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Chapter 1

Introduction to Nodal Finite Elements

1.1. Introduction
1.1.1. The finite element method

The finite element method, resulting from the matrix techniques of calculation of
the discrete or semi-discrete mechanical structures (assembly of beams), is a tool for
resolving problems with partial differential equations involved in physics problems.
We will thus tackle this method accordingly because it is useful in modeling
mechanical, thermal, neutron and electromagnetic problems [ZIE 79], [SIL 83],
[DHA 84], [SAB 86], [HOO 89].

The aim of this chapter is to present the principles of this method which have
become essential in the panoply of the engineer. For this presentation, we will only
deal with electrostatics. Indeed, this field has a familiar formulation in scalar
potential, particularly suitable for the presentation of nodal finite elements, which
will be the only ones discussed here.

We will develop two examples of increasing complexity which are manageable
“by hand”, 1D in a first part and 2D in a second. As it is very close to physical
considerations, the variational approach will most of the time be favored. However,
the more general method of weighted residues will also be presented. In our
examples, we will see how to solve the problems at issue, but also how, using the
obtained fields, to extract more relevant information.

Chapter written by Jean-Louis COULOMB.



2 The Finite Element Method for Electromagnetic Modeling

In the third and last part, we will present the concept of a reference element and
the principles that make it possible to pass from the local coordinates to the domain
coordinates. We will see that beyond the possibility of handling curvilinear
elements, which is quite convenient for the discretization of manufactured objects,
this technique leads to a general tool for working with geometric deformations.

1.2. The 1D finite element method
1.2.1. A simple electrostatics problem

In order to present the finite element method, we propose, initially, to implement
it on a simple 1D electrostatics example, borrowed from [HOO 89]. We will first
formulate this problem in its differential form, then in its variation form. This form
of integral will enable us to introduce the concept of first-order finite elements and
then second-order finite elements.

We thus consider the problem of Figure 1.1 where two long distant parallel
plates of /0 m are: one with the electric potential of 0 V and the other with the
potential of /00 V. Between the two plates, the density of electric charges and the
dielectric permittivity are assumed to be constant. This problem could represent a
hydrocarbon storage tank in which we wish to know the distribution of the electric
potential. The lower plate corresponds to the free surface of the liquid, the upper
plate to the ceiling of the tank and the intermediate part to the electrically charged
vapors.

A V=100V
x+dx P
< r E{| ; 10m >
oo X oo
N
0
L v=0V

Figure 1.1. The cloud of electric charges between the two plates
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1.2.2. Differential approach

The physical and geometric quantities varying only according to one direction,
this problem is 1D in the interval xe [0, 10] and the electric field £ and electric flux
density D = €E vectors have only one non-zero component £, and D,.

Let us consider a parallelepipedic elementary volume of constant section s in the
direction perpendicular to x and of length dx. The flux of the electric density vector,
leaving its border I, and the internal electric charge to its volume Q are respectively:

§D.dr = [D,(x +dx) - Dy(x)]s [1.1]
T
'mde = p.s.dx [1.2]
Q

The Gaussian electric law implies the equality of these two integrals, which
gives, for the electric flux density, the following differential equation:

dD.X —
dx

This equation is specifically one of Maxwell’s equations:

[1.3]

divD = p [1.4]

applied to a 1D problem in which the variations in the orthogonal directions to the x
axis are zero.

On the terminals of the domain, the boundary conditions are expressed in terms
of electric potential v(0) = 0 V and v(10) = 100 V. 1t is thus judicious to specify the
problem entirely in terms of v which is connected to the electric field by the relation

S . d .
E,. =-grad v, which, in our 1D case, gives E, = —d—v. The equation and the
X
boundary conditions governing the distribution of the electric potential are thus

i _gﬂ =p for xe [0, 10] [1.5]
dx dx

v=0 forx =0
y =100 forx =10
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In our case, the electric permittivity is constant, which simplifies the equation
and becomes

2
d—; =L yo=o, (10) = 100 [1.6]
dx 3

This problem has the following analytical solution

v = =22+ 1+ 2 fox [1.7]
2¢ 2¢

the knowledge of which will be useful for us when evaluating the quality of the
solution given by the finite element method, which we will present below.

