (Functions 59 and 27)
6.3.5 Reverse Power Protection (Function 32)
6.3.6 Loss-of-Field Protection (Function 40)
6.3.7 Stator Unbalanced Current Protection (Function 46)
6.3.8 Stator and Rotor Thermal Protection (Function 49)
6.3.9 Voltage Balance Protection (Function 60)
6.3.10 Time Overcurrent Protection for Detection of Turn-to-Turn Faults (Function 61)
6.3.11 Breaker Failure Protection (Function 62B)
6.3.12 Rotor Ground-Fault Protection (Function 64F)
6.3.13 Over-/Underfrequency Protection (Function 81)
6.3.14 Out-of-Step Operation (Loss of Synchronism) (Function 78)
6.4 Specialized Protection Schemes
6.4.1 Protection Against Accidental Energization
6.4.2 dc Field Ground Discrimination
6.4.3 Vibration Considerations
6.4.4 Operation of the Isolated-Phase Bus (IPB) at Reduced Cooling and Risks from H₂ Leaks into the IPB
6.4.5 Calculation of the H₂ Mix in the IPB for a Given H₂ Leak from the Generator into the IPB
6.5 Tripping and Alarming Methods
References

II INSPECTION, MAINTENANCE, AND TESTING

7 Inspection Practices and Methodology
7.1 Site Preparation
7.1.1 Foreign Material Exclusion
7.1.2 Foreign Material Exclusion - Procedures
7.2 Experience and Training
7.3 Safety Procedures—Electrical Clearances
7.4 Inspection Frequency
7.5 Generator Accessibility
7.6 Inspection Tools
7.7 Inspection Forms
References
8 Stator Inspection 411

8.1 Stator Frame and Casing 412
8.1.1 External Components 412
8.1.2 Internal Components 423
8.1.3 Caged Stator Cores—Inspection and Removal 435

8.2 Stator Core 438
8.2.1 Stator Bore Contamination 438
8.2.2 Blocked Cooling Vent Ducts 440
8.2.3 Iron Oxide Deposits 440
8.2.4 Loose Core Iron/Fretting and Interlaminar Failures 443
8.2.5 Bent/Broken Laminations in the Bore 455
8.2.6 Space Block Support and Migration 460
8.2.7 Migration of Broken Core Plate and Space Block 461
8.2.8 Thick Plates
8.2.9 Laminations Bulging into Air Vents 461
8.2.10 Greasing/Oxide Deposits on Core Bolts 462
8.2.11 Core-Compression Plates 464
8.2.12 Core-End Flux Screens and Flux Shunts 465
8.2.13 Frame-to-Core Compression (Belly) Bands 467
8.2.14 Back-of-Core Burning 467
8.2.15 Core-End Overheating 470

8.3 Stator Windings 473
8.3.1 Stator Bar/Coil Contamination (Cleanliness) 473
8.3.2 End-Winding Blocking and Roving 474
8.3.3 Surge-Rings 478
8.3.4 Surge-Ring Insulation Condition 480
8.3.5 End-Winding Support Structures 481
8.3.6 Ancillary End-Winding Support Hardware 484
8.3.7 Asphalt Bleeding/Soft Spots 487
8.3.8 Tape Separation/Girth Cracking 489
8.3.9 Insulation Galling/Necking beyond the Slot 492
8.3.10 Insulation Bulging into Air Ducts 492
8.3.11 Insulation Condition, Overheating, and Electrical Aging 493
8.3.12 Corona Activity 496
8.3.13 Stator Wedges 504
8.3.14 End-Wedge Migration Out of Slot 507
8.3.15 Side-Packing Fillers 508
8.3.16 Leaks in Water-Cooled Stator Windings 509
8.3.17 Magnetic Termites 512
8.3.18 Flow Restriction in Water-Cooled Stator Windings 515
8.3.19 Hoses, Gaskets, and O-Rings in Water-Cooled Stator Windings 518

8.4 Phase Connectors and Terminals 520
8.4.1 Circumferential Bus Insulation 520
8.4.2 Phase Droppers 523
8.4.3 High-Voltage Bushings
8.4.4 Standoff Insulators
8.4.5 Bushing Vents
8.4.6 Bushing-Well Insulators and Hydrogen Sealant Condition
8.4.7 Generator Current Transformers (CTs)
8.5 Hydrogen Coolers
References
Additional Reading

