Protection of Electrical Networks

Christophe Prévé
This Page Intentionally Left Blank
Protection of Electrical Networks
Protection of Electrical Networks

Christophe Prévé
Table of Contents

Chapter 1. Network Structures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. General structure of the private distribution network</td>
<td>13</td>
</tr>
<tr>
<td>1.2. The supply source</td>
<td>13</td>
</tr>
<tr>
<td>1.3. HV consumer substations</td>
<td>13</td>
</tr>
<tr>
<td>1.4. MV power supply</td>
<td>16</td>
</tr>
<tr>
<td>1.4.1. Different MV service connections</td>
<td>16</td>
</tr>
<tr>
<td>1.4.2. MV consumer substations</td>
<td>19</td>
</tr>
<tr>
<td>1.5. MV networks inside the site</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1. MV switchboard power supply modes</td>
<td>19</td>
</tr>
<tr>
<td>1.5.2. MV network structures</td>
<td>25</td>
</tr>
<tr>
<td>1.6. LV networks inside the site</td>
<td>31</td>
</tr>
<tr>
<td>1.6.1. LV switchboard supply modes</td>
<td>31</td>
</tr>
<tr>
<td>1.6.2. LV switchboards backed up by generators</td>
<td>35</td>
</tr>
<tr>
<td>1.6.3. LV switchboards backed up by an uninterruptible power supply (UPS)</td>
<td>36</td>
</tr>
<tr>
<td>1.7. Industrial networks with internal generation</td>
<td>42</td>
</tr>
<tr>
<td>1.8. Examples of standard networks</td>
<td>44</td>
</tr>
</tbody>
</table>

Chapter 2. Earthing Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Earthing systems at low voltage</td>
<td>54</td>
</tr>
<tr>
<td>2.1.1. Different earthing systems – definition and arrangements</td>
<td>55</td>
</tr>
<tr>
<td>2.1.2. Comparison of different earthing systems in low voltage</td>
<td>58</td>
</tr>
<tr>
<td>2.1.2.1. Unearthed or impedance-earthed neutral (IT system)</td>
<td>58</td>
</tr>
<tr>
<td>2.1.2.2. Directly earthed neutral (TT system)</td>
<td>59</td>
</tr>
<tr>
<td>2.1.2.3. Connecting the exposed conductive parts to the neutral (TNC – TNS systems)</td>
<td>60</td>
</tr>
<tr>
<td>2.2. Medium voltage earthing systems</td>
<td>61</td>
</tr>
<tr>
<td>2.2.1. Different earthing systems – definition and arrangements</td>
<td>61</td>
</tr>
<tr>
<td>2.2.2. Comparison of different medium voltage earthing systems</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.1. Direct earthing</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.2. Unearthed</td>
<td>63</td>
</tr>
<tr>
<td>2.2.2.3. Limiting resistance earthing</td>
<td>64</td>
</tr>
</tbody>
</table>
2.2.2.4. Limiting reactance earthing .. 64
2.2.2.5. Petersen coil earthing ... 65
2.3. Creating neutral earthing .. 66
 2.3.1. MV installation resistance earthing 66
 2.3.2. Reactance or Petersen coil earthing of an MV installation 70
 2.3.3. Direct earthing of an MV or LV installation 70
2.4. Specific installation characteristics in LV ungrounded systems 70
 2.4.1. Installing a permanent insulation monitor 71
 2.4.2. Installing an overvoltage limiter 71
 2.4.3. Location of earth faults by a low frequency generator (2–10 Hz) 71
2.5. Specific installation characteristics of a MV ungrounded system 73
 2.5.1. Insulation monitoring .. 73
 2.5.2. Location of the first insulation fault 75

Chapter 3. Main Faults Occurring in Networks and Machines 77
3.1. Short-circuits ... 77
 3.1.1. Short-circuit characteristics .. 77
 3.1.2. Different types of short-circuits 78
 3.1.3. Causes of short-circuits ... 79
3.2. Other types of faults .. 80

