In your hands you hold the global sorghum and millet pathology community's decennial (more or less) summary of diseases and work in progress. It is not a summary of all of the work that has ever been done with sorghum and millet pathology, nor is it a guide to disease identification. Instead, it is a considered summary of the current critical problems and an evaluation of the community's progress since its previous meeting in Harare, Zimbabwe in 1988. It is the third of these efforts, and both the meetings and the books that have resulted from them have been important in defining the research agenda for these crops in the succeeding ten-year interval. The contents of this volume are based primarily on contributions to the Third Global Conference on Sorghum and Millet Diseases in Guanajuato, Mexico in September 2000. Indeed, all but one of the invited talks and all but one of the working group reports are represented here in some form. I also solicited some additional chapters that were not based on any of the presentations to help round out the volume, and I have included as many contributions as possible from African scientists who were unable to attend the meeting due to their inability to obtain visas for travel from the Mexican government.

This volume is somewhat different from its predecessors in that it is not being published by ICRISAT but, instead, by Iowa State Press, with the goal of expanding the readership beyond the immediate sorghum and millet research community. It also is different in that there is only a single editor, and that this editor is not Dick Frederiksen (Fig. P-1), although perhaps it should have been. Dick has been a dominant figure in this field for the last 30-40 years, and a major organizer of what have become nearly institutional meetings. His contacts and efforts in organizing sessions, dispersing participants into effective working groups, and cajoling contributors until they find time to finish a chapter or to strengthen a presentation should be neither underestimated nor undervalued. He has been a good friend and colleague, and as he goes to “fossilize” (his words not mine) in retirement, we can all but wish him the best. The meeting in Guanajuato was his last formal contribution to the sorghum and millet research community, but for those who know him, there undoubtedly remains more to come.

The chapters in this book have all been reviewed by at least one person, and authors have had an opportunity to make revisions in response to these comments. Although I have read each chapter at least four times, the important points raised by other reviewers have made this volume much better than it could have been were one person alone responsible for editing its content. I greatly appreciate the help these colleagues have provided and the advice they have given both to me and to the authors of the various chapters. Persons who reviewed at least one chapter (and some did far more) include: Ranajit Bandyopadhyay, Larry E. Claflin, Thomas Crawford, Jeff Dahlberg, Walter A. J. de Milliano, Richard A. Frederiksen, Liane R. Gale, Laura M. Giorda, Dale E. Hess, Clint W. Magill, Peter G. Mantle, Walter F. O. Marasas, Neal W. McLaren, Gary N. Odvody, Rodomiro Ortiz, Sylvia Pažoutová, John P. Rheeder, Malcolm J. Ryley, Claude P. Seletrinikoff, Ram P. Thakur, Paul W. Tooley, Jeff Wilson, and John Yohe.

In addition to the reviewers, I owe thanks to the International Sorghum and Millet Collaborative Research Support Program (INTSORMIL) for its funding of my research on fungal diseases of sorghum and millet, to the Australian-American Fulbright Association, the Royal...
Botanic Garden-Sydney, and St. Paul's College of the University of Sydney for their funding and for hosting me while on sabbatical when much of the editing of this book was completed, and to my wife, Ingelin, for sharing my time with all of these manuscripts. I also thank the corresponding authors of all of the chapters, who have been (generally) prompt and efficient in their revisions and gracious in helping me as I learn about systems and methodologies that are not those that I use in my own research.

Looking forward to the successor meeting (and volume) to this one, the meeting's global geographic rotation should take us to Asia or Australia around 2010. If this volume wears as well as does its predecessor, which is cited numerous times in this volume, and is still of relevance in 2010, then the work required to assemble it will have been time and effort well spent.

John F. Leslie
Kansas State University
Manhattan, Kansas, USA
November 2002
Addresses of Contributors

A. A. ABBASHER
Abu Haraz College
University of Gezira
Wad Medani, Sudan

IBRAHIM D. K. ATOKPLE
Savanna Agricultural Res. Institute
P. O. Box 52
Tamale, Ghana

A. G. T. BABIKER
Agricultural Research Corporation
P. O. Box 126
Wad Medani, Sudan

DAVID BACKHOUSE
University of New England
Armidale, New South Wales 2350
Australia

CHARLES W. BACON
Toxicology & Mycotoxin Res. Unit
USDA-ARS
Russell Agricultural Res. Center
Athens, Georgia, 30613, USA

RANAJIT BANDYOPADHYAY
International Inst. for Trop. Agric.
% L. W. Lambourn & Co.
Carolyn House, 26 Dingwall Road
Croydon CR9 3EE
United Kingdom

F. P. BEJOSANO
Cereal Quality Laboratory
Dept. of Soil & Crop Sciences
Texas A&M University
College Station, Texas 77843-2474
USA

J. BENADE
Grain Crops Institute
Agricultural Research Council
Private Bag X1251
2520 Potchefstroom, South Africa

SHAMSUL A. BHUIYAN
Australian Quarantine & Inspection Service
Brisbane Airport, Queensland 4007
Australia