9 Rotor Inspection
 9.1 Rotor Cleanliness
 9.2 Retaining Rings
 9.2.1 Nonmagnetic 18–5 and 18–18 Retaining Rings
 9.2.2 Removal of Retaining Rings
 9.3 Fretting/Movement at Interference Fit Surfaces of Wedges and Rings
 9.3.1 Tooth Cracking
 9.4 Centering (Balance) Rings
 9.5 Fan Rings or Hubs
 9.6 Fan Blades
 9.7 Bearings and Journals
 9.8 Balance Weights and Bolts
 9.9 End Wedges and Damper Windings
 9.10 Other Wedges
 9.11 Windings—General
 9.11.1 Conductor Material
 9.12 Rotor Windings—Slot Region
 9.12.1 Slot Liner
 9.12.2 Turn Insulation
 9.12.3 Creepage Block and Top Channel
 9.12.4 C-Channel Subslot
 9.13 End Windings and Main Leads
 9.13.1 Retaining Ring Liners
 9.13.2 End Turns and Blocking
 9.13.3 Shorted Turns
 9.13.4 Top-Tooth Cracking
 9.13.5 dc Main Leads
 9.13.6 Coil and Pole Connections
 9.14 Collector Rings
 9.15 Collector Ring Insulation
 9.16 Bore Copper and Radial (Vertical) Terminal Stud Connectors
 9.17 Brush-Spring Pressure and General Condition
 9.18 Brush Rigging
 9.19 Shaft Voltage Discharge (Grounding) Brushes
 9.20 Rotor Winding Main Lead Hydrogen Sealing—Inner and Outer
 9.21 Circumferential Pole Slots (Body Flex Slots)
9.22 Blocked Rotor Radial Vent Holes—Shifting of Winding and/or Insulation
9.23 Couplings and Coupling Bolts
9.24 Bearing Insulation
9.25 Hydrogen Seals
 9.25.1 Journal Seals
 9.25.2 Thrust-Collar Seals
 9.25.3 Carbon Seals
9.26 Rotor-Body Zone Rings
9.27 Rotor Removal
References

10 Auxiliaries Inspection
 10.1 Lube-Oil System
 10.2 Hydrogen Cooling System
 10.2.1 Hydrogen Desiccant/Dryer
 10.3 Seal-Oil System
 10.4 Stator Cooling Water System
 10.5 Exciters
 10.5.1 Rotating Systems Inspection
 10.5.2 Static Systems Inspection
 10.5.3 Brushless Systems Inspection
 10.5.4 Specific Inspection Items

