The Finite Element Method for Electromagnetic Modeling

Edited by
Gérard Meunier
This page intentionally left blank
The Finite Element Method for Electromagnetic Modeling
This page intentionally left blank
The Finite Element Method for Electromagnetic Modeling

Edited by
Gérard Meunier
Table of Contents

Chapter 1. Introduction to Nodal Finite Elements 1

Jean-Louis COULOMB

1.1. Introduction .. 1
 1.1.1. The finite element method 1

1.2. The 1D finite element method 2
 1.2.1. A simple electrostatics problem 2
 1.2.2. Differential approach 3
 1.2.3. Variational approach 4
 1.2.4. First-order finite elements 6
 1.2.5. Second-order finite elements 9

1.3. The finite element method in two dimensions 10
 1.3.1. The problem of the condenser with square section 10
 1.3.2. Differential approach 12
 1.3.3. Variational approach 14
 1.3.4. Meshing in first-order triangular finite elements 15
 1.3.5. Finite element interpolation 17
 1.3.6. Construction of the system of equations by the Ritz method 19
 1.3.7. Calculation of the matrix coefficients 21
 1.3.8. Analysis of the results 25
 1.3.9. Dual formations, framing and convergence 42
 1.3.10. Resolution of the nonlinear problems 44
 1.3.11. Alternative to the variational method: the weighted
 residues method ... 45

1.4. The reference elements .. 47
 1.4.1. Linear reference elements 48
 1.4.2. Surface reference elements 49
 1.4.3. Volume reference elements 52
 1.4.4. Properties of the shape functions 53
 1.4.5. Transformation from reference coordinates to domain coordinates 54
 1.4.6. Approximation of the physical variable 56
Chapter 2. Static Formulations: Electrostatic, Electrokinetic, Magnetostatics

Patrick DULAR and Francis PIRIOU

2.1. Problems to solve 70
 2.1.1. Maxwell’s equations 70
 2.1.2. Behavior laws of materials 71
 2.1.3. Boundary conditions 71
 2.1.4. Complete static models 74
 2.1.5. The formulations in potentials 75
 2.2. Function spaces in the fields and weak formulations 82
 2.2.1. Integral expressions: introduction 82
 2.2.2. Definitions of function spaces 82
 2.2.3. Tonti diagram: synthesis scheme of a problem 84
 2.2.4. Weak formulations 86
 2.3. Discretization of function spaces and weak formulations ... 91
 2.3.1. Finite elements 91
 2.3.2. Sequence of discrete spaces 93
 2.3.3. Gauge conditions and source terms in discrete spaces. 106
 2.3.4. Weak discrete formulations 109
 2.3.5. Expression of global variables 114
 2.4. References ... 115

Chapter 3. Magnetodynamic Formulations

Zhuoxiang REN and Frédéric BOUILLAULT

3.1. Introduction ... 117
 3.2. Electric formulations 119
 3.2.1. Formulation in electric field 119
 3.2.2. Formulation in combined potentials $\alpha - \psi$ 120
 3.2.3. Comparison of the formulations in field and in combined potentials 121
 3.3. Magnetic formulations 123
 3.3.1. Formulation in magnetic field 123
 3.3.2. Formulation in combined potentials $t - \phi$ 124
 3.3.3. Numerical example 125
 3.4. Hybrid formulation 127
 3.5. Electric and magnetic formulation complementarities 128
 3.5.1. Complementary features 128
 3.5.2. Concerning the energy bounds 129
 3.5.3. Numerical example 129
Chapter 4. Mixed Finite Element Methods in Electromagnetism

Bernard BANDELIER and Françoise RIOUX-DAMIDAU

4.1. Introduction .. 139
4.2. Mixed formulations in magnetostatics. ... 140
 4.2.1. Magnetic induction oriented formulation ... 141
 4.2.2. Formulation oriented magnetic field ... 144
 4.2.3. Formulation in induction and field ... 146
 4.2.4. Alternate case .. 147
4.3. Energy approach: minimization problems, searching for a saddle-point. 147
 4.3.1. Minimization of a functional calculus related to energy 147
 4.3.2. Variational principle of magnetic energy ... 149
 4.3.3. Searching for a saddle-point .. 151
 4.3.4. Functional calculus related to the constitutive relationship 154
4.4. Hybrid formulations ... 154
 4.4.1. Magnetic induction oriented hybrid formulation 154
 4.4.2. Hybrid formulation oriented magnetic field ... 156
 4.4.3. Mixed hybrid method .. 157
4.5. Compatibility of approximation spaces – inf-sup condition 157
 4.5.1. Mixed magnetic induction oriented formulation 158
 4.5.2. Mixed formulation oriented magnetic field ... 160
 4.5.3. General case .. 160
4.6. Mixed finite elements, Whitney elements. ... 161
 4.6.1. Magnetic induction oriented formulation ... 162
 4.6.2. Magnetic field oriented formulation ... 163
4.7. Mixed formulations in magnetodynamics. .. 164
 4.7.1. Magnetic field oriented formulation ... 164
 4.7.2. Formulation oriented electric field ... 167
4.8. Solving techniques ... 167
 4.8.1. Penalization methods .. 168
 4.8.2. Algorithm using the Schur complement .. 171
4.9. References ... 174