MEGAN BLAKE
Fusarium Research Laboratory
Department of Crop Sciences
University of Sydney
Sydney, New South Wales 2006
Australia

AMAURI BOGO
Biochemistry Department
Imperial College of Science, Technology & Medicine
London SW7 2AY
United Kingdom

KHAZAN S. BOORA
Dept. of Biotechnology & Molecular Biology
CCS Haryana Agricultural Univ.
Hisar 125 004, India

P. BOORA
Department of Foods & Nutrition
CCS Haryana Agricultural Univ.
Hisar 125 004, India

ANDREW BORRELL
Queensland Dept. of Primary Industries.
Agency for Food and Fibre Sci.–Farming Systems
Hermitage Res. Station, MS 407
Warwick, Queensland 4370
Australia

LETICIA BRAVO-LUNA
Centro de Desarrollo de Productos Bióticos
Instituto Politécnico Nacional
Apartado Postal 24
Yautepec, Morelos 62730, Mexico

WENDY A. BREESE
Centre for Arid Zone Studies
University of Wales
Bangor, Gwynedd LL57 2UW
United Kingdom

LESTER W. BURGESS
Fusarium Research Laboratory
Department of Crop Sciences
University of Sydney
Sydney, New South Wales 2006
Australia

DAVID R. BUTLER
Cocoa Research Unit
University of West Indies
St. Augustine
Trinidad and Tobago

ELIZABETH CÁRDENAS-SORIANO
IFIT
Colegio de Postgraduados
56230 Montecillo, Texcoco
México

CARLOS R. CASELA
EMBRAPA/CNPMS
Caixa Postal 151
35701-970 Sete Lagoas, MG
Brazil

HOWARD H. CASPER
Dept. of Veterin. & Microbiol. Sci.
North Dakota State University
Fargo, North Dakota, USA

SUKUMAR CHAKRABORTY
CRC for Tropical Plant Protection
University of Queensland
St. Lucia, Queensland 4072
Australia

A. CHANDRASHEKAR
Mysore 570 013, India
S. KRISHNAVENI
Centre for Plant Molec. Biol.
Department of Biochemistry
Tamil Nadu Agricultural Univ.
Coimbatore, Tamil Nadu 641 003
India

J. KROSCHEL
Inst. for Plant Product. & Agroecol.
in the Tropics & Subtropics
University of Hohenheim (380)
D-70593 Stuttgart, Germany

GRETCHEN A. KULDAU
Department of Plant Pathology
The Pennsylvania State University
University Park, Pennsylvania 16802, USA

HUNTER K. C. LAIDLAW
School of Land and Food Sciences
The University of Queensland
St. Lucia, Queensland 4072
Australia

Jillian M. LENNE
ICRISAT
Patancheru (AP) 502 234, India

JOHN F. LESLIE
Department of Plant Pathology
Throckmorton Plant Sci. Center
Kansas State University
Manhattan, Kansas 66506-5502
USA

VIBEKE LEITH
Danish Govern. Inst. of Seed Pathol. for Developing Countries
Thorvaldsensvej 57
DK-1871 Frederiksberg C,
Denmark

GEORGE H. LIANG
Department of Agronomy
Throckmorton Plant Sci. Center
Kansas State University
Manhattan, Kansas 66506-5501
USA

E. I. LIPKOVICH
All Russia Res. & Develop. Inst. for Farm Mechanization & Electrification (ARRDIFME)
Zernograd, Rostov reg., Russia

CHRISTOPHER R. LITTLE
Dept. of Plant Pathol. & Microbiol.
Texas A & M University
College Station, Texas 77843-2132
USA

CLINT W. MAGILL
Dept. of Plant Pathol. & Microbiol.
Texas A & M University
College Station, Texas 77843-2132
USA

VISWANATHAN MAHALAKSHMI
ICRISAT
Patancheru (AP) 502 324, India

FELISTER W. MAKINI
Kenya Agricultural Res. Institute
Kisii Centre
Kisii, Kenya

GINO MALAGUTI
Nat. Center for Agronomic Res. (CENIAP-FONAIAP)
Faculty of Agronomy, UCV
Maracay, Venezuela

ANA CL ET S. B. MANSUETUS
Department of Biological Sciences
University of Swaziland
Private Bag
Kwaluseni, Swaziland

PETER G. MANTLE
Biochemistry Department
Imperial College of Science, Technology & Medicine
London SW7 2AY
United Kingdom

WALTER F. O. MARASAS
PROMEC
Medical Research Council
P. O. Box 19070
7505 Tygerberg, South Africa

PAUL S. MARLEY
Institute for Agric. Res. (IAR)
Ahmadu Bello University
P.M.B. 1044
Zaria, Nigeria

MARIA J. MARTINEZ
Department of Plant Pathology
INTA/EEA Manfredi
Manfredi Ruta Nac. no. 9, Km 636
5988 Manfredi, Cordoba, Argentina