11 Generator Maintenance Testing
 11.1 Stator Core Mechanical Tests
 11.1.1 Core Tightness
 11.1.2 Core and Frame Vibration Testing
 11.2 Stator Core Electrical Tests
 11.2.1 EL CID Testing
 11.2.2 Rated Flux Test with Infrared Scan
 11.2.3 Core Loss Test
 11.2.4 Through-Bolt Insulation Resistance
 11.2.5 Insulation Resistance of Flux Screens
 11.3 Stator Winding Mechanical Tests
 11.3.1 Wedge Tightness
 11.3.2 Stator End-Winding Vibration
 11.4 Water-Cooled Stator Winding Tests
 11.4.1 Air Pressure Decay
 11.4.2 Tracer Gases
 11.4.3 Vacuum Decay
 11.4.4 Pressure Drop
 11.4.5 Flow Testing
 11.4.6 Capacitance Mapping
 11.5 Stator Winding Electrical Tests
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.1</td>
<td>Pretesting Requirements</td>
<td>703</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Series Winding Resistance</td>
<td>704</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Insulation Resistance (IR)</td>
<td>704</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Polarization Index (PI)</td>
<td>706</td>
</tr>
<tr>
<td>11.5.5</td>
<td>Dielectric Absorption during dc Voltage Application</td>
<td>708</td>
</tr>
<tr>
<td>11.5.6</td>
<td>dc Leakage or Ramped Voltage</td>
<td>708</td>
</tr>
<tr>
<td>11.5.7</td>
<td>dc Hi-Pot</td>
<td>710</td>
</tr>
<tr>
<td>11.5.8</td>
<td>ac Hi-Pot</td>
<td>710</td>
</tr>
<tr>
<td>11.5.9</td>
<td>Partial Discharge (PD) Off-line Testing</td>
<td>714</td>
</tr>
<tr>
<td>11.5.10</td>
<td>Capacitance Measurements</td>
<td>717</td>
</tr>
<tr>
<td>11.5.11</td>
<td>Dissipation/Power Factor Testing</td>
<td>717</td>
</tr>
<tr>
<td>11.5.12</td>
<td>Dissipation/Power Factor Tip-up Test</td>
<td>717</td>
</tr>
<tr>
<td>11.5.13</td>
<td>Some Additional Rotor NDE Specifics</td>
<td>727</td>
</tr>
<tr>
<td>11.6</td>
<td>rotor mechanical testing</td>
<td>718</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Rotor Vibration</td>
<td>718</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Rotor Nondestructive Examination Inspection</td>
<td>719</td>
</tr>
<tr>
<td>11.6.3</td>
<td>Some Additional Rotor NDE Specifics</td>
<td>727</td>
</tr>
<tr>
<td>11.6.4</td>
<td>Air Pressure Test of Rotor Bore</td>
<td>731</td>
</tr>
<tr>
<td>11.7</td>
<td>rotor electrical testing</td>
<td>733</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Winding Resistance</td>
<td>733</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Insulation Resistance (IR)</td>
<td>733</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Polarization Index (PI)</td>
<td>733</td>
</tr>
<tr>
<td>11.7.4</td>
<td>dc Hi-Pot</td>
<td>734</td>
</tr>
<tr>
<td>11.7.5</td>
<td>ac Hi-Pot</td>
<td>734</td>
</tr>
<tr>
<td>11.7.6</td>
<td>Shorted Turns Detection—General</td>
<td>734</td>
</tr>
<tr>
<td>11.7.7</td>
<td>Shorted Turns Detection by Recurrent Surge Oscillation (RSO)</td>
<td>736</td>
</tr>
<tr>
<td>11.7.8</td>
<td>Shorted Turns Detection by Open-Circuit Test</td>
<td>737</td>
</tr>
<tr>
<td>11.7.9</td>
<td>Shorted Turns Detection by Winding Impedance</td>
<td>741</td>
</tr>
<tr>
<td>11.7.10</td>
<td>Shorted Turns Detection by Low-Voltage dc or Volt Drop</td>
<td>742</td>
</tr>
<tr>
<td>11.7.11</td>
<td>Shorted Turns Detection by Low-Voltage ac or “C” Core Test</td>
<td>743</td>
</tr>
<tr>
<td>11.7.12</td>
<td>Shorted Turns Detection by Shorted Turns Detector (Flux Probe)</td>
<td>744</td>
</tr>
<tr>
<td>11.7.13</td>
<td>Field-Winding Ground Detection by the Split-Voltage Test</td>
<td>762</td>
</tr>
<tr>
<td>11.7.14</td>
<td>Field Ground Detection by the Current-through-Forging Test</td>
<td>762</td>
</tr>
<tr>
<td>11.7.15</td>
<td>Shaft Voltage and Grounding</td>
<td>765</td>
</tr>
<tr>
<td>11.8</td>
<td>hydrogen seals</td>
<td>765</td>
</tr>
<tr>
<td>11.8.1</td>
<td>NDE</td>
<td>765</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Insulation Resistance</td>
<td>766</td>
</tr>
<tr>
<td>11.9</td>
<td>bearings</td>
<td>766</td>
</tr>
<tr>
<td>11.9.1</td>
<td>NDE</td>
<td>766</td>
</tr>
</tbody>
</table>
11.9.2 Insulation Resistance 766
11.10 Thermal Sensitivity Testing and Analysis 767
 11.10.1 Background 767
 11.10.2 Typical Thermal Sensitivity Test 769
11.11 Heat-Run Testing 771
 11.11.1 Test Procedure 771
 11.11.2 Acceptance Parameters 772
11.12 Hydrogen Leak Detection 773
 11.12.1 Pressure Drop 774
 11.12.2 SF₆ 776
 11.12.3 Helium 777
 11.12.4 Snoop 777
 11.12.5 Ultrasonic 777