Chapter 4. Short-circuits ... 81
4.1. Establishment of short-circuit currents and waveform 82
 4.1.1. Establishment of the short-circuit at the utility’s supply terminals 83
 4.1.2. Establishment of the short-circuit current at the terminals of a generator .. 87
4.2. Short-circuit current calculating method 92
 4.2.1. Symmetrical three-phase short-circuit 93
 4.2.1.1. Equivalent impedance of an element across a transformer 94
 4.2.1.2. Impedance of parallel links 95
 4.2.1.3. Expression of impedances as a percentage and short-circuit voltage as a percentage 96
 4.2.1.4. Impedance values of different network elements 98
 4.2.1.5. Contribution of motors to the short-circuit current value 106
 4.2.1.6. Example of a symmetrical three-phase short-circuit calculation 107
 4.2.2. Solid phase-to-earth short-circuit (zero fault impedance) 114
 4.2.2.1. Positive, negative and zero-sequence impedance values of different network elements 117
 4.2.3. The phase-to-phase short-circuit clear of earth 125
 4.2.4. The two-phase-to-earth short-circuit 125
4.3. Circulation of phase-to-earth fault currents 126
 4.3.1. Ungrounded or highly impedance neutral 129
 4.3.2. Impedance-earthed neutral (resistance or reactance) 130
 4.3.3. Tuned reactance or Petersen coil earthing 131
 4.3.4. Directly earthed neutral ... 132
4.3.5. Spreading of the capacitive current in a network with several outgoing feeders upon occurrence of an earth fault. 133
4.4. Calculation and importance of the minimum short-circuit current 137
4.4.1. Calculating the minimum short-circuit current in low voltage in relation to the earthing system 138
4.4.1.1. Calculating the minimum short-circuit current in a TN system . 139
4.4.1.2. Calculating the minimum short-circuit current in an IT system without a distributed neutral .. 144
4.4.1.3. Calculating the minimum short-circuit current in an IT system with distributed neutral .. 150
4.4.1.4. Calculating the minimum short-circuit current in a TT system . 151
4.4.1.5. Influence of the minimum short-circuit current on the choice of circuit-breakers or fuses .. 156
4.4.2. Calculating the minimum short-circuit current for medium and high voltages .. 160
4.4.3. Importance of the minimum short-circuit calculation for protection selectivity .. 162

Chapter 5. Consequences of Short-circuits 163
5.1. Thermal effect .. 163
5.2. Electrodynamical effect ... 165
5.3. Voltage drops ... 167
5.4. Transient overvoltages ... 168
5.5. Touch voltages ... 169
5.6. Switching surges .. 169
5.7. Induced voltage in remote control circuits 170

Chapter 6. Instrument Transformers ... 173
6.1. Current transformers ... 173
6.1.1. Theoretical reminder ... 173
6.1.2. Saturation of the magnetic circuit 176
6.1.3. Using CTs in electrical networks 181
6.1.3.1. General application rule 181
6.1.3.2. Composition of a current transformer 182
6.1.3.3. Specifications and definitions of current transformer parameters 183
6.1.3.4. Current transformers used for measuring in compliance with standard IEC 60044-1 .. 185
6.1.3.5. Current transformers used for protection in compliance with standard IEC 60044-1 .. 187
6.1.3.6. Current transformers used for protection in compliance with BS 3938 (class X) .. 188
6.1.3.7. Correspondence between IEC 60044-1 and BS 3938 CT specifications .. 189
6.1.3.8. Use of CTs outside their nominal values 192
6.1.3.9. Example of a current transformer rating plate 197
6.1.4. Non-magnetic current sensors 197
6.2. Voltage transformers ... 198
 6.2.1. General application rule .. 198
 6.2.2. Specifications and definitions of voltage transformer parameters . 199
 6.2.3. Voltage transformers used for measuring in compliance with
 IEC 60044-2 .. 202
 6.2.4. Voltage transformers used for protection in compliance with
 IEC 60044-2 .. 203
 6.2.5. Example of the rating plate of a voltage transformer used for
 measurement .. 205

