
Digital Signal and Image 
Processing using MATLAB 

Gerard Blanchet 
Maurice Charbit 





dcd-wg
C1.jpg



This page intentionally left blank



Digital Signal and Image Processing using MATLAB 



This page intentionally left blank



Digital Signal and Image 
Processing using MATLAB 

Gerard Blanchet 
Maurice Charbit 



Part of this book adapted from "Signaux et images sous Matlab : méthodes, applications et 
exercices corriges" published in France by Hermes Science Publications in 2001 
First published in Great Britain and the United States in 2006 by ISTE Ltd 
Translated by Antoine Hervier 

Apart from any fair dealing for the purposes of research or private study, or criticism or 
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may 
only be reproduced, stored or transmitted, in any form or by any means, with the prior 
permission in writing of the publishers, or in the case of reprographic reproduction in 
accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction 
outside these terms should be sent to the publishers at the undermentioned address: 

ISTE Ltd ISTE USA 
6 Fitzroy Square 4308 Patrice Road 
London WIT 5DX Newport Beach, CA 92663 
UK USA 

www.iste.co.uk 

© HERMES Science Europe Ltd, 2001 
© ISTE Ltd, 2006 

The rights of Gerard Blanchet and Maurice Charbit to be identified as the authors of this work 
have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Cataloging-in-Publication Data 

Blanchet, Gerard. 
[Signaux et images sous Matlab. English] 
Digital signal and image processing using Matlab / Gerard Blanchet, Maurice Charbit. 

p. cm. 
Translation of: Signaux et images sous Matlab. 
Includes index. 
ISBN-13: 978-1-905209-13-2 
ISBN-10: 1-905209-13-4 
1. Signal processing—Digital techniques—Data processing. 2. MATLAB. I.Charbit, Maurice. 

II. Title. 
TK5102.9.B545 2006 
621.382'2-dc22 

2006012690 

British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library 
ISBN 10: 1-905209-13-4 
ISBN 13: 978-1-905209-13-2 

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. 



MATLAB is a trademark of The MathWorks, Inc. and is used with per-
mission. The Math Works does not warrant the accuracy of the text or exer-
cises in this book. This book's use or discussion of MATLAB software does 
not constitute endorsement or sponsorship by The Math Works of a particular 
pedagogical approach or use of the MATLAB software. 



This page intentionally left blank



Contents 

Preface 15 

Notations and Abbreviations 19 

Introduction to MATLAB 23 
1 Variables 24 

1.1 Vectors and matrices 24 
1.2 Arrays 26 
1.3 Cells and structures 27 

2 Operations and functions 29 
2.1 Matrix operations 29 
2.2 Pointwise operations 30 
2.3 Constants and initialization 31 
2.4 Predefined matrices 31 
2.5 Mathematical functions 32 
2.6 Matrix functions 34 
2.7 Other useful functions 34 
2.8 Logical operators on boolean variables 35 
2.9 Program loops 35 

3 Graphically displaying results 36 
4 Converting numbers to character strings 39 
5 Inpu t /ou tpu t 39 
6 Program writing 40 

Part I Deterministic Signals 41 

Chapter 1 Signal Fundamentals 43 
1.1 The concept of signal 43 

1.1.1 A few signals 44 
1.1.2 Spectral representation of signals 46 

1.2 The Concept of system 48 
1.3 Summary 50 



8 Digital Signal and Image Processing using MATLAB 

Chapter 2 Discrete Time Signals and Sampling 51 
2.1 The sampling theorem 52 

2.1.1 Perfect reconstruction 52 
2.1.2 Digital-to-analog conversion 64 

2.2 Plott ing a signal as a function of t ime 65 
2.3 Spectral representation 67 

2.3.1 Discrete-time Fourier transform (DTFT) 67 
2.3.2 Discrete Fourier transform (DFT) 71 

2.4 Fast Fourier transform 77 

Chapter 3 Spectral Observation 81 
3.1 Spectral accuracy and resolution 81 

3.1.1 Observation of a complex exponential 81 
3.1.2 Plott ing accuracy of the D T F T 83 
3.1.3 Frequency resolution 84 
3.1.4 Effects of windowing on the resolution 87 