KUSUM MATHUR
Department of Plant Pathology
Maharana Pratap Univ. of Agric. & Technology
RCA, Udaipur, Rajasthan 313 001
India

A. Bruce MAUNDER
National Grain Sorghum Producers
P. O. Box 5309
Lubbock, Texas 79408

JOSE Luis MAYA-DE LEON
ITA Roque
Apartado Postal 508
38500 Celaya, Guanajuato, México

DEMBE F. MBAYE
ISRA/CRZ de Kolda
B. P. 53
Kolda, Senegal

NEAL W. MCLAREN
Grain Crops Institute
Agricultural Research Council
Private Bag X1251
2520 Potchefstroom, South Africa

P. J. MEHTA
Dept. of Soil & Crop Sciences
Texas A&M University
College Station, Texas 77843-2474
USA

IGNACIO MENEZ-RAMIREZ
Inst. de Investigacion en Mat. Aplicadas y en Sistemas
Apartado Postal 0-76
100 México D.F., México

LEOPOLDO E. MENDOZA-ONOFRE
IREGEP, Colegio de Postgraduados
56230 Montecillo, Texcoco, México

NOE MONTES
INIFAP
Rio Bravo Experimental Station
Apartado Postal 172
88900 Rio Bravo, Tamaulipas
México
VIRENDER SHEORAIN
Seagram Manufacturing Limited
128/3 Telco Road
Mohan Nagar, Chinchwad
Pune, Maharashtra, India

H. S. SHETTY
Dept. of Appl. Bot. & Seed Pathol.
University of Mysore
Mysore, Karnataka 570 006, India

M. MARIN SILVA
INIFAP
Rio Bravo Experimental Station
Apartado Postal 172
Rio Bravo, Tamaulipas 88900
Mexico

A. SINDHU
Dept. of Biotechnol. & Molec. Biol.
CCS Haryana Agricultural Univ.
Hisar 125004, India

S. D. SINGH
ICRISAT
Patancheru (AP) 502 234, India

S. SIVARAMAKRISHNAN
Dept. of Agric. Biotechnology
ANGRAU, Rajendranagar
Hyderabad (AP) 500 030, India

JILIAN SMITH-WHITE
Royal Botanic Gardens
Mrs. Macquaries Road
Sydney, New South Wales 2000
Australia

JAMES P. STACK
South Central Res. & Extension Center
University of Nebraska
P. O. Box 66
Clay Center, Nebraska 68933, USA

BRETT SUMMERELL
Royal Botanic Gardens
Mrs. Macquaries Road
Sydney, New South Wales 2000
Australia

M. A. TARANOV
Azov Black Sea State Agroengineering Academy
Zernograd, Rostov reg., Russia

GEORGE L. TEETES
Department of Entomology
Texas A&M University
College Station, Texas 77843-2475
USA

TESFAYE T. TEFERRA
Department of Agronomy
Throckmorton Plant Sci. Center
Kansas State University
Manhattan, Kansas 66506-5501
USA

NIABA TEME
Texas A&M University Agric. Res. & Extension Center
Route 3, Box 219
Lubbock, Texas 79403-9757, USA

RAM P. THAKUR
ICRISAT
Patancheru (AP) 502 234, India

PAUL W. TOOLEY
USDA-ARS Foreign Disease-Weed Science Research Unit
Building 1301, Fort Detrick
Frederick, Maryland 21702-5023
USA

J. HERIBERTO TORRES-MONTALVO
Híbridos Pioneer de Mexico S.A. de CV
Centro de Investigación Maíz
Km 1.6 al Poniente San Miguel Cuyutlan
Tlaomulco de Zúñiga, Jalisco
45660, Mexico

DOULAYE TRAORÉ
Institut de l’Environnement et de Recherches Agricoles (INERA)
Programme Coton
01 B.P. 208
Bobo-Dioulasso 01, Burkina Faso

F. K. TSIGBEY
Savanna Agricultural Res. Institute
P. O. Box 52
Tamale, Ghana

MITCHELL R. TUINSTRA
Department of Agronomy
Throckmorton Plant Sci. Center
Kansas State University
Manhattan, Kansas 66506-5501
USA

MARLENE VAN DER WALT
Grain Crops Institute
Agricultural Research Council
Private Bag X1251
2520 Potchefstroom, South Africa

N. S. VASANTHI
Dept. of Applied Bot. & Biotechnol.
University of Mysore
Mysore, Karnataka, India

R. T. VENKATESHA
Department of Pathology
School of Dental Medicine
University of Pennsylvania
4010 Locust Street
Philadelphia, Pennsylvania 19104-6002, USA

MITCHELL R. TUINSTRA
Department of Agronomy
Throckmorton Plant Sci. Center
Kansas State University
Manhattan, Kansas 66506-5501
USA

MITALI P. THAKUR
ICRISAT
Patancheru (AP) 502 234, India

PAUL W. TOOLEY
USDA-ARS Foreign Disease-Weed Science Research Unit
Building 1301, Fort Detrick
Frederick, Maryland 21702-5023
USA