1.2.3. Variational approach

In fact, the finite element method does not directly use the previous differential
form, but is based on an equivalent integral form. For this reason we will develop
the variational approach which here is connected to the internal energy of the
device. This approach is based on a functional (i.e. a function of the unknown
function v(x)) which is extremal when v(x) is the solution. The functional, called
coenergy for reasons which will be explained later, corresponding to electrostatics
problem [1.5] is

2
1 10 | dv 10
W.(vy=—1| & —| dcx— dx 1.8
(=5 [ dx} L v [1.8]
We will show that, if it exists, a continuous and derivable function v,,(x) which
fulfills the boundary conditions v,(0) = 0 and v,(10) = 100 and which makes
functional [1.8] extremal is also the solution of problem [1.5].

For that, let us consider a function v(x) built on the basis of v,,(x) as follows
v(x) = vy (x) + o (x) [1.9]

where ¢ is an unspecified real number and ¢(x) is an arbitrary continuous and
derivable function which becomes zero at the boundary of the domain (¢(0) = 0 and
@(10) = 0). By construction, function v(x) automatically verifies the boundary
conditions v(0) = 0 and v(10) = 100.
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The introduction into [1.8] of this function v(x) defines a simple function of o

2
W.(cX) :% 108':%[11,” + 0@]} dx — ﬁop[vm +apldx [1.10]

Note that, by assumption, for & = 0 this function is extremal. Let us now express
the increase of W, with respect to its extremum,

loedv—md—(”dx—aﬁop(pdx [1.11]
dx

dx

2
21 o | do
W, () -W,(0) =« ZL' [dx} dx +«

The integration by parts of the second integral gives

10
10, dv,, do dv 10d | dv,
£y =| e&m -
L) dx dx [ dx (0} ‘[) dx[ dx }(pdx
10 _dv,, do _dod | dv,

e—"—dx 1.12
IO dx dx dx{ dx }de [ ]

because the arbitrary function ¢(x) is zero on the boundaries of the domain.

We thus obtain for the increase of the functional

1 d0 | do : 10| d| dv,
Wo(o)-W(0) =P = el ——| dx~e + 0 b 1.13
RPN £ PR 1 N NN
This polynomial of the second-degree is extremum for & = 0, therefore the
coefficient of o must be zero. This coefficient is an integral, to be zero whatever the
arbitrary function ¢(x), and it is necessary that the weighting coefficient of this
function becomes zero for any X

d [ed— +p=0 Vx e [0,10] [1.14]
dx dx

which corresponds precisely to equation [1.5], which we want to solve. Therefore, if
function v,(x) exists, it is indeed the solution of the specified problem. Moreover,
the coefficient of ¢ being positive, the extremum is a minimum.

The result that we have just obtained is a particular case of a proof that is much
more general of the calculus of variations. Equation [1.14] is in fact the Euler
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equation of functional [1.8], and could thus have been obtained directly by
application of a traditional theorem.

1.2.4. First-order finite elements

In order to present the finite element method, we introduce several concepts
shown in Figure 1.2. First of all, in the field of study, we define nodes at the
positions x; = 0, x, = 10/3, x; = 20/3 and x, = 10. The electric potentials v;, v,, v; and
v, at these nodes are called nodal values. Two of these nodal values, v; = 0 and
vy = 100, are already known thanks to the boundary conditions, while two others, v,
and v;, will have to be determined by application of the finite element method.

Av
vy=100

100 O

x
vi=0 O f >
x;=0 x,=10/3 x3=20/3 x,=10

Figure 1.2. Subdivision of the domain into three first-order finite elements

We thus define a subdivision of the domain into finite elements [x;, x5], [x2, X3]
and [x;, x;] on which we apply an interpolation for the electric potential. We choose
the linear interpolation (order 1) which is the simplest of the interpolations ensuring
the continuity of the potential and its derivability per piece, as that is required by the
variational approach. On the element [x; x;.;], this gives for the potential

X; —X X; — X
=y [1.15]
Xigl =X Xi —Xit]

v(x) =v;
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and for its gradient

D _ Vi Vi [1.16]

dx - Xppy =X

In order to determine the unknown nodal values v, and v;, we will use functional
[1.8], into which we will introduce the function v(x) defined in [1.15] per piece on
each finite element. We will then obtain a function of the only two unknown factors.
The extremality conditions of this function will be the equations defining these
unknown factors.