References 777

12 Maintenance 779
 12.1 General Maintenance Philosophies 779
 12.1.1 Breakdown Maintenance 780
 12.1.2 Planned Maintenance 781
 12.1.3 Predictive Maintenance 782
 12.1.4 Condition-Based Maintenance (CBM) 782
 12.2 Operational and Maintenance History 783
 12.3 Maintenance Intervals/Frequency 783
 12.4 Type of Maintenance 784
 12.4.1 Extent of Maintenance 784
 12.4.2 Repair or Replacement 786
 12.4.3 Rehabilitation/Upgrading/Uprating 787
 12.4.4 Obsolescence 789
 12.5 Work Site Location 791
 12.5.1 Transportation 791
 12.6 Workforce 792
 12.7 Spare Parts 795
 12.8 Uprating 796
 12.8.1 Drivers for Uprating 796
 12.8.2 Uprating Considerations 798
 12.8.3 Component Evaluations 800
 12.8.4 Reliability and Effect of Uprating on Generator Life 804
 12.8.5 Required Inspection and Tests Prior to Uprating 806
 12.8.6 Required Maintenance Prior to Uprating 807
 12.8.7 Heat-Run Testing After Uprating 808
 12.8.8 Maintenance Schedule After Uprating 810
 12.9 Long-Term Storage and Mothballing 810
 12.9.1 Reasons for Storage of Generator Equipment 810
 12.9.2 General Requirements 811
 12.9.3 Storage Requirements 812
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9.4</td>
<td>Monitoring and Maintenance During Storage</td>
<td>818</td>
</tr>
<tr>
<td>12.9.5</td>
<td>Restoration from Storage</td>
<td>820</td>
</tr>
<tr>
<td>12.9.6</td>
<td>Long Term Storage Maintenance Procedures and Testing</td>
<td>822</td>
</tr>
<tr>
<td>12.10</td>
<td>Life Cycle Management (LCM)</td>
<td>825</td>
</tr>
<tr>
<td>12.11</td>
<td>Single Point Vulnerability (SPV) Analysis</td>
<td>827</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>828</td>
</tr>
</tbody>
</table>

Index | 829
It is not uncommon for a large utility to have units of disparate size, origin, and vintage in its fleet of generators. Among its dozens of generators, there might be some from the 1950s or 1960s and some with their original asphalt or thermoplastic windings. These, and later units, may be running with and without magnetic retaining rings. Some might have thermoelastic windings of all sorts, with or without asbestos; they might be hydrogen-cooled or air-cooled, have split-stator windings, be self-excited or different types of externally excited, steam-driven or combustion-driven, and the list goes on and on. Now, take that diversity and include units operating in 50 and 60 Hz grids, built by Western, Asian, and Eastern European manufacturers to different standards. This is what you may find in some of the new independent, deregulated power producers that, in addition to building new plants, have purchased entire fleets of older units in several countries around the globe.

The reasons why one may find so many “old” units still in operation are not difficult to discern. First of all, a typical generator is made with an intent to last no less than 30 years or so. Second, replacing an operating unit is very capital intensive and, thus, done only when a catastrophic failure has occurred or some other major failure of the machine that renders continuous operation not economically viable. Third, although expected to last 30 years, large turbogenerators are known to have their lives extended far beyond that, if well maintained and operated. Sometimes that also requires replacing a major component, such as the armature winding and/or a rotor winding (or the entire rotor!). Significant changes in design tend to occur every few years, for different components. For instance, a history of the insulation systems encountered in generators shows that every few years there is some big change resulting in increased ratings. These changes typically derive from the adoption of a new materials such as the change from magnetic to nonmagnetic material for retaining rings. Not all changes are always positive. Some new designs end up being reversed or revised after experience unmasks significant defects in them.

There are countless scraps of information about the operation, maintenance, and troubleshooting of large turbogenerators in many publications. All vendors at one stage or another have produced and published interesting literature about the operation of their generators. In particular, the technical information letters put out by some manufacturers (called different names by different vendors) offer a wealth of detailed
O&M topics. Institutions such as EPRI in the United States, CIGRE, IEC, ANSI, IEEE, and other national standards cover various aspects of the operation and maintenance of generators in general, but offer no specifics that may help troubleshoot a particular unit. It is difficult to obtain from those sources a condensed and operational set of insights useful to the solution of a given problem with a specific machine. It is no wonder then that with so many dissimilar units in operation and such a variegated experience, we are often forced to call the “experts,” who tend to be folks almost as old as the oldest units in operation. These are individuals who have crawled, inspected, tested, and maintained many diverse generators over the years. In doing so, they have retained knowledge about the different design, material, and manufacturing characteristics, typical problems, and most effective solutions. This type of expertise cannot be learned in a classroom.