J. HERIBERTO TORRES-MONTALVO
Híbridos Pioneer de Mexico S.A. de CV
Centro de Investigación Maíz
Km 1.6 al Poniente San Miguel Cuyutlan
Tlaomulco de Zúñiga, Jalisco
45660, Mexico

DOULAYE TRAORÉ
Institut de l’Environnement et de Recherches Agricoles (INERA)
Programme Coton
01 B.P. 208
Bobo-Dioulasso 01, Burkina Faso

F. K. TSIGBEY
Savanna Agricultural Res. Institute
P. O. Box 52
Tamale, Ghana
Sorghum and Millets Diseases
Sorghum and Millets Diseases

Edited by
John F. Leslie
John F. Leslie is a professor in the Department of Plant Pathology at Kansas State University, Manhattan. Much of the editing of this work was completed during a sabbatical at the University of Sydney (Sydney, Australia) and the Royal Botanic Gardens–Sydney as a Senior Fulbright Scholar under the sponsorship of the Australian-American Fulbright Commission.

©2002 Iowa State Press
A Blackwell Publishing Company
Copyright is not claimed for chapters 10, 12, 23, 29, 39, 47, 67, 76 or 77, which are in the public domain.
All rights reserved

Iowa State Press
2121 State Avenue, Ames, Iowa 50014

Orders: 1-800-862-6657
Office: 1-515-292-0140
Fax: 1-515-292-3348
Web site: www.iowastatepress.com

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Iowa State Press, provided that the base fee of $0.10 per copy is paid directly to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For those organizations that have been granted a photocopy license by CCC, a separate system of payments has been arranged. The fee code for users of the Transactional Reporting Service is 0-8138-0389-6/2002 $0.10.

Printed on acid-free paper in the United States of America. Produced directly from camera-ready copy provided by the volume editor.

First edition, 2002

Library of Congress Cataloging-in-Publication Data
Sorghum and millets diseases/edited by John F. Leslie .-1st ed.
p. cm.
Based on contributions to the Third Global Conference on Sorghum and Millets Diseases in Guanajuato, Mexico September 2000. Includes bibliographical references and index.
ISBN 0-8138-0389-6 (alk. paper)

SB608.S6 S67 2002
633.1'7193—dc21
2002192228.

The last digit is the print number: 987654321
Table of Contents

Preface ... i
Addresses of Contributors ... iii

I. Transition From the Previous Millennium

1. W. A. J. De Milliano. Transition from the Second to the Third World Review of Sorghum and Millet Diseases ... 1

2. A. B. Maund. Sorghum Worldwide .. 11

II. Millet Biology and Diseases

III. Sorghum Ergot

11. G. N. Odvody. Recommendations from the Ergot Working Group at the Third Global Conference on Sorghum and Millets Diseases 71

12. R. Bandyopadhyay, V. Muthusubramanian, P. W. Tooley, S. Chakraborty, S. Pazoutová, and S. S. Navi. Distribution and Diversity of the Sorghum Sugary Disease Pathogens in India ... 73

16. P. G. Mantle and A. Bogo. Biosynthesis of Bioactive Honeydew Oligosaccharides by Sorghum Ergot Pathogens ... 91

17. N. W. McLaren. Genotype × Environment Effects on the Response of Sorghum to Ergot and Repercussions for Disease Screening ... 95

18. N. Montes, G. N. Odvody, and M. M. Silva. Effect of Cold Degree Units on Incidence of Claviceps africana in Sorghum Hybrids ... 103

19. N. Montes, G. N. Odvody, and H. Williams-Allen. Advances in Claviceps africana Chemical Control ... 105
20. N. Montes, G. N. Odvody, and H. Williams-Alanis. Relationship Between Climatic Variables and Claviceps africana Incidence on Sorghum Hybrids in Northern Mexico...111

26. T. Pacheco. Ergot and Its Impact on Hybrid Sorghum Seed Production in Venezuela...133

27. S. Pažoutová. The Genus Claviceps: Evolution at Work...135

29. P. W. Tooley and N. R. O'Neill. Intraspecific Variation in Claviceps africana...151

IV. Striga...157

30. A. G. T. Babiker. Striga Control in Sudan: An Integrated Approach...159

V. Pathogen Variability...171

32. R. Bandypadhyay, C. R. Little, R. D. Waniska, and D. R. Butler. Sorghum Grain Mold: Through the 1990s into the New Millennium...173

33. L. E. Claflin and L. M. Giorda. Stalk Rots of Sorghum...185

34. L. R. Gale. A Population Genetic Approach to Variation in Colletotrichum graminicola, the Causal Agent of Sorghum Anthracnose...191

35. J. F. Leslie and W. F. O. Marasas. Will the Real “Fusarium moniliforme” Please Stand Up!...201

37. G. Naidoo and J. H. Torres-Montalvo. Genetic Variability Among and Within Host-Specialized Isolates of Sperosporium reilianum...221