The subdivision of the domain allows the integral giving the functional to be
expressed in a sum of integrals on the finite elements

X3

f+f+f =Wy +Wey + W5 [1.17]

O~—.o

The elementary contribution W, ; of the element [x;, x;:;] is written

i+l 2 xi+1 —_ R
W, :% ) { L } dx — j'p{vi el 77 + Vi L% }dx
1

x, LY+~ x; Xitl =% Xi ™ Xt

1 [ -vP 1
V! LATR P [L15]
Xiel — X 2

The integral thus becomes

1 [Vz _v1]2 1
W.= 55———,0["2 +v [y = x]
x2 —xl 2
p
+18M—lﬂ["3 +v; 3 = x5 ] [1.19]
2 X3 —x2 2
_op
+13M—lﬂ["4 +v3]xs - x3]
2 X4 —)C3 2
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The stationarity conditions of W,, with respect to the two unknown variables v,
and v;, lead to the following two equations

LU/ Bk VI SN N NP Sl - N AN G

8v2 X2 - xl 2 X3 - XZ 2 [1 20]
ow, Vi —V -v '

5 = g3 2 —plyy-xl-e A= -—plxy-x;]=0

V3 X3—X2 2 4—X3 2

To go numerically further, we arbitrarily fix the ratio between the electric
permittivity and the density of electric charges

Ly [1.21]
£

We obtain the system of two equations with two unknown variables according to

vy _3vs 10
_3vp  3vs 100
10 5 3
which has the solution

400

ERrS
1.23
o [1.23]
379

In Figure 1.3, we can evaluate the quality of the approximation obtained. The
interpolation by first-order finite elements is not very far away from the reference
solution. It is even exact at the nodes of the grid. In fact, this coincidence is related
to the simplicity of the problem taken as an illustration and will not be found in
more realistic applications. Here, the exact solution is a second-degree polynomial,
whose average behavior is perfectly represented on each piece by linear
interpolations.

In order to improve the solution, we have two strategies. The first consists of
decreasing the size of the finite elements; it is called the & method by reference to
the diameter of the elements which is often denoted 4. The second consists of
increasing the order of the finite elements; it is denoted the p method because p is
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often used to represent the order of the approximation. It is this second strategy
which we will implement below.

Ay
vy =100
100
Vo= 400/9
x
vi=10 @] >
x;=0 x> =10/3 X3=20/3 xg=10

Figure 1.3. Exact solution in continuous line
and solution by first-order finite elements in dotted lines

1.2.5. Second-order finite elements

We now decide to implement the second-order elements. In order to simplify our
work to the maximum, we define a minimal subdivision of the domain, i.e. three
nodes at the positions x; = 0, x, = 5, x3 = 10 having the three nodal values v;, v,, and
v; and defining only one second-order finite element [x;, x,, x;]. The nodal values on
the limits are v; = 0 V and v; = 100 V. Only the internal nodal value v, is to be
determined by the finite element method. On the single finite element, the electric
potential is interpolated by

SN ) LR I LRy (YRt I i )
v = 1[ : ’ : ’ 3[x1—x3]x2—x3] 24]

X3 — X ][x3 - Xl] [x3 -X ][xl - xz]
and its gradient by

ﬂ:v 2x — x5 —x3 y 2x —x3—Xx ’ 2x—x1 — X
dx l[xz—x1][x3—x1] 2[x3—x2][x1—x2] 3[x1—x3][x2—x3]

[1.25]
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The introduction of these approximations into functional [1.8], the integration
then the application of the stationarity condition with respect to v, led to the
equation

2evy =€V +Ev3 +25p [1.26]

which, for the numerical values selected previously v; = 0, v; = 100 and p/e = 1
results, for the unknown nodal value, in v, = 125/2, which is the good value. Figure
1.4 shows the exact solution and the second-order finite elements solution. These are
exactly superimposed. Indeed, the exact solution [1.7] is a second-degree
polynomial, which is precisely the type of approximation implemented in the
second-order finite element method. Here again, this coincidence is only related to
the simplicity of the concerned problem. In more complex applications, we will no
longer find such perfect solutions.

Ay
vy =100
100 O
vy =125/2
X
V1=0CJ >
X1=0 X2:5 x3=]0

Figure 1.4. The exact solution and the second-order finite elements are exactly superimposed

1.3. The finite element method in two dimensions
1.3.1. The problem of the condenser with square section

We will again be interested in a problem of electrostatics, but this time of a 2D
nature, in order to handle a more realistic example of implementation of the finite
element method. We will find the differential then the variational forms of this type
of problem, with the associated boundary conditions. We will present the general
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concepts of domain meshing and finite element interpolation. We will explain the
Ritz method and we will implement it to find an approximate solution to the
problem. Lastly, we will see how to take advantage of this solution to obtain local
and global information that is more explicit than a simple set of nodal values.