Unfortunately, not every company retains an individual with the breadth and depth of expertise required for troubleshooting all its units. In fact, with the advent of deregulation, many small nonutility (third-party) power producers operate small fleets of generators without the benefit of in-house expertise. In lieu of that, they depend heavily on OEMs and independent consultants. Large utilities in many places have also seen their expertise dissipate, not to a small extent because of a refocus of management priorities. All these developments are occurring at the same time that these units are called to operate in a more onerous environment. Economic dispatch in a deregulated or semideregulated world results in an increased use of double-shifting and load-cycling.

Some effort has been made over the years to capture the experts’ knowledge and make it readily available to any operator. This effort took the shape of expert systems. However, adaptation of these computer programs to the many different types of generators and associated equipment in existence has proved to be the Achilles heel of this technology.

This book is designed to partially fill the gap by offering a comprehensive view of the many issues related to the operation, inspection, maintenance, and troubleshooting of large turbine generators. The contents of this second edition have been significantly enhanced and many new additional topics included. All of the information in the book is the result of many years of combined hands-on experience of the authors. It was written with the machine’s operator and inspector in mind, as well as providing a guide to uprating and life enhancement of large generators. Although not designed to provide a step-by-step guide for the troubleshooting of large generators, it serves as a valuable source of information that may prove to be useful during troubleshooting activities. The topics covered are also cross-referenced to other sources. Many such references are included to facilitate those readers interested in enlarging their knowledge of a specific issue under discussion. For the most part, theoretical equations have been left out, as there are several exceptionally good books on the theory of operation of synchronous machines. Those readers who so desire can readily access those books. Several references are cited. This book, however, is about the practical aspects that characterize the design, operation, and maintenance of large turbine-driven generators, and a significant number of practical calculations used commonly in maintenance and testing situations have been added.
Chapter 1 (“Principles of Synchronous Machines”) provides a basis of theory for electricity and electromagnetism upon which the machines covered in this book are based. As well, the fundamentals of synchronous machine construction and operation are also discussed. This is for the benefit of generator operators who have a mechanics background and are inclined to attain a modicum of proficiency in understanding the basic principles of operation of the generator. It also comes in handy for those professors who would like to adopt this book as a reference for a course on large rotating electrical machinery.

Chapters 2 and 3 (“Generator Design and Construction” and “Generator Auxiliary Systems”) contain a very detailed and informative description of all the components found in a typical generator and its associated auxiliary systems. Described therein are the functions that the components perform, as well as all relevant design and operational constraints. Some additional insight into design methods and calculations are also provided.

Chapter 4 (“Operation and Control”) introduces the layperson to the many operational variables that describe a generator. Most generator–grid interaction issues and their affect on the machine components and operation are covered in great detail.

Chapter 5 (“Monitoring and Diagnostics”) and Chapter 6 (“Generator Protection”) serve to introduce all aspects related to the on-line and off-line monitoring and protection of a large turbogenerator. Although not intended to serve as a guideline for designing and setting up the protection systems of a generator, they provide a wealth of background information and pointers to additional literature.

Chapters 7 (“Inspection Practices and Methodology”), leads off the second part of the book with a look at preparing for a hands-on inspection of large generators. The chapter discusses the issues of concern for both safety of personnel and the equipment as well as the types of tools and approaches used in inspecting large generators. This chapter also contains a collection of most inspection forms typically used for inspecting turbogenerators. These forms are very useful and can be readily adapted to any machine and plant.

Chapter 8 (“Stator Inspection”), Chapter 9 (“Rotor Inspection”), and Chapter 10 (“Auxiliaries Inspection”) constitute the core of this book. They describe all components presented in Chapters 2 and 3, but within the context of their behavior under real operational constraints, modes of failure, and typical troubleshooting activities. These chapters provide detailed information on what to look for, and how to recognize problems in the machine during inspection. Chapters 8 and 9 also contain some basic formulas and procedures for some of the various activities that occur during inspection, maintenance, and testing of large generators.

Chapter 11 (“Generator Maintenance Testing”) contains a comprehensive summary of the many techniques used to test the many components and systems comprising a generator. The purpose of the descriptions is not to serve as a guide to performing the tests—there are well-established guides and standards for that—rather, they are intended to illustrate the palette of possible tests to choose from. Provided as well is a succinct explanation of the character of each test and explanations of how they are carried out.