Chapter 7. Protection Functions and their Applications 207
 7.1. Phase overcurrent protection (ANSI code 50 or 51) 208
 7.2. Earth fault protection (ANSI code 50 N or 51 N, 50 G or 51 G) 210
 7.3. Directional overcurrent protection (ANSI code 67) 214
 7.3.1. Operation ... 217
 7.4. Directional earth fault protection (ANSI code 67 N) 224
 7.4.1. Operation ... 226
 7.4.2. Study and setting of parameters for a network with limiting
 resistance earthing ... 228
 7.4.3. Study and setting of parameters for an unearthed network ... 234
 7.5. Directional earth fault protection for compensated neutral networks
 (ANSI code 67 N) ... 238
 7.6. Differential protection .. 243
 7.6.1. High impedance differential protection 244
 7.6.1.1. Operation and dimensioning of elements 246
 7.6.1.2. Application of high impedance differential protection.. 256
 7.6.1.3. Note about the application of high impedance differential
 protection .. 265
 7.6.2. Pilot wire differential protection for cables or lines (ANSI code 87 L) 265
 7.6.3. Transformer differential protection (ANSI code 87 T) 276
 7.7. Thermal overload protection (ANSI code 49) 279
 7.8. Negative phase unbalance protection (ANSI code 46) 288
 7.9. Excessive start-up time and locked rotor protection (ANSI code 51 LR) 292
 7.10. Protection against too many successive start-ups (ANSI code 66) .. 294
 7.11. Phase undervoltage protection (ANSI code 37) 295
 7.12. Undervoltage protection (ANSI code 27) 297
 7.13. Remanent undervoltage protection (ANSI code 27) 298
 7.14. Positive sequence undervoltage and phase rotation direction
 protection (ANSI code 27 d – 47) 298
 7.15. Overvoltage protection (ANSI code 59) 300
 7.16. Residual overvoltage protection (ANSI code 59 N) 301
 7.17. Under or overfrequency protection (ANSI code 81) 302
 7.18. Protection against reversals in reactive power (ANSI code 32 Q) ... 303
 7.19. Protection against reversals in active power (ANSI code 32 P) 304
 7.20. Tank earth leakage protection (ANSI code 50 or 51) 306
7.21. Protection against neutral earthing impedance overloads (ANSI code 50 N or 51 N) ... 307
7.22. Overall network earth fault protection by monitoring the current flowing through the earthing connection (ANSI code 50 N or 51 N, 50 G or 51 G) . . . 308
7.23. Protection using temperature monitoring (ANSI code 38 – 49 T) . . . 309
7.24. Voltage restrained overcurrent protection (ANSI code 50 V or 51 V) . 311
7.25. Protection by gas, pressure and temperature detection (DGPT) . . . 314
7.26. Neutral to neutral unbalance protection (ANSI code 50 N or 51 N) . . 315

Chapter 8. Overcurrent Switching Devices 317
 8.1. Low voltage circuit-breakers .. 317
 8.2. MV circuit-breakers (according to standard IEC 62271-100) 325
 8.3. Low voltage fuses .. 331
 8.3.1. Fusing zones – conventional currents 331
 8.3.2. Breaking capacity .. 334
 8.4. MV fuses .. 334

Chapter 9. Different Selectivity Systems 341
 9.1. Amperometric selectivity .. 341
 9.2. Time-graded selectivity .. 345
 9.3. Logic selectivity .. 349
 9.4. Directional selectivity .. 354
 9.5. Selectivity by differential protection 355
 9.6. Selectivity between fuses and circuit-breakers 356

