Modeling, Performance
Analysis and Control of
Robot Manipulators

Edited by
Etienne Dombre
Wisama Khalil




prest]
R



dcd-wg
C1.jpg


This page intentionally left blank



Modeling, Performance Analysis and Control of Robot Manipulators



This page intentionally left blank



Modeling, Performance
Analysis and Control of
Robot Manipulators

Edited by
Etienne Dombre
Wisama Khalil




Part of this book adapted from “Analyse et modélisation des robots manipulateurs” and
“Commande des robots manipulateurs” published in France in 2001 and 2002 by Hermes
Science/Lavoisier

First published with revisions in Great Britain and the United States in 2007 by ISTE Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may
only be reproduced, stored or transmitted, in any form or by any means, with the prior
permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction
outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd ISTE USA

6 Fitzroy Square 4308 Patrice Road
London WIT 5DX Newport Beach, CA 92663
UK USA

www.iste.co.uk

© ISTE Ltd, 2007
© LAVOISIER, 2001, 2002

The rights of Etienne Dombre and Wisama Khalil to be identified as the authors of this work
have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Modeling, performance analysis and control of robot manipulators/edited by Etienne Dombre,
Wisama Khalil.
p. cm.

Includes index.

ISBN-13: 978-1-905209-10-1

ISBN-10: 1-905209-10-X

1. Robotics. 2. Manipulators (Mechanism) I. Dombre, E. (Etienne) II. Khalil, W. (Wisama)
TJ211.M626 2006
629.8'933--dc22

2006032328

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library
ISBN 10: 1-905209-10-X

ISBN 13: 978-1-905209-10-1

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.



Table of Contents

Chapter 1. Modeling and Identification of Serial Robots. . . . . . . ... ..
Wisama KHALIL and Etienne DOMBRE

L.1.Introduction. . . . ... ... ... ...
1.2. Geometricmodeling. . . . .. ....... ... ... .. . ... ...,
1.2.1. Geometric description . . . . .. ... ... ...
1.2.2. Direct geometricmodel . . . . ... ... .. ...... .. .......
1.2.3. Inverse geometricmodel. . . . . . ... ... ... L,
1.2.3.1. Stating the problem. . . . ... ............... . ....
1.2.3.2. Principle of Paul’smethod . . . ... ... .............
1.3. Kinematicmodeling. . . . ... ................ . .......
1.3.1. Direct kinematicmodel . . ... .......... .. .........
1.3.1.1 Calculation of the Jacobian matrix by derivation
ofthe DGM . . . . ...
1.3.1.2. Kinematic Jacobian matrix . . . ... ... .............
1.3.1.3. Decomposition of the kinematic Jacobian matrix into
threematrices . . . . . . ... ...
1.3.1.4. Dimension of the operational space of arobot. . . . . ... ...
1.3.2. Inverse kinematicmodel. . . . . ... ... ... .. ...,
1.3.2.1. General form of the kinematicmodel . . . . ... .........
1.3.2.2. Inverse kinematic model for the regularcase . ..........
1.3.2.3. Solution at the proximity of singular positions . ... ......
1.3.2.4. Inverse kinematic model of redundant robots . . . ... ... ..

0 3 N NN

10
14
14

15
17

19
20
21
21
22
23
24



vi  Modeling, Performance Analysis and Control of Robot Manipulators

1.4. Calibration of geometric parameters . . . . ... ... ... ........
L4.1. Introduction . . . . ...... .. .
1.4.2. Geometric parameters . . . . . . . .o oot

1.4.2.1. Geometric parameters of therobot. . . . . ... ... .. ... ..
1.4.2.2. Parameters of the robot’s location . . . ... ............
1.4.2.3. Geometric parameters of the end-effector . . . ... .......
1.4.3. Generalized differential model ofarobot. . . . .. ... ... ...,
1.4.4. Principle of geometric calibration . . . . . . ... ... .. ......
1.4.4.1. General form of the calibrationmodel . . .. ... ... .....
1.4.4.2. Identifying the geometric parameters . . . . . .. .........
1.4.4.3. Solving the identification equations . . . . ... ..........
1.4.5. Calibration methods of geometric parameters . . . . ... .... ..
1.4.5.1. Calibration model by measuring the end-effector location. . . .
1.4.5.2. Autonomous calibrationmodels . . . ... .............
1.4.6. Correction of geometric parameters . . . . . ... ... ........