VI. Molecular Biology, Genome Mapping, and Host Plant Resistance...237

VII. Sorghum Breeding and Disease Physiology

43. K. ENGELL, L. B. JORGENSEN, J. D. MOLLER, E. DE NEERGAARD, AND E. WESTER. Developmental Stages of Sorghum Caryopses, with Emphasis on the Aleurone Transfer Cell and Placental Sac

44. A. KOLLO. Plant-Parasitic Nematodes of Sorghum and Pearl Millet: Emphasis on Africa

45. N. W. MCLAREN, J. SAAYMAN, J. BENADE, AND M. VAN DER WALT. Evaluation of Reduced Sorghum Seed Germination

VIII. Technology and Approaches to Disease Management

51. J. A. DAHLBERG. Rapid Information Dissemination on the World Wide Web

52. J. M. LENNE AND R. ORTIZ. Agrobiodiversity in Pest Management

54. R. D. WANISKA AND L. W. ROONEY. Sorghum Grain Quality for Increased Utilization

IX. Collaboration and Its Implementation

55. M. S. CONDON AND J. A. DAHLBERG. Public-Private Partnerships in International Agricultural Research:

A Case for Promoting Technology Transfer and Enhancing Global Trade in Sorghum and Millet

57. M. A. JOHNSON. Private Sector and Public Institution Interactions on Sorghum and Pearl Millet Disease Management

58. R. ORTIZ. Examples of ICRISAT’s Research and Development Partnerships in Sorghum and Millet Improvement

59. G. C. PETERSON, B. B. PENDLETON, AND G. L. TEETES. PROFIT—Productive Rotations On Farms In Texas

X. Country and Regional Disease Reports

60. L. M. GIORDA. Recommendations from the Working Group for the Americas at the Third Global Conference on Sorghum and Millets Diseases

61. D. E. HESS. Recommendations from the African Working Group at the Third Global Conference on Sorghum and Millets Diseases

62. S. INDIRA. Recommendations from the Working Group for Asia/Australia at the Third Global Conference on Sorghum and Millets Diseases

63. C. R. CASELA, A. S. FERREIRA, F. G. SANTOS, AND F. B. GUIMARÃES. Sorghum Diseases in Brazil
XI. Abstracts

77. Z. JURJEVIC, D. M. WILSON, H. H. CASPER, AND J. P. WILSON. Fungal Contaminants and Mycotoxins on Stored Pearl Millet Grain .. 473
80. F. W. MAKINI AND N. J. HAYDEN. Farmer Participatory Studies on Finger Millet in Western Kenya .. 474
81. M. J. MARTINEZ, L. R. CONCI, AND L. M. GIORDA. Differentiation of Fusarium verticillioides and Fusarium proliferatum Isolates Causing Sorghum Grain Mold by Random Amplified Polymorphic DNA (RAPD) Analysis .. 474
82. M. J. MARTINEZ, L. M. GIORDA, M. NASSSETA, K. FRUTERO, AND J. ZYGADLO. Phytoalexin Synthesis by Sorghum Grain in Response to Grain Mold .. 474
83. R. MONTEBELLOM, L. BRAVO, E. H. FLORES, I. MENDEZ, AND R. NAVA. Effect of Sorghum Sowing Dates on Grain Mold Development in Morelos State, Mexico .. 475
84. Z. NGOKO. Present Status of Sorghum Pathology in Cameroon .. 475
85. J. REED, M. TUINSTRA, AND L. E. CLAFLIN. Identification of Host Plant Resistance to Ergot in Sorghum .. 475
87. V. SHEORAIN AND A. H. HALL. The Importance of Public-Private Sector Partnerships to Indian Sorghum Farmers .. 476
88. T. TEFERRA, M. TUINSTRA, AND L. E. CLAFLIN. Resistance to Fusarium Stalk Rot in Grain Sorghum .. 476
89. K. S. L. WILSON AND N. J. HAYDEN. Access to the Next Generation of Sustainable Control of Covered Kernel Smut of Sorghum .. 477

Index .. 479
Part I

Transition from the Previous Millennium
Transition from the Second to the Third World
Review of Sorghum and Millet Diseases

Walter A. J. de Milliano

The present commodity crops, sorghum \textit{[Sorghum bicolor (L.) Moench]} and pearl millet \textit{[Pennisetum glaucum (L.) R. Br.]}, are important and sometimes indispensable for the survival of man and domestic animals in austere dry environments. In addition, their genetic diversity and numerous uses (24) are likely to be appealing to citizens of the third millennium searching for food diversification for reasons of enjoyment, health, convenience, eagerness for change, and fashion. This desire for food diversification could extend to other, lesser-known cereals such as \textit{Coix lachryma-jobi L.}, \textit{Digitaria exilillis Stapf}, finger millet \textit{[Eleusine coracana (L.) Gaertn.]}, \textit{Eragrostis tef} (Zucc.) Trotter, \textit{Panicum} spp., \textit{Paspalum} sp., and \textit{Setaria} spp. Hopefully these markets will develop further, stimulating both higher levels of production and increased farm income.