Chapter 10. Protection of Network Elements 361
 10.1. Network protection ... 361
 10.1.1. Earth fault requirements for networks earthed via a limiting resistance (directly or by using an artificial neutral) 362
 10.1.2. Earth fault requirement for ungrounded networks 369
 10.1.3. Requirements for phase-to-phase faults 371
 10.1.4. Network with one incoming feeder 372
 10.1.4.1. Protection against phase-to-phase faults 373
 10.1.4.2. Protection against earth faults 375
 10.1.5. Network with two parallel incoming feeders 381
 10.1.5.1. Protection against phase-to-phase faults 381
 10.1.5.2. Protection against earth faults 384
 10.1.6. Network with two looped incoming feeders 390
 10.1.6.1. Protection against phase-to-phase faults 390
 10.1.6.2. Protection against earth faults 393
 10.1.7. Loop network .. 399
 10.1.7.1. Protection at the head of the loop 399
 10.1.8. Protection by section 401
 10.2. Busbar protection .. 412
 10.2.1. Protection of a busbar using logic selectivity 412
10.2.2. Protection of a busbar using a high impedance differential protection .. 413
10.3. Transformer protection ... 414
 10.3.1. Transformer energizing inrush current 414
 10.3.2. Value of the short-circuit current detected by the HV side protection during a short-circuit on the LV side for a delta-star transformer .. 417
 10.3.3. Faults in transformers .. 423
 10.3.4. Transformer protection .. 424
 10.3.4.1. Specific protection against overloads 424
 10.3.4.2. Specific protection against internal phase short-circuits 424
 10.3.4.3. Specific protection against earth faults 424
 10.3.4.4. Switch-fuse protection .. 425
 10.3.4.5. Circuit-breaker protection ... 432
 10.3.5. Examples of transformer protection .. 436
 10.3.6. Transformer protection setting indications 438
 10.4. Motor protection ... 439
 10.4.1. Protection of medium voltage motors 440
 10.4.1.1. Examples of motor protection ... 446
 10.4.1.2. Motor protection setting indications 448
 10.4.2. Protection of low voltage asynchronous motors 451
 10.5. AC generator protection .. 452
 10.5.1. Examples of generator protection devices 457
 10.5.2. Generator protection setting indications 460
 10.6. Capacitor bank protection .. 462
 10.6.1. Electrical phenomena related to energization 463
 10.6.2. Protection of Schneider low voltage capacitor banks 469
 10.6.3. Protection of Schneider medium voltage capacitor banks 470
 10.8. Protection of direct current installations .. 479
 10.8.1. Short-circuit current calculation ... 479
 10.8.2. Characteristics of insulation faults and switchgear 482
 10.8.3. Protection of persons ... 483
 10.9. Protection of uninterruptible power supplies (UPS) 483
 10.9.1. Choice of circuit-breaker ratings .. 484
 10.9.2. Choice of circuit-breaker breaking capacity 485
 10.9.3. Selectivity requirements ... 485

Appendix A. Transient Current Calculation of Short-circuit Fed by Utility Network 487

Appendix B. Calculation of Inrush Current During Capacitor Bank Energization .. 493

Appendix C. Voltage Peak Value and Current r.m.s Value, at the Secondary of a Saturated Current Transformer 501

Index ... 507
Chapter 1

Network Structures

Definition

Standard IEC 60038 defines voltage ratings as follows:

– **Low voltage (LV):** for a phase-to-phase voltage of between 100 V and 1,000 V, the standard ratings are: 400 V - 690 V - 1,000 V (at 50 Hz).

– **Medium voltage (MV):** for a phase-to-phase voltage between 1,000 V and 35 kV, the standard ratings are: 3.3 kV - 6.6 kV - 11 kV - 22 kV - 33 kV.

– **High voltage (HV):** for a phase-to-phase voltage between 35 kV and 230 kV, the standard ratings are: 45 kV - 66 kV - 110 kV - 132 kV - 150 kV - 220 kV.

In this chapter we will look at:

– types of HV and MV consumer substations;
– structure of MV networks inside a site;
– structure of LV networks inside a site;
– structure of systems with a back-up power supply.