Chapter 12 (“Maintenance Philosophies”) is included to provide some perspective to the reader on the many choices and approaches that can be taken in generator and
auxiliary systems maintenance. Often, there are difficult decisions on how far to take maintenance. In some cases, only basic maintenance may be required, and on other occasions it may be appropriate to carry out extensive rehabilitation of existing equipment or even replacement of components. This chapter discusses some of the issues that need to be considered when deciding on what, how much, and where to do it. Along with the regular maintenance aspects, other important issues like uprating and long-term storage are also addressed.

We hope that this book will be not only useful to the operator in the power plant but also to the design engineer and the systems operations engineer. We have provided a wealth of information obtained in the field about the behavior of such machines, including typical problems and conditions of operation. The book should also be useful to the student of electrical rotating machines as a complementary reference to the books on machine theory.

Although we have tried our best to cover each topic as comprehensively as possible, the book should not be seen as a guide to troubleshooting. In each case in which a real problem is approached, a whole number of very specific issues only relevant to that very unique machine come into play. These can never be anticipated or known and thus described in a book. Thus, we recommend the use of this book as a general reference source, but that the reader should always obtain adequate on-the-spot expertise when approaching a particular problem.

We remain intent on updating the contents of this book from time to time, from our own experience as well as from that of others. Therefore, we would welcome from the readers their comments, which they can submit to the publisher, for incorporation in future editions.

GEOFF KLEMPNER
ISIDOR KERSZENBAUM

Toronto, Ontario, Canada
Irvine, California
August 2008
ACKNOWLEDGMENTS

The contents of this book are impossible to learn in a class. They are the result of personal experience accumulated over years of working with large turbine-driven generators. Most of all, they are the result of the invaluable long-term contribution of coworkers and associates. Each author was motivated by an important individual at an early stage of his career, and by many outstanding individuals in the profession over subsequent years. Attempting to mention all these people would lead to the unintended omission of some.

The authors are most indebted to the IEEE Press for reviewing the second edition proposal and supporting its publication. They also wish to express their sincere gratitude to the technical reviewers, Robert Hindmarsh and Nils Nilsson, for painstakingly reviewing the final manuscript and making numerous useful remarks. The authors also would like to thank the members of the editorial departments of the IEEE Press and John Wiley & Sons, the reviewers, and all others involved in the publication of this book for their support in making its publication possible.

Finally, but certainly most intensely, the authors wish to thank their immediate families for their continuous support and encouragement.

G.K.
I.K.
THEORY, CONSTRUCTION, AND OPERATION
The synchronous electrical generator (also called alternator) belongs to the family of electric rotating machines. Other members of the family are the direct-current (dc) motor or generator, the induction motor or generator, and a number of derivatives of all these three. What is common to all the members of this family is that the basic physical process involved in their operation is the conversion of electromagnetic energy to mechanical energy, and vice versa. Therefore, to comprehend the physical principles governing the operation of electric rotating machines, one has to understand some rudiments of electrical and mechanical engineering.

Chapter 1 is written for those who are involved in operating, maintaining, and trouble-shooting electrical generators, and who want to acquire a better understanding of the principles governing the machines’ design and operation, but who do not have an electrical engineering background. The chapter starts by introducing the rudiments of electricity and magnetism, quickly building up to a description of the basic laws of physics governing the operation of the synchronous electric machine, which is the type of machine to which all turbogenerators belong.

1.1 INTRODUCTION TO BASIC NOTIONS ON ELECTRIC POWER

1.1.1 Magnetism and Electromagnetism

Certain materials found in nature exhibit a tendency to attract or repel each other. These materials, called magnets, are also called ferromagnetic because they include the element iron as one of their constituent elements.
Magnets always have two poles: one called north, the other called south. Two north poles always repel each other, as do two south poles. However, north and south poles always attract each other. A magnetic field is defined as a physical field established between two poles. Its intensity and direction determine the forces of attraction or repulsion existing between the two magnets.

Figures 1.1 and 1.2 are typical representations of two interacting magnetic poles and the magnetic field established between them.

Magnets are found in nature in all sorts of shapes and chemical constitution. Magnets used in industry are artificially made. Magnets that sustain their magnetism for long periods of time are denominated “permanent magnets.” The magnetic field produced by the north and the south pole of a permanent magnet is directional from north to south (see Fig. 1.3). These are widely used in several types of electric rotating ma-

Fig. 1.1 Schematic representation of two magnetic poles of opposite polarity, with the magnetic field between them shown as “lines of force.”

Fig. 1.2 Schematic representation of two north poles and the magnetic field between them. South poles will create similar field patterns, but the lines of force will point toward the poles.