Chapter 5. Behavior Laws of Materials ... 177
Frédéric BOUILLAULT, Aref KEDOUS-LEBOUC, Gérard MEUNIER,
Florence OSSART and Francis PIRIOU

5.1. Introduction ... 177
5.2. Behavior law of ferromagnetic materials ... 178
 5.2.1. Definitions .. 178
 5.2.2. Hysteresis and anisotropy ... 179
 5.2.3. Classification of models dealing with the behavior law 180
5.3. Implementation of nonlinear behavior models ... 183
5.3.1. Newton method ... 183
5.3.2. Fixed point method .. 187
5.3.3. Particular case of a behavior with hysteresis 191
5.4. Modeling of magnetic sheets 192
5.4.1. Some words about magnetic sheets 192
5.4.2. Example of stress in the electric machines 192
5.4.3. Anisotropy of sheets with oriented grains 194
5.4.4. Hysteresis and dynamic behavior under uniaxial stress . 200
5.4.5. Determination of iron losses in electric machines: nonlinear isotropic finite element modeling and calculation of the losses a posteriori ... 209
5.4.6. Conclusion .. 215
5.5. Modeling of permanent magnets 216
5.5.1. Introduction .. 216
5.5.2. Magnets obtained by powder metallurgy 216
5.5.3. Study of linear anisotropic behavior 218
5.5.4. Study of nonlinear behavior 220
5.5.5. Implementation of the model in finite element software ... 223
5.5.6. Validation: the experiment by Joel Chavanne 224
5.5.7. Conductive magnet subjected to an AC field 225
5.6. Modeling of superconductors 226
5.6.1. Introduction ... 226
5.6.2. Behavior of superconductors 227
5.6.3. Modeling of electric behavior of superconductors 230
5.6.4. Particular case of the Bean model 232
5.6.5. Examples of modeling 237
5.7. Conclusion ... 240
5.8. References .. 241

Chapter 6. Modeling on Thin and Line Regions 245
Christophe GUÉRIN

6.1. Introduction .. 245
6.2. Different special elements and their interest 245
6.3. Method for taking into account thin regions without potential jump ... 249
6.4. Method for taking into account thin regions with potential jump 250
6.4.1. Analytical integration method 251
6.4.2. Numerical integration method 252
6.5. Method for taking thin regions into account 255
6.6. Thin and line regions in magnetostatics 256
6.6.1. Thin and line regions in magnetic scalar potential formulations ... 256
6.6.2. Thin and line regions in magnetic vector potential formulations ... 257
6.7. Thin and line regions in magnetoharmonics 257
6.7.1. Solid conducting regions presenting a strong skin effect 258
6.7.2. Thin conducting regions 265
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.6. Example application</td>
<td>342</td>
</tr>
<tr>
<td>8.3. Methods for taking the movement into account</td>
<td>346</td>
</tr>
<tr>
<td>8.3.1. Introduction</td>
<td>346</td>
</tr>
<tr>
<td>8.3.2. Methods for rotating machines</td>
<td>346</td>
</tr>
<tr>
<td>8.3.3. Coupling methods without meshing and with the finite element method</td>
<td>348</td>
</tr>
<tr>
<td>8.3.4. Coupling of boundary integrals with the finite element method</td>
<td>350</td>
</tr>
<tr>
<td>8.3.5. Automatic remeshing methods for large distortions</td>
<td>355</td>
</tr>
<tr>
<td>8.4. Conclusion</td>
<td>362</td>
</tr>
<tr>
<td>8.5. References</td>
<td>363</td>
</tr>
</tbody>
</table>

Chapter 9. Symmetric Components and Numerical Modeling
Jacques LOBRY, Eric NENS and Christian BROCHE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1. Introduction</td>
<td>369</td>
</tr>
<tr>
<td>9.2. Representation of group theory</td>
<td>371</td>
</tr>
<tr>
<td>9.2.1. Finite groups</td>
<td>371</td>
</tr>
<tr>
<td>9.2.2. Symmetric functions and irreducible representations</td>
<td>374</td>
</tr>
<tr>
<td>9.2.3. Orthogonal decomposition of a function</td>
<td>378</td>
</tr>
<tr>
<td>9.2.4. Symmetries and vector fields</td>
<td>379</td>
</tr>
<tr>
<td>9.3. Poisson’s problem and geometric symmetries</td>
<td>384</td>
</tr>
<tr>
<td>9.3.1. Differential and integral formulations</td>
<td>384</td>
</tr>
<tr>
<td>9.3.2. Numerical processing</td>
<td>387</td>
</tr>
<tr>
<td>9.4. Applications</td>
<td>388</td>
</tr>
<tr>
<td>9.4.1. 2D magnetostatics</td>
<td>388</td>
</tr>
<tr>
<td>9.4.2. 3D magnetodynamics</td>
<td>394</td>
</tr>
<tr>
<td>9.5. Conclusions and future work</td>
<td>403</td>
</tr>
<tr>
<td>9.6. References</td>
<td>404</td>
</tr>
</tbody>
</table>