Sorghum and millets have been affected by many diseases in the past (51) and still are today (17). Potentially, each disease can cause economic losses and jeopardize the food security of the farmer and his/her family. Each previous global review (12, 58, 60) has provided the opportunity to make a unique long-term analysis of different issues over the last quarter century.

Venue, Objectives, and Demonstrations
The first global single crop reviews were in India, where sorghum and pearl millet are both staple foods. “State of the art” discussions were held on diseases and disease resistance breeding (58, 60).

The second review was in Zimbabwe. In this review we were reminded of the widening food gap in the third world, the relative importance of many diseases was established, and strategic plans were developed that were mutually beneficial for both developing and developed nations (12). Technology transfer, seed health, and germplasm utilization were discussed. This meeting also gave many African scientists a rare chance to meet foreign colleagues in both meeting rooms and the field. The practical demonstrations at Zimbabwean research and development stations showed the importance of selective use of ecological zones, trained manpower, and infrastructure development. The unique, international, disease hot spot screening approach of the SADCC (Southern Africa Development Coordination Conference) region also was demonstrated.

The third global review was in Mexico. It focused on integrated management of sorghum and millet diseases for the twenty-first century and the importance of these crops in agro-ecosystems. Disease status was reviewed in national, regional, and global contexts as priorities were altered for the next decade. Also, the importance of proper pathogen identification and the use of population biology approach was emphasized. Panicle diseases, such as ergot and grain mold, and the plant parasite \textit{Striga} received special attention. The Mexican host scientists gave on-farm and on-station demonstrations. In this “home of maize,” the area planted to sorghum has been increasing in recent years, and Mexican farmers produce crops with grain yields of up to 15 t/ha. Millets, however, remain of minor importance.

Participation and Publication in the Global Reviews
No national scientist participated in all three global reviews. For sorghum, only three scientists participated in all three global sorghum reviews: Richard A. Frederiksen, Darrel Rosenow, and Nat Zummo. All three of these scientists were from the United States and were participants in INTSORMIL. For millets, S. D. Singh, Ram P. Thakur, and Walter A. J. de Milliano participated in the three pearl millet reviews in association with either ICRISAT or INTSORMIL. Thus, for sorghum, about 5%
TABLE 1-1. Papers by continent, region, and country presented during the previous (12, 58, 60) and current world reviews for sorghum and pearl millet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>Africa</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Central Africa</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>East Africa</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>y</td>
<td>n</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>Malawi</td>
<td>y</td>
<td>r</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>Western Africa</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Mali</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>Niger</td>
<td>y</td>
<td>y</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Nigeria</td>
<td>y</td>
<td>y</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Senegal</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>Asia</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>y</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>India</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>Japan</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Pakistan</td>
<td>y</td>
<td>n</td>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>Philippines</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Thailand</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>Europe</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Russia</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>Australia</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>Central & South America</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Central America and Caribbean</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Basin</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>El Salvador</td>
<td>y</td>
<td>n</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>Mexico</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>South America</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Argentina</td>
<td>y</td>
<td>n</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>Brazil</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>Venezuela</td>
<td>y</td>
<td>n</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>North America</td>
<td>n</td>
<td>r</td>
<td>r</td>
<td>n</td>
</tr>
</tbody>
</table>

* = no presentation, y = single-country presentation, r = regional presentation.

(first meeting had > 59 participants) of the scientists were still participating 22 years later, and for millet < 3% (first meeting > 100 participants) were still participating 13 years later. Between 30-40% of the participants attended at least two meetings, including both national scientists and those from the international organizations. For both crops, 30-35% of the authors published in at least two of the reviews.

Why did so few national scientists (< 1%) participate actively in more than two of these ten-year reviews? Part of the problem is financial. Simply finding enough money to pay for plane fare, hotel, and *per diem* can be very difficult. A second reason is that active developing-country scientists often are quickly promoted to administrative positions or hired by the private sector. A third problem is inevitable difficulties with visas, schedule conflicts, and travel arrangements. Thus, the fact that over a period of 10 years, 30-40% of the active national and international scientists continue to participate is more impressive than it first appears and, at the least, demonstrates significant continuity. From these statistics, it is clear that the evaluations of regional and continental is-
sues and of long-term trends depend heavily on the published literature. In this sense, the published proceedings of this meeting and its predecessors are of particular importance.

The individual reviews of sorghum in 1978 (58) and pearl millet in 1986 (60) were followed by joint reviews in 1988 and 2000. In the joint reviews, there were distinctly (up to five times) more sorghum than millet articles (Table 1-I). That trend continues in this volume. Beginning in 1988, there also were a few manuscripts on finger millet research (e.g., 1, 28). With the progress in molecular mapping, related cereal crops may benefit through synteny. Thus, progress in one crop may benefit the others. In addition, these “minor” cereals may provide an opportunity to identify disease resistance genes that are not available or do not exist in the major cereals.