1.5. Dynamic modeling . . ... ... ... ... ... ... ... ...

1.5.1. Lagrange formalism . . . .. ............. . .........
1.5.1.1. General form of dynamic equations . . . . .............
1.5.1.2. Calculation of energy . . .......................
1.5.1.3. Properties of the dynamic model. . . . . ... ...........
1.5.1.4. Taking into consideration the friction. . . . . .. ... ... ...
1.5.1.5. Taking into account the inertia of the actuator’s rotor . . . . . .
1.5.1.6. Taking into consideration the forces and moments exerted
by the end-effector on its environment . . . . .. ..............

1.5.2. Newton-Euler formalism . . .. .....................
1.5.2.1. Newton-Euler equations linear in the inertial parameters . . . .
1.5.2.2. Practical form of Newton-Euler equations . . . . . ... .....

1.5.3. Determining the base inertial parameters. . . . . ... ... ... ..

1.6. Identification of dynamic parameters. . . . . .. ... ... ........
L6.1. Introduction . . . .. ... ... ..
1.6.2. Identification principle of dynamic parameters . . . ... ... ...

1.6.2.1.Solvingmethod . . . . ... ... ... ... ... .. ...
1.6.2.2. Identifiable parameters. . . . . ... ... ... .. ... .. ....
1.6.2.3. Choice of identification trajectories . . . . . ... .........
1.6.2.4. Evaluation of joint coordinates. . . . ... .............
1.6.2.5. Evaluation of joint torques . . . .. ... ..............

26
26
26
26
27
28
29
30
30
31
34
35
35
36
39
40
42
43
44
46
47
48

48
50
50
52
53
59
59
60
60
62
63
65
65



Table of Contents  vii

1.6.3. Identification model using the dynamic model . .. ... ... ... 66
1.6.4. Sequential formulation of the dynamic model . . . . . ... ... .. 68
1.6.5. Practical considerations . . . . .. ... ................. 69
L.7.Conclusion . . . . ... . ... 70
1.8. Bibliography . . . . . ... . ... ... .. 71
Chapter 2. Modeling of Parallel Robots . . . . ... ... ............ 81

Jean-Pierre MERLET and Frangois PIERROT

2.1.Introduction. . . . . ... 81
2.1.1. Characteristics of classicrobots . . . . .. ............... 81
2.1.2. Other types of robot structure. . . . ... ................ 82
2.1.3. General advantages and disadvantages . . . . .. ... ........ 86
2.1.4. Presentday uses. . . . . . ... 88

2.1.4.1. Simulators and space applications . . . . . ............. 88
2.1.4.2. Industrial applications . . . . . ....... ... .. ..., 91
2.1.4.3. Medical applications . . . .. ..................... 93
2.1.4.4. Precise positioning . . . . .. ... ... ii i 94

22.Machine types . . . . . ..o oot 95
22 1. Introduction . . . . ... ... 95
2.2.2. Plane robots with three degrees of freedom . .. ... ........ 100
2.2.3. Robots movIiNg inSpace . . . . . . . .o v it 101

2.2.3.1. Manipulators with three degrees of freedom. . . . .. ... ... 101
2.2.3.2. Manipulators with four or five degrees of freedom . . . . . . .. 107
2.2.3.3. Manipulators with six degrees of freedom . . . . ... ... ... 109

2.3. Inverse geometric and kinematicmodels . . . . ... ... ... ... .. 113
2.3.1. Inverse geometricmodel. . . . .. ... ... ... 113
232. Inversekinematics . . . . ... ... 115
2.3.3. Singular configurations . . . .. ... . ... ...... .. ...... 117

2.3.3.1. Singularities and statics . . . . ... .. ... ... .. ....... 121
2332.Stateoftheart. . . . ... ... ... ... 121
2.3.3.3. The geometric method . . . . .. ... ... ............. 122
2.3.3.4. Maneuverability and condition number. . . . ... ... ... .. 125

2.3.3.5. Singularities in practice . . . . . . ... ... 126



viii  Modeling, Performance Analysis and Control of Robot Manipulators

2.4. Direct geometricmodel. . . . .. ... ... ... 126
24.1. Tterativemethod. . . . . ... .. ... L 127
24.2. Algebraicmethod. . . . ... ... ... 128

2.4.2.1. Reminder concerning algebraic geometry . ... ......... 128
24.22.Planarrobots. . . ... ... 130
2.4.2.3. Manipulators with six degrees of freedom . . . . ... ...... 133
2.5.Bibliography . . . . . . . ... 134
Chapter 3. Performance Analysis of Robots. . . . . . ... ........... 141
Philippe WENGER

3.l Introduction. . . . ... 141

32.Accessibility . . . ... 143
3.2.1. Various levels of accessibility . . ... ................. 143
3.2.2. Condition of accessibility . . . .. ... ................. 144