The studied device is a condenser whose cross-section is represented in Figure
1.5 and whose depth 4 is very large in front of the section dimensions.

Figure 1.5. Cross-section of the long condenser

This condenser is composed of two overlapped conductors of square sections,
one with the electric potential of /00 V and the other with the potential of 0 V.
Taking into account the high dimension of the condenser in the direction
perpendicular to the xOy plane, the 2D study of the device in its cross-section will
give a very good idea of its global behavior. In fact, we are interested here in the
capacitor of this condenser, which we will obtain by using the finite element
method. For this purpose, we will initially determine the distribution of the electric
potential within the dielectric, assumed to be perfect, placed between the two
electrodes.
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1.3.2. Differential approach

The Maxwell’s equations, representative of the distribution of the electrostatic
field in the dielectric, are

divD = p (Gauss law) [1.27]
curlE=0 (Faraday law in static mode) [1.28]
D=¢E (constitutive law of the dielectric material) [1.29]

where D is the electric flux density vector, E the electric field vector, o the density
of electric charges and & the permittivity of the dielectric.

The introduction of v, the electric scalar potential, such that

E=-gradv [1.30]

automatically solves the second Maxwell’s equation since the rotational of a
gradient is systematically zero. By combining the first and third equations, we obtain
the partial differential equation of the electric potential

divle grad v]=-p [1.31]

which, in the reference frame xOy, is written

Jd| ov Jd| ov
il RPN IR P G PR 1.32
ax{gax}ay{gay} g -2

and in the particular case of a constant electric permittivity and of a density of
electric charges equal to zero

2 2
9V 9V _ o [1.33]
o’ 9y?

However, for the sought generality, we will use expression [1.31] in the rest of
this presentation.

To go further in the definition of the problem, we should specify the field of
study and the boundary conditions. We could take the whole cross-section of the
dielectric of Figure 1.5 as field of study, with v = 0 V on the external edge and
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v = 100 V on the internal edge. However, the presence of several symmetries allows
the zone of study to be considerably reduced, and thus the efforts of calculation.
Indeed, we have just to calculate the solution in the eighth /P, P, P; P,/ of the
domain (see Figure 1.6), then to reconstitute, thanks to symmetries, the distribution
of the electric potential in all the dielectric.

X
—=p

Figure 1.6. Reduction of the field of study thanks to symmetries

With a partial differential equation such as [1.31], of elliptic type, and in order to
specify the problem clearly, it is necessary to impose conditions on all the limits of
the field of studies, either on the state variable v, called the Dirichlet condition, or on
its normal derivative g—v , called the Neumann condition. We already know that

n
v = 100 V on the edge P,P, and that v = 0 V on the edge P;P,. It remains to define
the conditions on the rest of the border. On the axes of symmetry P,P; and P,P,, the
field has a particular direction: it is tangential. In fact, no electric flux crosses these
parts of the border. Mathematically it means that the normal component of the
induction is zero D, = 0, i.e. a zero normal component of the field £, = 0 and thus
that the homogenous Neumann condition g—v =0 on the electric potential, which we
n
will take as conditions on these limits.
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1.3.3. Variational approach

The functional of coenergy of the previous differential equation which
generalizes that given in [1.8] to the 2D case is

H{M— W]dxdy [1.34]

This first functional would be well adapted to the specified problem; however,
we would rather use the following expression

W.(v) = jj[gg"“dVDdE - pv} hdxdy [1.35]

This second functional is more general because it is able to handle a possible
nonlinearity in the constitutive law D(E), and the presence of the depth 4 of the
device makes it homogenous to an electrical energy.

Let us check that the continuous and derivable function v,,(x,y) which satisfies
the boundary conditions v,, = 100 V on P;P; and v,, = 0 V on P3P, and which makes
functional [1.35] stationary, is a solution of equation [1.31] and also satisfies

%:OOHP2P3andP4P1P2P3.

n

For this purpose, starting from v,,(x,y), we build the function
v(x,y)= vm(x,y)+5v(x,y) [1.36]
where ov(x,y) is a continuous and derivable function, zero on the Dirichlet type
boundaries which play the role of an unspecified infinitesimal variation around the
balance function v,(x,y). By construction, v(x,y) always verifies the boundary
conditions of the problem on P,P, and P;P,.
Let us introduce v(x,y) into functional [1.35] and express the variation
oW, = ”[—D grad & — pov Jhdxdy [1.37]

By using the vector relation

div[D&v] = divD & + D grad 8V [1.38]