Chapter 10. Magneto-thermal Coupling
Mouloud FÉLIACHI and Javad FOULADGAR

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1. Introduction</td>
<td>405</td>
</tr>
<tr>
<td>10.2. Magneto-thermal phenomena and fundamental equations</td>
<td>406</td>
</tr>
<tr>
<td>10.2.1. Electromagnetism</td>
<td>406</td>
</tr>
<tr>
<td>10.2.2. Thermal</td>
<td>408</td>
</tr>
<tr>
<td>10.2.3. Flow</td>
<td>408</td>
</tr>
<tr>
<td>10.3. Behavior laws and couplings</td>
<td>409</td>
</tr>
<tr>
<td>10.3.1. Electromagnetic phenomena</td>
<td>409</td>
</tr>
<tr>
<td>10.3.2. Thermal phenomena</td>
<td>409</td>
</tr>
<tr>
<td>10.3.3. Flow phenomena</td>
<td>409</td>
</tr>
<tr>
<td>10.4. Resolution methods</td>
<td>409</td>
</tr>
<tr>
<td>10.4.1. Numerical methods</td>
<td>409</td>
</tr>
<tr>
<td>10.4.2. Semi-analytical methods</td>
<td>410</td>
</tr>
<tr>
<td>10.4.3. Analytical-numerical methods</td>
<td>411</td>
</tr>
<tr>
<td>10.4.4. Magneto-thermal coupling models</td>
<td>411</td>
</tr>
<tr>
<td>Chapter 10. Heating of a moving work piece</td>
<td>413</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>10.6. Induction plasma</td>
<td>417</td>
</tr>
<tr>
<td>10.6.1. Introduction</td>
<td>417</td>
</tr>
<tr>
<td>10.6.2. Inductive plasma installation</td>
<td>418</td>
</tr>
<tr>
<td>10.6.3. Mathematical models</td>
<td>418</td>
</tr>
<tr>
<td>10.6.4. Results</td>
<td>426</td>
</tr>
<tr>
<td>10.6.5. Conclusion</td>
<td>427</td>
</tr>
<tr>
<td>10.7. References</td>
<td>428</td>
</tr>
</tbody>
</table>

Chapter 11. Magneto-mechanical Modeling

Yvan LEFEVRE and Gilbert REYNE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Introduction</td>
<td>431</td>
</tr>
<tr>
<td>11.2. Modeling of coupled magneto-mechanical phenomena</td>
<td>432</td>
</tr>
<tr>
<td>11.2.1. Modeling of mechanical structure</td>
<td>433</td>
</tr>
<tr>
<td>11.2.2. Coupled magneto-mechanical modeling</td>
<td>437</td>
</tr>
<tr>
<td>11.2.3. Conclusion</td>
<td>442</td>
</tr>
<tr>
<td>11.3. Numerical modeling of electromechanical conversion in conventional actuators</td>
<td>442</td>
</tr>
<tr>
<td>11.3.1. General simulation procedure</td>
<td>443</td>
</tr>
<tr>
<td>11.3.2. Global magnetic force calculation method</td>
<td>444</td>
</tr>
<tr>
<td>11.3.3. Conclusion</td>
<td>447</td>
</tr>
<tr>
<td>11.4. Numerical modeling of electromagnetic vibrations</td>
<td>447</td>
</tr>
<tr>
<td>11.4.1. Magnetostriction vs. magnetic forces</td>
<td>447</td>
</tr>
<tr>
<td>11.4.2. Procedure for simulating vibrations of magnetic origin</td>
<td>449</td>
</tr>
<tr>
<td>11.4.3. Magnetic forces density</td>
<td>449</td>
</tr>
<tr>
<td>11.4.4. Case of rotating machine teeth</td>
<td>452</td>
</tr>
<tr>
<td>11.4.5. Magnetic response modeling</td>
<td>453</td>
</tr>
<tr>
<td>11.4.6. Model superposition method</td>
<td>455</td>
</tr>
<tr>
<td>11.4.7. Conclusion</td>
<td>458</td>
</tr>
<tr>
<td>11.5. Modeling strongly coupled phenomena</td>
<td>459</td>
</tr>
<tr>
<td>11.5.1. Weak coupling and strong coupling from a physical viewpoint</td>
<td>459</td>
</tr>
<tr>
<td>11.5.2. Weak coupling or strong coupling problem from a numerical modeling analysis</td>
<td>460</td>
</tr>
<tr>
<td>11.5.3. Weak coupling and intelligent use of software tools</td>
<td>461</td>
</tr>
<tr>
<td>11.5.4. Displacement and deformation of a magnetic system</td>
<td>463</td>
</tr>
<tr>
<td>11.5.5. Structural modeling based on magnetostrictive materials</td>
<td>465</td>
</tr>
<tr>
<td>11.5.6. Electromagnetic induction launchers</td>
<td>469</td>
</tr>
<tr>
<td>11.6. Conclusion</td>
<td>470</td>
</tr>
<tr>
<td>11.7. References</td>
<td>471</td>
</tr>
</tbody>
</table>

Chapter 12. Magnetohydrodynamics: Modeling of a Kinematic Dynamo

Franck PLUNIAN and Philippe MASSÉ

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1. Introduction</td>
<td>477</td>
</tr>
<tr>
<td>12.1.1. Generalities</td>
<td>477</td>
</tr>
</tbody>
</table>
12.1.2. Maxwell’s equations and Ohm’s law 481
12.1.3. The induction equation 482
12.1.4. The dimensionless equation 483
12.2. Modeling the induction equation using finite elements 485
 12.2.1. Potential (A, ϕ) quadric-vector formulation 485
 12.2.2. 2D$^{1/2}$ quadri-vector potential formulation 488
12.3. Some simulation examples 491
 12.3.1. Screw dynamo (Ponomarenko dynamo) 491
 12.3.2. Two-scale dynamo without walls (Roberts dynamo) 495
 12.3.3. Two-scale dynamo with walls 498
 12.3.4. A dynamo at the industrial scale 502
12.4. Modeling of the dynamic problem 503
12.5. References .. 504