3.3. Workspace of a robot manipulator . . . ... ................ 146
3.3.1. General definition. . . . .. ... ... ... 146
3.3.2. Space of accessible positions . . . . .. ... ... ... ... 148
3.3.3. Primary space and secondary space . . . . . ... ... ........ 149
3.3.4. Defined orientation workspace . . . . . . ... ............. 151
33.5. Freeworkspace . . . .. ... ... 152
3.3.6. Calculation of the workspace . . . ... ................. 155

34.Conceptofaspect . . .. ... ... .. 157
34. 1. Definition . .. ... .. ... 157
3.4.2. Mode of aspects calculation. . . . .. ........ ... .. .. ... 158
343.Freeaspects . . . . .. 160
3.4.4. Application of theaspects. . . .. ... ................. 161

3.5. Concept of connectivity . . .. ... ... ... ... ... .. 163
35 Introduction . . ... 163
3.5.2. Characterization of n-connectivity. . . . . ... ............ 165
3.5.3. Characterization of t-connectivity . . . . .. ... ........... 168

3.6. Local performances . . . . .. ....... .. ... ... ... 174
3.6.1. Definition of dexterity . . . . ... ... . ... ... ....... 174
3.6.2. Manipulability. . . ... ... ... ... 174

3.6.3. Isotropyindex. . . ... .. ... 180



Table of Contents  ix

3.6.4. Lowestsingularvalue . . . ........................ 181
3.6.5. Approach lengthsandangles . . . ... ................. 181
37.Conclusion . . . ... ... 183
38.Bibliography . . . ... ... ... 183
Chapter 4. Trajectory Generation. . . . ... ................... 189

Moussa HADDAD, Taha CHETTIBI, Wisama KHALIL and Halim LEHTIHET

4.1. Introduction. . . . .. . ... ... 189
4.2. Point-to-point trajectory in the joint space under kinematic
CONSIIAINES . . . . o oottt e e e e e 190
4.2.1. Fifth-order polynomial model . . ... ... .............. 191
4.2.2. Trapezoidal velocitymodel . . . . .. .................. 193
4.2.3. Smoothed trapezoidal velocitymodel . . . . . ... ..... ... .. 198
4.3. Point-to-point trajectory in the task-space under kinematic
CONSLIAINS . . . . . v ottt e 201
4.4. Trajectory generation under kinodynamic constraints. . . . . ... ... 204
4.4.1. Problem statement . . . . .. ... ... ... 205
44.1.1.ConStraints. . . . . ..o 206
4.4.1.2. Objective function . . . .. ..... . ... .. .. ...... 207
4.4.2. Description of themethod. . . . . ... ...... . ... ..., .. 208
442.1.0uthine . . ... ... 208
4.4.2.2. Construction of a random trajectory profile . .. ... ... ... 209
4.4.2 3. Handling kinodynamic constraints. . . . .............. 212
4424, SUMMATY . . . o v vt e e e e e e e 216
4.4.3. Trapezoidal profiles . . ... ....... ... .. .......... 218
45 Examples . . . ... 221
45.1.Caseofatwodofrobot . .. ... ... ... ... ... .. .. 221
4.5.1.1. Optimal free motion planning problem . . . . ... ........ 221
4.5.1.2. Optimal motion problem with geometric
pathconstraint. . . . . ... ... ... ... .. ... 223
4.5.2.Caseofasixdofrobot. . .. ....... ... ............ 224
4.5.2.1. Optimal free motion planning problem . . . . ... .. ... ... 225

4.5.2.2. Optimal motion problem with geometric
pathconstraints . . . . . . ... ... ... ... 226



X  Modeling, Performance Analysis and Control of Robot Manipulators

4.5.2.3. Optimal free motion planning problem with

intermediate points . . . . . . ...
4.6.Conclusion . . ... .. ... ...
4.7.Bibliography . . . . . . ...
Appendix: Stochastic Optimization Techniques. . . . .. ... .. ... ...

Chapter 5. Position and Force Control of a Robot in a Free or
Constrained Space. . . . .. . ... . ... ... . ...