Six standard examples of industrial network structures are given at the end of the chapter.

Each structure is commented upon and divided up so that each functional aspect can be considered.

(NC) means that the switch or circuit-breaker is closed in normal conditions.
(NO) means that the switch or circuit-breaker is open in normal conditions.
Figure 1-1: structure of a private distribution network
1.1. General structure of the private distribution network

Generally, with an HV power supply, a private distribution network comprises (see Figure 1-1):

– an HV consumer substation fed by one or more sources and made up of one or more busbars and circuit-breakers;
– an internal generation source;
– one or more HV/MV transformers;
– a main MV switchboard made up of one or more busbars;
– an internal MV network feeding secondary switchboards or MV/LV substations;
– MV loads;
– MV/LV transformers;
– low voltage switchboards and networks;
– low voltage loads.

1.2. The supply source

The power supply of industrial networks can be LV, MV or HV. The voltage rating of the supply source depends on the consumer supply power. The greater the power required, the higher the voltage must be.

1.3. HV consumer substations

The most usual supply arrangements adopted in HV consumer substations are:

Single power supply (see Figure 1-2)

Advantage:
– reduced cost.

Disadvantage:
– low reliability.

Note: the isolators associated with the HV circuit-breakers have not been shown.
supplied source

HV busbar

NC

NC

NC

NC

HV busbar

to main MV switchboard

Figure 1-2: *single fed HV consumer substation*

Dual power supply (see Figure 1-3)

source 1

source 2

NC

NC

NC

NC

HV busbar

NC

NC

HV

MV

NC

MV

NC

to main MV switchboard

Figure 1-3: *dual fed HV consumer substation*
Network Structures

Operating mode:
– normal:
 - Both incoming circuit-breakers are closed, as well as the coupler isolator.
 - The transformers are thus simultaneously fed by two sources.
– disturbed:
 - If one source is lost, the other provides the total power supply.

Advantages:
– Very reliable in that each source has a total network capacity.
– Maintenance of the busbar possible while it is still partially operating.

Disadvantages:
– More costly solution.
– Only allows partial operation of the busbar if maintenance is being carried out on it.

Note: the isolators associated with the HV circuit-breakers have not been shown.

Dual fed double bus system (see Figure 1-4)

Operating mode:
– normal:
 - Source 1 feeds busbar BB1 and feeders Out1 and Out2.
 - Source 2 feeds busbar BB2 and feeders Out3 and Out4.
 - The bus coupler circuit-breaker can be kept closed or open.
– disturbed:
 - If one source is lost, the other provides the total power supply.
 - If a fault occurs on a busbar (or maintenance is carried out on it), the bus coupler circuit-breaker is tripped and the other busbar feeds all the outgoing lines.

Advantages:
– Reliable power supply.
– Highly flexible use for the attribution of sources and loads and for busbar maintenance.
– Busbar transfer possible without interruption.

Disadvantage:
– More costly in relation to the single busbar system.

Note: the isolators associated with the HV circuit-breakers have not been shown.
1.4. MV power supply

We shall first look at the different MV service connections and then at the MV consumer substation.

1.4.1. Different MV service connections

Depending on the type of MV network, the following supply arrangements are commonly adopted.

Single line service (see Figure 1-5)

The substation is fed by a single circuit tee-off from an MV distribution (cable or line). Transformer ratings of up to 160 kVA of this type of MV service is very common in rural areas. It has one supply source via the utility.
Figure 1-5: *single line service*

Ring main principle (see Figure 1-6)

Figure 1-6: *ring main service*
Ring main units (RMU) are normally connected to form an MV ring main or loop (see Figures 1-20a and 1-20b).

This arrangement provides the user with a two-source supply, thereby considerably reducing any interruption of service due to system faults or operational maneuvers by the supply authority. The main application for RMUs is in utility MV underground cable networks in urban areas.

Parallel feeder (see Figure 1-7)

When an MV supply connection to two lines or cables originating from the same busbar of a substation is possible, a similar MV switchboard to that of an RMU is commonly used (see Figure 1-21).