Chapter 13. Mesh Generation .. 509
Yves DU TERRAIL COUVAT, François-Xavier ZGAIMSKI and Yves MARÉCHAL

 13.1. Introduction .. 509
 13.2. General definition .. 510
 13.3. A short history ... 512
 13.4. Mesh algorithms .. 512
 13.4.1. The basic algorithms 512
 13.4.2. General mesh algorithms 518
 13.5. Mesh regularization ... 526
 13.5.1. Regularization by displacement of nodes 526
 13.5.2. Regularization by bubbles 528
 13.5.3. Adaptation of nodes population 530
 13.5.4. Insertion in meshing algorithms 530
 13.5.5. Value of bubble regularization 531
 13.6. Mesh processor and modeling environment 533
 13.6.1. Some typical criteria 533
 13.6.2. Electromagnetism and meshing constraints 534
 13.7. Conclusion .. 541
 13.8. References .. 541

Chapter 14. Optimization .. 547
Jean-Louis COULOMB

 14.1. Introduction ... 547
 14.1.2. Optimization by numerical simulation: is this reasonable? 548
 14.1.3. Optimization by numerical simulation: difficulties 549
 14.1.4. Numerical design of experiments (DOE) method: an elegant solution 549
14.1.5. Sensitivity analysis: an “added value” accessible by simulation 550
14.1.6. Organization of this chapter .. 551
14.2. Optimization methods .. 551
14.2.1. Optimization problems: some definitions 551
14.2.2. Optimization problems without constraints 553
14.2.3. Constrained optimization problems 559
14.2.4. Multi-objective optimization 560
14.3. Design of experiments (DOE) method 562
14.3.1. The direct control of the simulation tool by an optimization algorithm: principle and disadvantages 562
14.3.2. The response surface: an approximation enabling indirect optimization ... 563
14.3.3. DOE method: a short history 565
14.3.4. DOE method: a simple example 565
14.4. Response surfaces ... 572
14.4.1. Basic principles .. 572
14.4.2. Polynomial surfaces of degree 1 without interaction: simple but sometimes useful ... 573
14.4.3. Polynomial surfaces of degree 1 with interactions: quite useful for screening ... 573
14.4.4. Polynomial surfaces of degree 2: a first approach for nonlinearities ... 574
14.4.5. Response surfaces of degrees 1 and 2: interests and limits 576
14.4.6. Response surfaces by combination of radial functions 576
14.4.7. Response surfaces using diffuse elements 577
14.4.8. Adaptive response surfaces 579
14.5. Sensitivity analysis .. 579
14.5.1. Finite difference method ... 579
14.5.2. Method for local derivation of the Jacobian matrix 580
14.5.3. Steadiness of state variables: steadiness of state equations 581
14.5.4. Sensitivity of the objective function: the adjoint state method 583
14.5.5. Higher order derivative .. 583
14.6. A complete example of optimization 584
14.6.1. The problem of optimization 584
14.6.2. Determination of the influential parameters by the DOE method 585
14.6.3. Approximation of the objective function by a response surface 587
14.6.4. Search for the optimum on the response surface 587
14.6.5. Verification of the solution by simulation 587
14.7. Conclusion ... 588
14.8. References .. 588

List of Authors ... 595

Index ... 599
1.1. Introduction

1.1.1. The finite element method

The finite element method, resulting from the matrix techniques of calculation of the discrete or semi-discrete mechanical structures (assembly of beams), is a tool for resolving problems with partial differential equations involved in physics problems. We will thus tackle this method accordingly because it is useful in modeling mechanical, thermal, neutron and electromagnetic problems [ZIE 79], [SIL 83], [DHA 84], [SAB 86], [HOO 89].

The aim of this chapter is to present the principles of this method which have become essential in the panoply of the engineer. For this presentation, we will only deal with electrostatics. Indeed, this field has a familiar formulation in scalar potential, particularly suitable for the presentation of nodal finite elements, which will be the only ones discussed here.

We will develop two examples of increasing complexity which are manageable “by hand”, 1D in a first part and 2D in a second. As it is very close to physical considerations, the variational approach will most of the time be favored. However, the more general method of weighted residues will also be presented. In our examples, we will see how to solve the problems at issue, but also how, using the obtained fields, to extract more relevant information.

Chapter written by Jean-Louis COULOMB.
In the third and last part, we will present the concept of a reference element and the principles that make it possible to pass from the local coordinates to the domain coordinates. We will see that beyond the possibility of handling curvilinear elements, which is quite convenient for the discretization of manufactured objects, this technique leads to a general tool for working with geometric deformations.

1.2. The 1D finite element method

1.2.1. A simple electrostatics problem

In order to present the finite element method, we propose, initially, to implement it on a simple 1D electrostatics example, borrowed from [HOO 89]. We will first formulate this problem in its differential form, then in its variation form. This form of integral will enable us to introduce the concept of first-order finite elements and then second-order finite elements.