Pierre DAUCHEZ and Philippe FRAISSE

S.1.Introduction. . . . .. ...
5.2.Freespacecontrol . . . ... ... ...
5.2.1. Hypotheses applying to the whole chapter . . . . .. ... ... ...
5.2.2. Complete dynamic modeling of a robot manipulator. . . . . . . ..
5.2.3. Ideal dynamic control in the jointspace . ... ............
5.2.4. Ideal dynamic control in the operational working space . . . . . . .
5.2.5. Decentralized control . . . ... ... ... ...
5.2.6. Slidingmode control. . . . .. ... ... . ... ... .. ...,
5.2.7. Robust control based on high order slidingmode . . . .. ... ...
5.2.8. Adaptivecontrol . .. ... ... ... ...
5.3. Control in a constrained space. . . . . ... .................
5.3.1. Interaction of the manipulator with the environment . . . . . .. ..
53.2.Impedance control . . ... ... ... ... .
5.3.3. Force control of a mass attached toaspring . . . .. .........
5.3.4. Non-linear decoupling in a constrained space . . . .. ........
5.3.5. Position/force hybridcontrol . . . ... ... ..............
5.3.5.1. Parallel structure . . . .. ... ...
5.3.52. External structure. . . . .. ...
5.3.6. Specificity of the force/torque control. . . . . . ... ... ......
54.Conclusion . . . ... ...
5.5.Bibliography . . . . ... ...



Table of Contents  xi

Chapter 6. Visual Servoing . . . . . ... ... ... ... ... ....... 279
Frangois CHAUMETTE

6.1. Introduction. . . . . .. ... 279
6.2. Modeling visual features . . . . .. ... . ... ... ... ... ... 281
6.2.1. The interaction matrix . . . . . . ... ...t 281
6.2.2. Eye-in-hand configuration. . . . . .. ........ .. ... .. ... 282
6.2.3. Eye-to-hand configuration. . . . . ... ................. 283
6.2.4. Interaction matrix. . . . . . . . ... 284
6.2.4.1. Interaction matrix ofa2-Dpoint. . . . . . ... ... .. ..... 284
6.2.4.2. Interaction matrix of a 2-D geometric primitive. . . . . . . ... 287
6.2.4.3. Interaction matrix for complex 2-D shapes. . . .. ... ... .. 290
6.2.4.4. Interaction matrix by learning or estimation . . . . .. ...... 293
6.2.5. Interaction matrix related to 3-D visual features. . . . .. ... ... 294
6.2.5.1. Poseestimation . . . ... ....... .. ... ... ... 294
6.2.5.2. Interaction matrix relatedtoQu. . . . . .. ... ... ... . ... 297
6.2.5.3. Interaction matrix relatedtoa3-Dpoint . . . ... ... .. ... 298
6.2.5.4. Interaction matrix relatedtoa3-Dplane . . . .. ... ... ... 300
6.3. Task function and control scheme . . . ... ... ... .. ......... 301
6.3.1. Obtaining the desired value s* . . . ... ................ 301
6.3.2. Regulating the task function . . . ... ................. 302
6.3.2.1. Case where the dimension of sis6(k=6). .. .......... 304
6.3.2.2. Case where the dimension of s is greater than 6 (k>6) . . . . . 312
6.33.Hybridtasks . . . . ... ... ... ... . . ... ... 317
6.33.1. Virtuallinks . . . .. ... ... .. 317
6.3.3.2. Hybrid task function . . . . . ... .................. 319
6.3.4. Targettracking . . . . . .. ... ... .. ... 323
6.4. Other exteroceptive SeNSOIs . . . . . . o v v v v v v vt et 325
6.5.Conclusion . . . . ... ... 326

6.6. Bibliography . . . . ... .. ... ... . 328



xii  Modeling, Performance Analysis and Control of Robot Manipulators

Chapter 7. Modeling and Control of Flexible Robots . . . . . ... ... ...

Frédéric BOYER, Wisama KHALIL, Mouhacine BENOSMAN and
George LE VEY

7.1. Introduction. . . . . .. ...

7.2. Modeling of flexiblerobots . . . . ... .. .................
721 . Introduction . . . .. ...
7.2.2. Generalized Newton-Euler model for a kinematically free
elasticbody . . . ... ... ...

7.2.2.1. Definition: formalism of a dynamic model. . . . . ... ... ..
7.2.2.2. Choice of formalism . . . . .. ....................
7.2.2.3. Kinematic model of a free elasticbody . . . ... ... ......
7.2.2.4. Balance principle compatible with the mixed formalism. . . . .
7.2.2.5. Virtual power of the field of acceleration quantities . . . . . . .
7.2.2.6. Virtual power of external forces . . . ... .............
7.2.2.7. Virtual power of elastic cohesion forces . . . ... ........
7.2.2.8. Balance of virtual powers . . . . ... ... ... ... ... ...,
7.2.2.9. Linear rigid balance in integral form . .. .............
7.2.2.10. Angular rigid balance in integral form. . . . ... ... ... ..
7.2.2.11. Elastic balances in integral form . . . . ... ...........
7.2.2.12. Linear rigid balance in parametric form. . . ... ... ... ..
7.2.2.13. Intrinsic matrix form of the generalized

Newton-Eulermodel . . . . .. ... ... ... .. .........