Both sorghum and pearl millet have become global crops. Because the crops are grown in many countries, it is difficult to have a complete and balanced report of all the new developments. Initially, there were individual country and regional reviews (Table 1-I), in which, as a rule, the host country received some extra attention. There are now some combined reports, both in terms of having regional summaries instead of those only for individual countries (e.g., 15, 23, 34, 39), and in terms of combined reports for both sorghum and millet (e.g., 23, 34, 50). Stronger efforts to combine reports are recommended.

In this volume, there is a first global sorghum (35) and also a global finger millet disease review (14). For sorghum and pearl millet there is a single continental review for Asia, including, for the first time, reports for China, Iran, Myanmar, and Syria (23). Africa has no continental review, although there is a summary of the working group’s meeting (20), but there are regional reviews for southern, western, eastern, and central parts of the continent (15, 34, 39). As a result of political changes since the second world review, South Africa is now actively represented (e.g., 37). Probably as a desire to solve common disease problems, Australia is included in this volume for the first time (50), as is Russia (26).

There was no review from Europe primarily because these cereals are not major crops on that continent. Nevertheless, European scientists made significant technical and scientific contributions (e.g., 5, 33, 45).

Publication results from meeting publication standards timely. Thus, some of the presentations from Mexico are not in these proceedings, and some of the invited papers that could not be presented, usually because the scheduled presenter was unable to obtain a visa from the Mexican government, are in this volume.

Disease Control

Method. Duncan and de Milliano (13) suggested that up to modest disease control can be achieved for many sorghum and millet diseases. They compiled assessments by experts in the field for obtainable control and used a scale of 0 to 1, with 0 = no control, 0.1 = limited control, 0.5 = modest control, and 1 = absolute control. Genetic resistance (mean over all diseases = 0.46), seed treatments and tests (mean = 0.42 each), and chemical control in crops and in seed production (mean = 0.39 each) were expected to be the most effective in sorghum. Genetic resistance (mean = 0.5) and chemical control in seed production (mean = 0.35) were expected to be the most effective in pearl millet.

Genetic resistance. In the last two global reviews, genetic resistance received considerable attention through reviews of countries and regions or of specific subjects. Considering the high frequency of this type of review, and the many efforts devoted to obtaining suitable genetic lines, genetic resistance was and is an important control method.

Both for sorghum and pearl millet, there are fewer articles on genetic resistance in this volume than in its predecessor. Major specific subjects for sorghum in the preceding volume were the reviews of the use of genetic resistance (49), the use of the world germplasm collection assembled by ICRISAT and INTSORMIL (41, 49), sweet stem sorghums (61), anthracnose (7), grain mold (40), and downy mildew resistance (9). In this volume, disease resistance breeding and screening for several diseases are reviewed (48, 55), but Striga and ergot dominate for sorghum, and for pearl millet, downy mildew (19).

Other forms of control, including “Know your enemy.” In this volume, the emphasis has shifted toward more in-depth subject matter reviews. In the preceding volume, there were reviews for specific disease organisms—their biology, taxonomy (e.g., 8), biodiversity (e.g., 7), technology transfer (44), and the toxicology of pearl millet ergot (32). In this volume, there were again reviews of specific disease organisms, but also reviews of interspecific relationships, intraspecific variation (e.g., 45), antifungal proteins (e.g., 57), specific disease triangles—host, pathogen and environment (e.g., 37), mycotoxins (e.g., 47), quarantine (43), the use of the Internet (e.g., 11), methods to improve collaboration and funding (e.g., 46), and last, but not least, on the involvement of the private sector (e.g., 10, 25).

In the preceding volume, two significant contributions for the future were reported as short communications. Butler (6) provided the first insight into the
host/pathogen relationship that underlies the changes in breeding strategy that have lessened the importance of the *Striga* parasitic weeds. The abstract by Frederickson and Mantle (16) provided the first evidence for the aerial dispersal of conidia of the African sorghum ergot fungus. This research became of global importance when this disease spread to Australia and the Americas in the 1990s.

Crop and disease management, including disease forecasting. In this area, two major new examples are described in this volume: the use of disease prediction models, in particular for the prediction of annual sorghum ergot epidemics (*e.g.*, 37), and a dynamic multilinear for pearl millet (59). In the preceding volume (12), the reviews were only for sorghum and were focused on races of anthracnose (*e.g.*, 7), and a case study was presented on the epidemiology of sorghum diseases in Central America (56). In this volume, there are reviews of: cultural (including intercropping) and IPM (Integrated Pest Management) strategies for control of *Striga* (2, 21), and of biodiversity as a strategy for both disease and pest management (59). For pearl millet, the management of downy mildew resistance was reviewed (19, 22).

Other methods of control. Overviews of chemical control (38), seed treatments, biological control, and seed tests receive little or no attention in this volume. Chemical control in seed production, which was previously identified as an important disease control method, is barely perceptible in the global reviews. However, seed transmission of sorghum pathogens was a subject of special emphasis in the 1988 conference (36). In the 2000 conference, a determined effort was made to involve the private sector (10, 25, 53), in addition to a presentation on the practical value of a systemic seed treatment against downy mildew in pearl millet (52).