We thus consider the problem of Figure 1.1 where two long distant parallel plates of 10 m are: one with the electric potential of 0 V and the other with the potential of 100 V. Between the two plates, the density of electric charges and the dielectric permittivity are assumed to be constant. This problem could represent a hydrocarbon storage tank in which we wish to know the distribution of the electric potential. The lower plate corresponds to the free surface of the liquid, the upper plate to the ceiling of the tank and the intermediate part to the electrically charged vapors.

![Figure 1.1. The cloud of electric charges between the two plates](image_url)
1.2.2. Differential approach

The physical and geometric quantities varying only according to one direction, this problem is 1D in the interval $x \in [0, 10]$ and the electric field E and electric flux density $D = \varepsilon E$ vectors have only one non-zero component E_x and D_x.

Let us consider a parallelepipedic elementary volume of constant section s in the direction perpendicular to x and of length dx. The flux of the electric density vector, leaving its border Γ, and the internal electric charge to its volume Ω are respectively:

$$\oint_{\Gamma} D \cdot d\Gamma = \left[D_x(x + dx) - D_x(x) \right] s$$

$$\iint_{\Omega} \rho d\Omega = \rho_s dx$$

The Gaussian electric law implies the equality of these two integrals, which gives, for the electric flux density, the following differential equation:

$$\frac{dD_x}{dx} = \rho$$

This equation is specifically one of Maxwell’s equations:

$$\text{div} D = \rho$$

applied to a 1D problem in which the variations in the orthogonal directions to the x axis are zero.

On the terminals of the domain, the boundary conditions are expressed in terms of electric potential $v(0) = 0 \, V$ and $v(10) = 100 \, V$. It is thus judicious to specify the problem entirely in terms of v which is connected to the electric field by the relation

$E_x = -\text{grad} \ v$, which, in our 1D case, gives $E_x = -\frac{dv}{dx}$. The equation and the boundary conditions governing the distribution of the electric potential are thus

$$\frac{d}{dx} \left[-\varepsilon \frac{dv}{dx} \right] = \rho$$

for $x \in [0, 10]$

$v = 0$ for $x = 0$

$v = 100$ for $x = 10$
In our case, the electric permittivity is constant, which simplifies the equation and becomes

\[
\frac{d^2v}{dx^2} = -\frac{\rho}{\varepsilon}, \quad v(0) = 0, \quad v(10) = 100 \tag{1.6}
\]

This problem has the following analytical solution

\[
v(x) = -\frac{\rho}{2\varepsilon} x^2 + \left[1 + \frac{\rho}{2\varepsilon}\right]10x \tag{1.7}
\]

the knowledge of which will be useful for us when evaluating the quality of the solution given by the finite element method, which we will present below.

1.2.3. Variational approach

In fact, the finite element method does not directly use the previous differential form, but is based on an equivalent integral form. For this reason we will develop the variational approach which here is connected to the internal energy of the device. This approach is based on a functional (i.e. a function of the unknown function \(v(x)\)) which is extremal when \(v(x)\) is the solution. The functional, called coenergy for reasons which will be explained later, corresponding to electrostatics problem [1.5] is

\[
W_c(v) = \frac{1}{2} \int_0^{10} \varepsilon \left(\frac{dv}{dx}\right)^2 dx - \int_0^{10} \rho v dx \tag{1.8}
\]

We will show that, if it exists, a continuous and derivable function \(v_m(x)\) which fulfills the boundary conditions \(v_m(0) = 0\) and \(v_m(10) = 100\) and which makes functional [1.8] extremal is also the solution of problem [1.5].

For that, let us consider a function \(v(x)\) built on the basis of \(v_m(x)\) as follows

\[
v(x) = v_m(x) + \alpha \varphi(x) \tag{1.9}
\]

where \(\alpha\) is an unspecified real number and \(\varphi(x)\) is an arbitrary continuous and derivable function which becomes zero at the boundary of the domain (\(\varphi(0) = 0\) and \(\varphi(10) = 0\)). By construction, function \(v(x)\) automatically verifies the boundary conditions \(v(0) = 0\) and \(v(10) = 100\).
The introduction into [1.8] of this function \(v(x) \) defines a simple function of \(\alpha \)

\[
W_c(\alpha) = \frac{1}{2} \int_0^1 \varepsilon \left[\frac{d}{dx}[v_m + \alpha \varphi] \right]^2 dx - \int_0^1 \rho [v_m + \alpha \varphi] dx \tag{1.10}
\]

Note that, by assumption, for \(\alpha = 0 \) this function is extremal. Let us now express the increase of \(W_c \) with respect to its extremum,

\[
W_c(\alpha) - W_c(0) = \frac{1}{2} \int_0^1 \varepsilon \left[\frac{d\varphi}{dx} \right]^2 dx + \alpha \int_0^1 \varepsilon \frac{dv_m}{dx} \frac{d\varphi}{dx} dx - \alpha \int_0^1 \rho \varphi dx \tag{1.11}
\]

The integration by parts of the second integral gives

\[
\int_0^1 \varepsilon \frac{dv_m}{dx} \frac{d\varphi}{dx} dx = \left[\varepsilon \frac{dv_m}{dx} \varphi \right]_0^1 - \int_0^1 \frac{d}{dx} \left[\varepsilon \frac{dv_m}{dx} \right] \varphi dx
\]

\[
\int_0^1 \varepsilon \frac{dv_m}{dx} \frac{d\varphi}{dx} dx = -\int_0^1 \frac{d}{dx} \left[\varepsilon \frac{dv_m}{dx} \right] \varphi dx \tag{1.12}
\]

because the arbitrary function \(\varphi(x) \) is zero on the boundaries of the domain.