7.2.3. Velocity model of a simple open robotic chain . . .. ........
7.2.4. Acceleration model of a simple open robotic chain. . . . ... ...
7.2.5. Generalized Newton-Euler model for a flexible manipulator . . . .
7.2.6. Extrinsic Newton-Euler model for numerical calculus . . . . . . ..
7.2.7. Geometric model ofanopenchain. . . . .. ... ... ... ...

7.2.8. Recursive calculation of the inverse and direct dynamic models

foraflexiblerobot . . . ... ... .. .. ... .. L
728 1. Introduction . . . .. ... L
7.2.8.2. Recursive algorithm of the inverse dynamic model. . . . . . . .
7.2.8.3. Recursive algorithm of the direct dynamic model. . . . . . . . .
7.2.8.4. Tterative symbolic calculation. . . . ... ..............

7.3. Control of flexible robot manipulators. . . . ... .............

73.1. Introduction . . . . . ... ...
7.3.2. Reminderof notations . . . . ... ... .. ... .. .. ... .....



Table of Contents  xiii

7.33.Control methods . . . ....... ... .. . .. . ... ... ... 375
733.1.Regulation . . . ......... ... .. ... 375
7.3.3.2. Point-to-point movement in fixed time . . . . .. ... ...... 375
7.3.3.3. Trajectory tracking in the jointspace . . . .. ........... 380
7.3.3.4. Trajectory tracking in the operational space . . . ... ...... 383

7A4.Conclusion . . .. ... 388
7.5.Bibliography . . . ... .. ... 389
Listof Authors. . . . . .. ... ... ... ... ... .. 395



This page intentionally left blank



Chapter 1

Modeling and Identification
of Serial Robots

1.1. Introduction

The design and control of robots require certain mathematical models, such as:

— transformation models between the operational space (in which the position of
the end-effector is defined) and the joint space (in which the configuration of the
robot is defined). The following is distinguished:

- direct and inverse geometric models giving the location of the end-effector
(or the tool) in terms of the joint coordinates of the mechanism and vice versa,

- direct and inverse kinematic models giving the velocity of the end-effector in
terms of the joint velocities and vice versa,

— dynamic models giving the relations between the torques or forces of the
actuators, and the positions, velocities and accelerations of the joints.

This chapter presents some methods to establish these models. It will also deal
with identifying the parameters appearing in these models. We will limit the
discussion to simple open structures. For complex structure robots, i.e. tree or closed
structures, we refer the reader to [KHA 02].

Chapter written by Wisama KHALIL and Etienne DOMBRE.
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Mathematical development is based on (4 X 4) homogenous transformation
matrices. The homogenous matrix 'T; representing the transformation from frame R;
to frame R; is defined as:

T, - ‘R; B _)Tsp ny fay Py (1]
0 0 0 1 0 0 0 1

where isj, inj and iaj of the orientation matrix iRj indicate the unit vectors along the
axes xj, yj and z; of the frame R; expressed in the frame R;; and where 'P; is the
vector expressing the origin of the frame R; in the frame R;.

1.2. Geometric modeling
1.2.1. Geometric description

A systematic and automatic modeling of robots requires an appropriate method
for the description of their morphology. Several methods and notations have been
proposed [DEN 55], [SHE 71], [REN 75], [KHA 76], [BOR 79], [CRA 86]. The
most widely used one is that of Denavit-Hartenberg [DEN 55]. However, this
method, developed for simple open structures, presents ambiguities when it is
applied to closed or tree-structured robots. Hence, we recommend the notation of
Khalil and Kleinfinger which enables the unified description of complex and serial
structures of articulated mechanical systems [KHA 86].

A simple open structure consists of n+1 links noted Cy, ..., C,, and of n joints.
Link C indicates the robot base and link C, the link carrying the end-effector. Joint
j connects link C; to link Cj_y (Figure 1.1). The method of description is based on the
following rules and conventions:

— the links are assumed to be perfectly rigid. They are connected by revolute or
prismatic joints considered as being ideal (no mechanical clearance, no elasticity);

— the frame R; is fixed to link Cj;
— axis z; is along the axis of joint j;

— axis Xxj is along the common perpendicular with axes z; and zj;. If axes z; and
zjy1 are parallel or collinear, the choice of x; is not unique: considerations of
symmetry or simplicity lead to a reasonable choice.

The transformation matrix from the frame R;.; to the frame R; is expressed in
terms of the following four geometric parameters:

— ay: angle between axes zj.; and z; corresponding to a rotation about x;.p;
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— dj: distance between z;_1 and z; along xj.1;
— 0;: angle between axes xj.1 and x; corresponding to a rotation about z;;

—1j: distance between x;._j and x; along z;.