The main operational difference between this arrangement and that of an RMU is that the two incoming switches are mutually interlocked, in such a way that only one incoming switch can be closed at a time, i.e. its closure prevents that of the other.

On loss of power supply, the closed incoming switch must be opened and the (formerly open) switch can then be closed. The sequence may be carried out manually or automatically. This type of switchboard is used particularly in networks of high load density and in rapidly expanding urban areas supplied by MV underground cable systems.
1.4.2. *MV consumer substations*

The MV consumer substation may comprise several MV transformers and outgoing feeders. The power supply may be a single line service, ring main principle or parallel feeder (see section 1.4.1).

Figure 1-8 shows the arrangement of an MV consumer substation using a ring main supply with MV transformers and outgoing feeders.

![Figure 1-8: example of MV consumer substation](image)

1.5. MV networks inside the site

MV networks are made up of switchboards and the connections feeding them. We shall first of all look at the different supply modes of these switchboards, then the different network structures allowing them to be fed.

1.5.1. *MV switchboard power supply modes*

We shall start with the main power supply solutions of an MV switchboard, regardless of its place in the network.

The number of sources and the complexity of the switchboard differ according to the level of power supply security required.
1 busbar, 1 supply source (see Figure 1-9)

![Diagram of 1 busbar, 1 supply source]

Figure 1-9: 1 busbar, 1 supply source

Operation: if the supply source is lost, the busbar is put out of service until the fault is repaired.

1 busbar with no coupler, 2 supply sources (see Figure 1-10)

![Diagram of 1 busbar with no coupler, 2 supply sources]

Figure 1-10: 1 busbar with no coupler, 2 supply sources

Operation: one source feeds the busbar, the other provides a back-up supply. If a fault occurs on the busbar (or maintenance is carried out on it), the outgoing feeders are no longer fed.
2 bus sections with coupler, 2 supply sources (see Figure 1-11)

![Diagram of 2 bus sections with coupler, 2 supply sources]

Figure 1-11: 2 bus sections with coupler, 2 supply sources

Operation: each source feeds one bus section. The bus coupler circuit-breaker can be kept closed or open. If one source is lost, the coupler circuit-breaker is closed and the other source feeds both bus sections. If a fault occurs in a bus section (or maintenance is carried out on it), only one part of the outgoing feeders is no longer fed.

1 busbar with no coupler, 3 supply sources (see Figure 1-12)

![Diagram of 1 busbar with no coupler, 3 supply sources]

Figure 1-12: 1 busbar with no coupler, 3 supply sources
Operation: the power supply is normally provided by two parallel-connected sources. If one of these two sources is lost, the third provides a back-up supply. If a fault occurs on the busbar (or maintenance is carried out on it), the outgoing feeders are no longer fed.

3 bus sections with couplers, 3 supply sources (see Figure 1-13)

![Figure 1-13: 3 bus sections with couplers, 3 supply sources](image)

Operation: both bus coupler circuit-breakers can be kept open or closed. Each supply source feeds its own bus section. If one source is lost, the associated coupler circuit-breaker is closed, one source feeds two bus sections and the other feeds one bus section. If a fault occurs on one bus section (or if maintenance is carried out on it), only one part of the outgoing feeders is no longer fed.

2 busbars, 2 connections per outgoing feeder, 2 supply sources (see Figure 1-14)

Operation: each outgoing feeder can be fed by one or other of the busbars, depending on the state of the isolators which are associated with it, and only one isolator per outgoing feeder must be closed.