We thus obtain for the increase of the functional

\[
W_c(\alpha) - W_c(0) = \frac{1}{2} \int_0^1 \varepsilon \left[\frac{d\varphi}{dx} \right]^2 dx + \int_0^1 \varepsilon \frac{dv_m}{dx} \frac{d\varphi}{dx} dx - \alpha \int_0^1 \rho \varphi dx \tag{1.13}
\]

This polynomial of the second-degree is extremum for \(\alpha = 0 \), therefore the coefficient of \(\alpha \) must be zero. This coefficient is an integral, to be zero whatever the arbitrary function \(\varphi(x) \), and it is necessary that the weighting coefficient of this function becomes zero for any \(X \)

\[
\frac{d}{dx} \left[\varepsilon \frac{dv_m}{dx} \right] + \rho = 0 \quad \forall x \in [0, 10] \tag{1.14}
\]

which corresponds precisely to equation [1.5], which we want to solve. Therefore, if function \(v_m(x) \) exists, it is indeed the solution of the specified problem. Moreover, the coefficient of \(\alpha \) being positive, the extremum is a minimum.

The result that we have just obtained is a particular case of a proof that is much more general of the calculus of variations. Equation [1.14] is in fact the Euler
1.2.4. First-order finite elements

In order to present the finite element method, we introduce several concepts shown in Figure 1.2. First of all, in the field of study, we define *nodes* at the positions $x_1 = 0$, $x_2 = 10/3$, $x_3 = 20/3$ and $x_4 = 10$. The electric potentials v_1, v_2, v_3 and v_4 at these nodes are called *nodal values*. Two of these nodal values, $v_1 = 0$ and $v_4 = 100$, are already known thanks to the boundary conditions, while two others, v_2 and v_3, will have to be determined thanks to the finite element method.

![Figure 1.2. Subdivision of the domain into three first-order finite elements](image)

We thus define a subdivision of the domain into *finite elements* $[x_1, x_2]$, $[x_2, x_3]$ and $[x_3, x_4]$ on which we apply an *interpolation* for the electric potential. We choose the linear interpolation (order 1) which is the simplest of the interpolations ensuring the continuity of the potential and its derivability per piece, as that is required by the variational approach. On the element $[x_i, x_{i+1}]$, this gives for the potential

$$v(x) = v_i \frac{x_{i+1} - x}{x_{i+1} - x_i} + v_{i+1} \frac{x - x_i}{x_i - x_{i+1}} \quad [1.15]$$
and for its gradient

\[\frac{dv}{dx} = \frac{v_{i+1} - v_i}{x_{i+1} - x_i} \]

[1.16]

In order to determine the unknown nodal values \(v_2\) and \(v_3\), we will use functional [1.8], into which we will introduce the function \(v(x)\) defined in [1.15] per piece on each finite element. We will then obtain a function of the only two unknown factors. The extremality conditions of this function will be the equations defining these unknown factors.

The subdivision of the domain allows the integral giving the functional to be expressed in a sum of integrals on the finite elements

\[W_c = \frac{10}{x_2 - x_1} \int_{x_1}^{x_2} + \int_{x_2}^{x_3} = W_{c1} + W_{c2} + W_{c3} \]

[1.17]

The elementary contribution \(W_{ci}\) of the element \([x_i, x_{i+1}]\) is written

\[W_{ci} = \frac{1}{2} \int_{x_i}^{x_{i+1}} \varepsilon \left[\frac{v_{i+1} - v_i}{x_{i+1} - x_i} \right]^2 dx - \int_{x_i}^{x_{i+1}} \rho \left[v_i \frac{x_{i+1} - x}{x_{i+1} - x_i} + v_{i+1} \frac{x - x_i}{x_i - x_{i+1}} \right] dx \]

\[W_{ci} = \frac{1}{2} \varepsilon \left[\frac{v_{i+1} - v_i}{x_{i+1} - x_i} \right]^2 - \frac{1}{2} \rho \left[v_{i+1} + v_i \frac{x_{i+1} - x_i}{x_i - x_{i+1}} \right] \]

[1.18]

The integral thus becomes

\[W_c = \frac{1}{2} \varepsilon \left[\frac{v_2 - v_1}{x_2 - x_1} \right]^2 - \frac{1}{2} \rho \left[v_2 + v_1 \frac{x_2 - x_1}{x_1 - x_2} \right] \\
+ \frac{1}{2} \varepsilon \left[\frac{v_3 - v_2}{x_3 - x_2} \right]^2 - \frac{1}{2} \rho \left[v_3 + v_2 \frac{x_3 - x_2}{x_2 - x_3} \right] \\
+ \frac{1}{2} \varepsilon \left[\frac{v_4 - v_3}{x_4 - x_3} \right]^2 - \frac{1}{2} \rho \left[v_4 + v_3 \frac{x_4 - x_3}{x_3 - x_4} \right] \]