Figure 1.2. Geometric parameters in the case of a simple open structure
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The joint coordinate g associated to the j™ joint is either 8; or 1j, depending on
whether this joint is revolute or prismatic. It can be expressed by the relation:

q; =08; +0jf; [1.2]

with:
—0; = 0 if the joint is revolute;
—o; =1 if the joint is prismatic;

~5;=1-0j.

The transformation matrix defining the frame R; in the frame R; is obtained
from Figure 1.2 by:

j'lTj = Rot(x, ;) Trans(x, d;) Rot(z, ;) Trans(z, r;)

co;  -Sl 0 d

= [1.3]

0 0 0 1

where Rot(u, o) and Trans(u, d) are (4 X 4) homogenous matrices representing,
respectively, a rotation o about the axis u and a translation d along u.

NOTES.

— for the definition of the reference frame Ry, the simplest choice consists of
taking Rg aligned with the frame R when q; = 0, which indicates that z, is along z;
and Oy =0O; when joint 1 is revolute, and z( is along z; and X¢ is parallel to x;
when joint 1 is prismatic. This choice renders the parameters o and d; zero;

— likewise, the axis x, of the frame R;, is taken collinear to x,,.; when q, = 0.
This choice makes 1, (or 6,,) zero when 6, = 1 (or = 0 respectively);

— for a prismatic joint, the axis z; is parallel to the axis of the joint; it can be
placed in such a way that d; or dj+ is zero;

— when z; is parallel to zj1, the axis x; is placed in such a way that rj or rj4 is
Zero;
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— in practice, the vector of joint variables q is given by:
q=Kcqet+qo

where qq represents an offset, q. are encoder variables and K¢ is a constant matrix.

EXAMPLE 1.1.— description of the structure of the Stdubli RX-90 robot (Figure
1.3). The robot shoulder is of an RRR anthropomorphic type and the wrist consists
of three intersecting revolute axes, equivalent to a spherical joint. From a
methodological point of view, firstly the axes z; are placed on the joint axes and the
axes X;j are placed according to the rules previously set. Next, the geometric
parameters of the robot are determined. The link frames are shown in Figure 1.3 and
the geometric parameters are given in Table 1.1.

Figure 1.3. Link frames for the Stiubli RX-90 robot
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] Sj 0 dj 8; Tj
1 0 0 0 01 0
2 0 /2 0 0 0
3 0 0 D3 03 0
4 0 2 0 04 RL4
5 0 /2 0 05 0
6 0 ) 0 06 0

Table 1.1. Geometric parameters for the Stdubli RX-90 robot

1.2.2. Direct geometric model

The direct geometric model (DGM) represents the relations calculating the
operational coordinates, giving the location of the end-effector, in terms of the joint
coordinates. In the case of a simple open chain, it can be represented by the
transformation matrix 9T,,:

T, =°T1(q1) 'Ta(q2) - ™' Tn(dn) [1.4]
The direct geometric model of the robot may also be represented by the relation:
X =1(q) [1.5]
q being the vector of joint coordinates such that:
q=[q1 9 ... qu]" [1.6]
The operational coordinates are defined by:

X=[X] X2 ... Xpp]T [1.7]



Modeling and Identification of Serial Robots 7

There are several possibilities to define the vector X. For example, with the help
of the elements of matrix 9T,:

X=[Px Py P, s, sy s, ng ng n, ay ay a,]’ [1.8]
or otherwise, knowing that s = nxa
X=[Px Py P, ny ny n, ay a, a,’ [1.9]

For the orientation, other representations are currently used such as Euler angles,
Roll-Pitch-Yaw angles or Quaternions. We can easily derive direction cosines s, n, a
from any one of these representations and vice versa [KHA 02].

EXAMPLE 1.2. — direct geometric model for the Staubli RX-90 robot (Figure 1.3).
According to Table 1.1, the relation [1.3] can be used to write the basic
transformation matrices j'lTj. The product of these matrices gives 9Ty that has as
components:

sy = C1(C23(C4C5C6 — S436) — S23S5C6) — S1(S4C5C6 + C4S6)
sy = S1(C23(C4C5C6 — S4S6) — S23S5C6) + C1(SAC5CE + C4S6)
s, = $S23(C4C5C6 — S4S6) + C2385C6

n, = C1(~ C23 (C4C5S6 + S4C6) + S238556) + S1(S4C5S6 — C4C6)
ny = S1(~ C23 (C4C5S6 + S4C6) + S235556) — C1(SAC5S6 — CACH)
n, = — S23(C4C586 + S4C6) — C23S5S6

a, = — C1(C23C4S5 + S23C5) + S1S4S5

ay = — S1(C23C4S5 + S23C5) — C184S5

a, = — S23C4S5 + C23C5

P, =— C1(S23 RL4 — C2D3)

P, = S1(S23 RL4 - C2D3)

P,=C23 RL4 + S2D3

with C23=cos (0, + 03) and S23 = sin (0, + 63).