For example, source 1 feeds busbar BB1 and feeders Out1 and Out2. Source 2 feeds busbar BB2 and feeders Out3 and Out4. The bus coupler circuit-breaker can be kept closed or open during normal operation. If one source is lost, the other source takes over the total power supply. If a fault occurs on a busbar (or maintenance is carried out on it), the coupler circuit-breaker is opened and the other busbar feeds all the outgoing feeders.
Figure 1-14: 2 busbars, 2 connections per outgoing feeder, 2 supply sources

2 interconnected double busbars (see Figure 1-15)

Figure 1-15: 2 interconnected double busbars
Operation: this arrangement is almost identical to the previous one (two busbars, two connections per feeder, two supply sources). The splitting up of the double busbars into two switchboards with coupler (via CB1 and CB2) provides greater operating flexibility. Each busbar feeds a smaller number of feeders during normal operation.

“Duplex” distribution system (see Figure 1-16)

Operation: each source can feed one or other of the busbars via its two drawout circuit-breaker cubicles. For economic reasons, there is only one circuit-breaker for the two drawout cubicles, which are installed alongside one another. It is thus easy to move the circuit-breaker from one cubicle to the other. Thus, if source 1 is to feed busbar BB2, the circuit-breaker is moved into the other cubicle associated with source 1.

The same principle is used for the outgoing feeders. Thus, there are two drawout cubicles and only one circuit-breaker associated with each outgoing feeder. Each outgoing feeder can be fed by one or other of the busbars depending on where the circuit-breaker is positioned.

For example, source 1 feeds busbar BB1 and feeders Out1 and Out2. Source 2 feeds busbar BB2 and feeders Out3 and Out4. The bus coupler circuit-breaker can
be kept closed or open during normal operation. If one source is lost, the other source provides the total power supply. If maintenance is carried out on one of the busbars, the coupler circuit-breaker is opened and each circuit-breaker is placed on the busbar in service, so that all the outgoing feeders are fed. If a fault occurs on a busbar, it is put out of service.

1.5.2. MV network structures

We shall now look at the main MV network structures used to feed secondary switchboards and MV/LV transformers. The complexity of the structures differs, depending on the level of power supply security required.

The following MV network supply arrangements are the ones most commonly adopted.

Single fed radial network (see Figure 1-17)

![Figure 1-17: MV single fed radial network](image-url)
Protection of Electrical Networks

– The main switchboard is fed by 2 sources with coupler.

– Switchboards 1 and 2 are fed by a single source, and there is no emergency back-up supply.

– This structure should be used when service continuity is not a vital requirement and it is often adopted for cement works networks.

Dual fed radial network with no coupler (see Figure 1-18)

![Figure 1-18: MV dual fed radial network with no coupler](image-url)

– The main switchboard is fed by two sources with coupler.

– Switchboards 1 and 2 are fed by two sources with no coupler, the one backing up the other.

– Service continuity is good; the fact that there is no source coupler for switchboards 1 and 2 means that the network is less flexible to use.
Dual fed radial network with coupler (see Figure 1-19)

![Diagram of Dual fed radial network with coupler](image)

Figure 1-19: MV dual fed radial network with coupler

- The main switchboard is fed by two sources with coupler.
- Switchboards 1 and 2 are fed by 2 sources with coupler. During normal operation, the bus coupler circuit-breakers are open.
- Each bus section can be backed up and fed by one or other of the sources.
- This structure should be used when good service continuity is required and it is often adopted in the iron and steel and petrochemical industries.

Loop system

This system should be used for widespread networks with large future extensions. There are two types depending on whether the loop is open or closed during normal operation.
Open loop (see Figure 1-20a)

Figure 1-20a: MV open loop system

- The main switchboard is fed by two sources with coupler.
- The loop heads in A and B are fitted with circuit-breakers.
- Switchboards 1, 2 and 3 are fitted with switches.
- During normal operation, the loop is open (in the figure it is normally open at switchboard 2).
- The switchboards can be fed by one or other of the sources.
- Reconfiguration of the loop enables the supply to be restored upon occurrence of a fault or loss of a source (see section 10.1.7.1).
- This reconfiguration causes a power cut of several seconds if an automatic loop reconfiguration control has been installed. The cut lasts for at least several minutes or dozens of minutes if the loop reconfiguration is carried out manually by operators.