[1.19]
The stationarity conditions of W_c, with respect to the two unknown variables v_2 and v_3, lead to the following two equations

\[
\frac{\partial W_c}{\partial v_2} = \varepsilon \frac{v_2 - v_1}{x_2 - x_1} - \frac{1}{2} \rho \frac{x_2 - x_1}{x_2 - x_1} - \varepsilon \frac{v_3 - v_2}{x_3 - x_2} - \frac{1}{2} \rho \frac{x_3 - x_2}{x_3 - x_2} = 0
\]

\[
\frac{\partial W_c}{\partial v_3} = \varepsilon \frac{v_3 - v_2}{x_3 - x_2} - \frac{1}{2} \rho \frac{x_3 - x_2}{x_3 - x_2} - \varepsilon \frac{v_4 - v_3}{x_4 - x_3} - \frac{1}{2} \rho \frac{x_4 - x_3}{x_4 - x_3} = 0
\]

To go numerically further, we arbitrarily fix the ratio between the electric permittivity and the density of electric charges

\[
\frac{\rho}{\varepsilon} = 1
\]

We obtain the system of two equations with two unknown variables according to

\[
\frac{3v_2}{5} - \frac{3v_3}{10} = \frac{10}{3}
\]

\[
-\frac{3v_2}{10} + \frac{3v_3}{5} = \frac{100}{3}
\]

which has the solution

\[
v_2 = \frac{400}{9}
\]

\[
v_3 = \frac{700}{9}
\]

In Figure 1.3, we can evaluate the quality of the approximation obtained. The interpolation by first-order finite elements is not very far away from the reference solution. It is even exact at the nodes of the grid. In fact, this coincidence is related to the simplicity of the problem taken as an illustration and will not be found in more realistic applications. Here, the exact solution is a second-degree polynomial, whose average behavior is perfectly represented on each piece by linear interpolations.

In order to improve the solution, we have two strategies. The first consists of decreasing the size of the finite elements; it is called the h method by reference to the diameter of the elements which is often denoted h. The second consists of increasing the order of the finite elements; it is denoted the p method because p is
often used to represent the order of the approximation. It is this second strategy which we will implement below.

![Figure 1.3. Exact solution in continuous line and solution by first-order finite elements in dotted lines](image)

1.2.5. Second-order finite elements

We now decide to implement the second-order elements. In order to simplify our work to the maximum, we define a minimal subdivision of the domain, i.e. three nodes at the positions \(x_1 = 0 \), \(x_2 = 5 \), \(x_3 = 10 \) having the three nodal values \(v_1 \), \(v_2 \), and \(v_3 \) and defining only one second-order finite element \([x_1, x_2, x_3]\). The nodal values on the limits are \(v_1 = 0 \) V and \(v_3 = 100 \) V. Only the internal nodal value \(v_2 \) is to be determined by the finite element method. On the single finite element, the electric potential is interpolated by

\[
v(x) = v_1 \frac{(x - x_2)(x_3 - x)}{(x_2 - x_1)(x_3 - x_1)} + v_2 \frac{(x_3 - x)(x_1 - x)}{(x_3 - x_2)(x_1 - x_2)} + v_3 \frac{(x_1 - x)(x_2 - x)}{(x_1 - x_3)(x_2 - x_3)} \tag{1.24}
\]

and its gradient by

\[
\frac{dv}{dx} = v_1 \frac{2x - x_2 - x_3}{(x_2 - x_1)(x_3 - x_1)} + v_2 \frac{2x - x_3 - x_1}{(x_3 - x_2)(x_1 - x_2)} + v_3 \frac{2x - x_1 - x_2}{(x_1 - x_3)(x_2 - x_3)} \tag{1.25}
\]
The introduction of these approximations into functional [1.8], the integration then the application of the stationarity condition with respect to v_2, led to the equation

$$2\varepsilon v_2 = \varepsilon v_1 + \varepsilon v_3 + 25\rho$$ \hspace{1cm} [1.26]

which, for the numerical values selected previously $v_1 = 0$, $v_3 = 100$ and $\rho/\varepsilon = 1$ results, for the unknown nodal value, in $v_2 = 125/2$, which is the good value. Figure 1.4 shows the exact solution and the second-order finite elements solution. These are exactly superimposed. Indeed, the exact solution [1.7] is a second-degree polynomial, which is precisely the type of approximation implemented in the second-order finite element method. Here again, this coincidence is only related to the simplicity of the concerned problem. In more complex applications, we will no longer find such perfect solutions.

![Figure 1.4. The exact solution and the second-order finite elements are exactly superimposed](image)

1.3. The finite element method in two dimensions

1.3.1. The problem of the condenser with square section

We will again be interested in a problem of electrostatics, but this time of a 2D nature, in order to handle a more realistic example of implementation of the finite element method. We will find the differential then the variational forms of this type of problem, with the associated boundary conditions. We will present the general
concepts of domain meshing and finite element interpolation. We will explain the Ritz method and we will implement it to find an approximate solution to the problem. Lastly, we will see how to take advantage of this solution to obtain local and global information that is more explicit than a simple set of nodal values.

The studied device is a condenser whose cross-section is represented in Figure 1.5 and whose depth h is very large in front of the section dimensions.