1.2.3. Inverse geometric model

We saw that the direct geometric model of a robot calculates the operational
coordinates giving the location of the end-effector in terms of joint coordinates. The
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inverse problem consists of calculating the joint coordinates corresponding to a
given location of the end-effector. When it exists, the explicit form which gives all
possible solutions (there is rarely uniqueness of solution) constitutes what we call
the inverse geometric model (IGM). We can distinguish three methods for the
calculation of IGM:

— Paul’s method [PAU 81], which deals with each robot separately and is
suitable for most of the industrial robots;

— Pieper’s method [PIE 68], which makes it possible to solve the problem for the
robots with six degrees of freedom having three revolute joints with intersecting
axes or three prismatic joints;

— the general Raghavan and Roth’s method [RAG 90] giving the general solution
for robots with six joints using at most a 16-degree polynomial.

Whenever calculating an explicit form of the inverse geometric model is not
possible, we can calculate a particular solution through numeric procedures [PIE
68], [WHI 69], [FOU 80], [FEA 83], [WOL 84], [GOL 85] [SCI 86].

In this chapter, we present Paul’s method; Pieper’s method, and Raghavan and
Roth’s method are detailed in [KHA 02].

1.2.3.1. Stating the problem

Let fTEd be the homogenous transformation matrix representing the desired
location of the end-effector frame Ry with respect to the world frame Ry. In general
cases, fTd can be expressed in the following form:

fTpd=Z 0T (q) E [1.10]

where (see Figure 1.4):

— Z is the transformation matrix defining the location of the robot frame R in
the world reference frame Rg;

— 0T, is the transformation matrix of the terminal link frame R,, with respect to
frame Ry in terms of the joint coordinates q;

— E is the transformation matrix defining the end-effector frame Rg in the
terminal frame R,.
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Figure 1.4. Transformations between the end-effector frame and the world reference frame

When n > 6, we can write the following relation by grouping on the right hand
side all known terms:

0Ty (q) =Z! fTgd E! [1.11]

When n < 6, the robot’s operational space is less than six. It is not possible to
place the end-effector frame Rg in an arbitrary location Rgd describing the task,
except when the frames R and Rgd are conditioned in a particular way in order to
compensate for the insufficient number of degrees of freedom. Practically, instead of
bringing frame R onto frame Rgd, we will seek to only place some elements of the
end-effector (points, straight lines).

In the calculation of IGM, three cases can be distinguished:

a) no solution when the desired location is outside of the accessible zone of the
robot. It is limited by the number of degrees of freedom of the robot, the joint limits
and the dimension of the links;

b) infinite number of solutions when:
— the robot is redundant with respect to the task,
— the robot is in some singular configuration;

¢) a finite number of solutions expressed by a set of vectors {ql, ..., q"}. A robot
is said to be solvable [PIE 68], [ROT 76] when it is possible to calculate all the
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configurations making it possible to reach a given location. Nowadays, all serial
manipulators having up to six degrees of freedom and which are not redundant may
be considered as solvable. The number of solutions depends on the structure of the
robot and is at most equal to 16.

1.2.3.2. Principle of Paul’s method
Let us consider a robot whose homogenous transformation matrix has the

following form:

0T, = °T1(q1) 'T2(q2) - "' Tu(dn) [1.12]

Let Ug be the desired location, such that:

PX
snaPy

Ua=| Y Y %Y
0 s, n, a, P, [1.13]
0 0 0 1
We seek to solve the following system of equations:
Up="Ti(q1) 'Ta(q) - "' Tn(qn) [1.14]

Paul’s method consists of successively pre-multiplying the two sides of equation
[1.14] by the matrices JTj_; for j = 1, ..., n—1, operations which make it possible to
isolate and identify one after another of the joint coordinates.

For example, in the case of a six degrees of freedom robot, the procedure is as
follows:

— left multiplication of both sides of equation [1.14] by IT:
ITO U0:1T22T33T44T5 5T6 [115]

The right hand side is a function of the variables qp, ..., q¢. The left hand side is
only a function of the variable q;;

— term-to-term identification of the two sides of equation [1.15]. We obtain a
system of one or two equations function of q; only, whose structure belongs to a
particular type amongst a dozen of possible types;
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— left multiplication of both sides of equation [1.15] by 2T and calculation of q5.