A major change for the control of diseases is the addition of molecular biology-based solutions for all of the crops. Considerable progress has been made since the previous global review and the 1995 strategic meeting in Bellagio (29). Diseases to which such analyses are being applied include sorghum grain molds (3), sorghum anthracnose (18), sorghum head smut (42), sorghum ergot (45), sorghum leaf blight (31), sorghum oval leaf spot (4), "*Fusarium moniliforme"* (30), pearl millet downy mildew (54), and finger millet blast (5). The coming challenge is the practical and efficient use of the basic information now being generated.

Sorghum Diseases

Sorghum has a number of diseases of continuing importance. Many of the important diseases are caused by fungi including grain molds, anthracnose, stalk rots, ergot, smuts, and downy mildew. A novelty at the 2000 meeting was the two-man tag-team review of a single fungal species, *Fusarium moniliforme*, which now is being subdivided into 20+ species and whose present name was retired at this meeting. The importance of various *Fusarium* spp. in relation to human health, food quality and other post-harvest problems, suggests both threats and opportunities. In relation to maize, is sorghum grain a healthier food because of the mycoflora that it does, or does not, support? Therefore, the *Fusaria* deserve continued attention. *Striga* also continued to receive attention. In particular, research at Purdue University has made steady progress, and prospects for the control of these parasitic weeds are greatly improved.

Viruses received attention in both reviews, and their taxonomy is now established. However, the global importance of these viruses is not well demonstrated. Bacterial diseases were reviewed in the preceding volume (8), but not in this one. Nematodes have received little attention, although a review of sorghum nematode problems is included in this volume (27). Insects have been avoided in these global reviews, as have rodents and birds, but these organisms are important, and, in particular, insects can be vectors and facilitators of fungal, bacterial, and viral diseases. With the movement toward IPM, the inclusion of reviews by entomologists and other biologists in the next global review might encourage the development of research and production synergies.

Millet Diseases

Millets also clearly have a number of diseases of continuing importance, of which ergot and downy mildew are receiving the most attention. During the Mexico review, remarkable and somewhat unexpected progress was reported by Breese *et al.* (5) on the development of molecular markers for studying finger millet leaf blast (*Pyricularia* spp.). Blast control in finger millet also may benefit from the recent developments in rice (14). *Striga* also continued to receive attention (2, 21). Though focus in research is desired, and appears to have been attained, the lack of progress caused by the absence or lack of staff is a concern.

Take-Home Messages

In terms of growth measured as planted area or yield, there are few successes with sorghum and millets, as the global popularity of these crops has been decreasing. Yet in Mexico, "the home of maize," growth in both planted area and grain yield is occurring in sorghum. For millets, major successes have not yet occurred, and these crops continue to languish and remain of minor importance.
The supporting technologies provided unexpected tools and unprecedented progress with the development of molecular maps for both the host crops and the causal agents of some of the diseases. Thus, a move from empirical selection for disease resistance to marker-assisted breeding either has or will shortly occur. This shift means that for disease resistance screening, we may no longer be totally dependent on the presence of the pathogen. Dependence on demanding, and often difficult and unpredictable, disease resistance-screening tests also may be reduced. Breeding against quarantine diseases that are not in the country also may be possible if suitably characterized resistant and susceptible germplasm is available. We also can distinguish homozygous and heterozygous resistant plants, without the complications caused by “escapes” in the screening process. DNA analysis is usually a nondestructive test that can be done in the laboratory with material from almost any plant tissue or growth stage, and could accelerate the breeding process. In addition, the molecular technology provides a chance to select systematically for QTL quantitative resistances.

Molecular technology also has provided laboratory tools to identify (quarantine) strains. Through the data generated with these tools we can better understand and evaluate the genetic evolution of pathogens and better understand genetic diversity. In particular, the reviews on ergot (45) and Fusarium spp. (30) could become classic examples. Though the development of genetically modified cereals was not a primary topic of the meeting, new opportunities for control of previously uncontrollable diseases and other biological agents, e.g., insects and nematodes, may be possible.

Clearly in the twenty-first century, more than work in the field will be needed for effective disease control. The key for impact will be the management, design, and implementation of multidisciplinary collaborative research. Several issues are of importance to secure this future:

- How can the consumer be involved more effectively?
- Joint planning of regional targets and activities and regular control of the agreed progress.
- Joint planning for actions between INTSORMIL, ICRISAT, and the private sector (e.g., the National Grain Sorghum Producers in the United States) could strengthen sorghum and millet research through complementary efforts and provide a better focus for national and regional targets.
- Food safety, e.g., traceability, methods to measure the quantity of key toxins, food security, and models to predict grain quality all need greater attention.
- Academic training of plant pathologists from developed and developing countries in molecular biology should become essential.

References