![Cross-section of the long condenser](image)

Figure 1.5. Cross-section of the long condenser

This condenser is composed of two overlapped conductors of square sections, one with the electric potential of $100 \, V$ and the other with the potential of $0 \, V$. Taking into account the high dimension of the condenser in the direction perpendicular to the xOy plane, the 2D study of the device in its cross-section will give a very good idea of its global behavior. In fact, we are interested here in the capacitor of this condenser, which we will obtain by using the finite element method. For this purpose, we will initially determine the distribution of the electric potential within the dielectric, assumed to be perfect, placed between the two electrodes.
1.3.2. Differential approach

The Maxwell’s equations, representative of the distribution of the electrostatic field in the dielectric, are

\[
\begin{align*}
\text{div}\, D &= \rho \quad \text{(Gauss law)} \\
\text{curl}\, E &= 0 \quad \text{(Faraday law in static mode)} \\
D &= \varepsilon E \quad \text{(constitutive law of the dielectric material)}
\end{align*}
\]

where \(D \) is the electric flux density vector, \(E \) the electric field vector, \(\rho \) the density of electric charges and \(\varepsilon \) the permittivity of the dielectric.

The introduction of \(v \), the electric scalar potential, such that

\[
E = -\text{grad} \, v
\]

automatically solves the second Maxwell’s equation since the rotational of a gradient is systematically zero. By combining the first and third equations, we obtain the partial differential equation of the electric potential

\[
\text{div}[\varepsilon \, \text{grad} \, v] = -\rho
\]

which, in the reference frame \(xOy \), is written

\[
\frac{\partial}{\partial x} \left[\varepsilon \frac{\partial v}{\partial x} \right] + \frac{\partial}{\partial y} \left[\varepsilon \frac{\partial v}{\partial y} \right] = -\rho
\]

and in the particular case of a constant electric permittivity and of a density of electric charges equal to zero

\[
\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \Delta v = 0
\]

However, for the sought generality, we will use expression [1.31] in the rest of this presentation.

To go further in the definition of the problem, we should specify the field of study and the boundary conditions. We could take the whole cross-section of the dielectric of Figure 1.5 as field of study, with \(v = 0 \, V \) on the external edge and
\(v = 100 \, V \) on the internal edge. However, the presence of several symmetries allows the zone of study to be considerably reduced, and thus the efforts of calculation. Indeed, we have just to calculate the solution in the eighth \([P_1, P_2, P_3, P_4]\) of the domain (see Figure 1.6), then to reconstitute, thanks to symmetries, the distribution of the electric potential in all the dielectric.

![Figure 1.6. Reduction of the field of study thanks to symmetries](image)

With a partial differential equation such as [1.31], of elliptic type, and in order to specify the problem clearly, it is necessary to impose conditions on all the limits of the field of studies, either on the state variable \(v \), called the Dirichlet condition, or on its normal derivative \(\frac{\partial v}{\partial n} \), called the Neumann condition. We already know that \(v = 100 \, V \) on the edge \(P_1P_2 \) and that \(v = 0 \, V \) on the edge \(P_3P_4 \). It remains to define the conditions on the rest of the border. On the axes of symmetry \(P_2P_3 \) and \(P_4P_1 \), the field has a particular direction: it is tangential. In fact, no electric flux crosses these parts of the border. Mathematically it means that the normal component of the induction is zero \(D_n = 0 \), i.e. a zero normal component of the field \(E_n = 0 \) and thus that the homogenous Neumann condition \(\frac{\partial v}{\partial n} = 0 \) on the electric potential, which we will take as conditions on these limits.
1.3.3. Variational approach

The functional of coenergy of the previous differential equation which generalizes that given in [1.8] to the 2D case is

$$\int \int \left[\frac{\varepsilon \left(\text{grad} \, v \right)^2}{2} - \rho v \right] dxdy$$ \hspace{1cm} [1.34]

This first functional would be well adapted to the specified problem; however, we would rather use the following expression

$$W_c(v) = \int \int \left[- \text{grad} \, v \cdot D \, dE - \rho v \right] h dxdy$$ \hspace{1cm} [1.35]

This second functional is more general because it is able to handle a possible nonlinearity in the constitutive law \(D(E) \), and the presence of the depth \(h \) of the device makes it homogenous to an electrical energy.

Let us check that the continuous and derivable function \(v_m(x,y) \) which satisfies the boundary conditions \(v_m = 100 \, V \) on \(P_1P_2 \) and \(v_m = 0 \, V \) on \(P_3P_4 \) and which makes functional [1.35] stationary, is a solution of equation [1.31] and also satisfies \(\frac{\partial v_m}{\partial n} = 0 \) on \(P_2P_3 \) and \(P_4P_1P_2P_3 \).

For this purpose, starting from \(v_m(x,y) \), we build the function

$$v(x,y) = v_m(x,y) + \delta v(x,y)$$ \hspace{1cm} [1.36]

where \(\delta v(x,y) \) is a continuous and derivable function, zero on the Dirichlet type boundaries which play the role of an unspecified infinitesimal variation around the balance function \(v_m(x,y) \). By construction, \(v(x,y) \) always verifies the boundary conditions of the problem on \(P_1P_2 \) and \(P_3P_4 \).

Let us introduce \(v(x,y) \) into functional [1.35] and express the variation

$$\delta W_c = \int \int \left[- D \, \text{grad} \, \delta v - \rho \, \delta v \right] h dxdy$$ \hspace{1cm} [1.37]

By using the vector relation

$$\text{div}[D \, \delta v] = \text{div}D \, \delta v + D \, \text{grad} \, \delta v$$ \hspace{1cm} [1.38]