The succession of equations enabling the calculation of all gj is the following:

Up= 0T, 1T,2T3 3T, 4T55T

1Ty Uy = IT2T5 3T, 4T3

2T, Uy = 2T; 3T, 4Ts 5T, [1.16]
312 Uy = 3T4 4T 5T

4T; Uy = 4T5 5T,

ST, Uy = 5Ty

with:
Ujyy =1M1Tg =T Ujforj=0, ..., 4 [1.17]

The use of this method for a large number of industrial robots has shown that
only a few types of equations are encountered, and that their solutions are relatively
simple.

NOTES.

1) When a robot has more than six degrees of freedom, the system to be solved
contains more unknowns than parameters describing the task: it lacks (n—6)
relations. Two strategies are possible:

— the first strategy consists of setting arbitrarily (n—6) joint variables. In this
case we deal with a problem with six degrees of freedom. The choice of these joints
results from the task’s specifications and from the structure of the robot;

— the second strategy consists of introducing (n—6) supplementary relations
describing the redundancy, like for example in [HOL 84] for robots with seven
degrees of freedom.

2) A robot with less than six degrees of freedom cannot place its end-effector at
arbitrary positions and orientations. Thus, it is not possible to bring the end-effector
frame Ry onto another desired frame R4 except if certain elements of OTgd are
imposed in a way that compensates for the insufficient number of degrees of
freedom. Otherwise, we have to reduce the number of equations by considering only
certain elements (points or axes) of the frames R and Rgd.
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EXAMPLE 1.3.— inverse geometric model of the Stiubli RX-90 robot. After
performing all the calculations, we obtain the following solutions:

{el =atan2(P,,P,)

0',=0,+m
0, = atan2(S2, C2)

with:

YZ-eXNX?P+Y?-Z7?
x*+Y?

_ XZ-eYVX?+Y?-77
X% +Y?

X =-2P,D3

Y =-2BID3

Z=(RL4)? —(D3)? - (P,)* - (B1)?

Bl =P, Cl +P,SI

C2

withe==+1

S2

-P,S2-BI1C2+D3 -BIS2+P,C2
0; = atan2 ,
RLA4 RL4
{64 =atan2[Sl a, —Cla,,—C23(Cla, +Slay)—S23 a,]

0,=0,+m
05 = atan2(S5, C5)

with:

S5=-C4[C23 (Cl ax+ Sl ay) + $23a,] + S4 (S1 a— Cl1 ay)
C5=-S23 (Cl ay+ Sl ay) + C23 a,

06 = atan2(S6, C6)
with:

S6 =~ C4 (S1 sx— Cl sy) — S4[C23 (C1 5+ S1 5) + 523 5,]
C6 = C4 (S1 ny - C1 ny) - S4 [C23 (C1 ny + S1 ny) + 523 ny]
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NOTES.
1) Singular positions:

i) when Py = Py = 0, which corresponds to S23RL4 — C2D3 = 0, the point Oy is
on the axis zy (Figure 1.5a). The two arguments used for calculating 6; are zero and
consequently 0; is not determined. We can give any value to 01, generally the value
of the current position, or, according to optimization criteria, such as maximizing the
distance from the mechanical limits of the joints. This means that we can always
find a solution, but a small change of the desired position might call for a significant
variation of 01, which may be impossible to carry out considering the velocity and
acceleration limits of the actuators,

i) when C23(Clay + Slay) + S23a, = 0 and Slay — Clay = 0, the two
arguments of the atan2 function used for the calculation of 64 are zero and hence the
function is not determined. This configuration happens when axes 4 and 6 are
aligned (COs5 = 1) and it is the sum (04 = 0¢) which can be obtained (see Figure
1.5b). We can give to 0, its current value, then we calculate 8¢ according to this
value. We can also calculate the values of 64 and 8¢, which move joints 4 and 6
away from their limits,

iii) a third singular position occurring when C3 = 0 will be highlighted along
with the kinematic model. This singularity does not pose any problem for the inverse
geometric model (see Figure 1.5¢).

2) Number of solutions: apart from singularities, the Stdubli RX-90 robot has
eight theoretical configurations for the IGM (product of the number of possible
solutions on each axis). Some of these configurations may not be accessible due to
their joint limits.

a) Singularity of the shoulder (Py = Py, = 0 and S23RL4 — C2D3 = 0)
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2y, Zg

b) Singularity of the wrist (S5 = 0)

¢) Singularity of the elbow (C3 = 0)

Figure 1.5. Singular positions of the Stiubli RX-90 robot

1.3. Kinematic modeling
1.3.1. Direct kinematic model

The direct kinematic model of a robot gives the velocities of the operational
coordinates X in terms of the joint velocities ¢ . We write:

X=J(q)q [1.18]