3.2 Short term Fourier transform 90 
3.3 Summing up 94 
3.4 Application examples and exercises 95 

3.4.1 Amplitude modulations 95 
3.4.2 Frequency modulat ion 98 

Chapter 4 Linear Filters 101 
4.1 Definitions and properties 101 
4.2 The z-transform 106 

4.2.1 Definition and properties 106 
4.2.2 A few examples 107 

4.3 Transforms and linear filtering 109 
4.4 Difference equations and rational T F filters I l l 

4.4.1 Stability considerations 112 
4.4.2 FIR and IIR filters 114 
4.4.3 Causal solution and initial conditions 115 
4.4.4 Calculating the responses 117 
4.4.5 Stability and the Jury test 118 

4.5 Connection between gain and poles/zeros 119 
4.6 Minimum phase filters 129 
4.7 Filter design methods 133 

4.7.1 Going from the continuous-time filter to the discrete-
time filter 133 

4.7.2 FIR filter design using the window method 137 
4.7.3 IIR filter design 147 

4.8 Oversampling and undersampling 150 
4.8.1 Oversampling 151 



Contents 9 

4.8.2 Undersampling 155 

Chapter 5 Filter Implementation 159 
5.1 Filter implementation 159 

5.1.1 Examples of filter structures 159 
5.1.2 Distributing the calculation load in an FIR filter . . . 164 
5.1.3 FIR block filtering 165 
5.1.4 F F T filtering 167 

5.2 Filter banks 173 
5.2.1 Decimation and expansion 174 
5.2.2 Filter banks 177 

Chapter 6 An Introduction to Image Processing 187 
6.1 Introduction 187 

6.1.1 Image display, color palette 187 
6.1.2 Importing images 191 
6.1.3 Arithmetical and logical operations 193 

6.2 Geometric transformations of an image 196 
6.2.1 The typical transformations 196 
6.2.2 Aligning images 199 

6.3 Frequential content of an image 203 
6.4 Linear filtering 207 
6.5 Other operations on images 217 

6.5.1 Undersampling 217 
6.5.2 Oversampling 217 
6.5.3 Contour detection 220 
6.5.4 Median filtering 226 
6.5.5 Maximum enhancement 227 
6.5.6 Image binarization 229 
6.5.7 Morphological filtering of binary images 234 

6.6 J P E G lossy compression 236 
6.6.1 Basic algorithm 236 
6.6.2 Writing the compression function 237 
6.6.3 Writing the decompression function 240 

6.7 Watermarking 241 
6.7.1 Spatial image watermarking 241 
6.7.2 Spectral image watermarking 244 

Part II Random Signals 245 

Chapter 7 Random Variables 247 
7.1 Random phenomena in signal processing 247 
7.2 Basic concepts of random variables 248 



10 Digital Signal and Image Processing using MATLAB 

7.3 Common probability distributions 256 
7.3.1 Uniform probability distribution on (a,b) 256 
7.3.2 Real Gaussian random variable 257 
7.3.3 Complex Gaussian random variable 258 
7.3.4 Generating the common probability distributions . . . 259 
7.3.5 Estimating the probability density 262 
7.3.6 Gaussian random vectors 263 

7.4 Generating an r.v. with any type of p.d 265 
7.5 Uniform quantization 270 

Chapter 8 Random Processes 273 
8.1 Introduction 273 
8.2 Wide-sense stationary processes 274 

8.2.1 Definitions and properties of WSS processes 275 
8.2.2 Spectral representation of a WSS process 278 
8.2.3 Sampling a WSS process 285 

8.3 Estimating the covariance 289 
8.4 Filtering formulae for WSS random processes 296 
8.5 MA, AR and ARMA time series 302 

8.5.1 Q order MA [Moving Average) process 302 
8.5.2 P order AR (Autoregressive) Process 305 
8.5.3 The Levinson algorithm 312 
8.5.4 ARMA (P,Q) process 315 

Chapter 9 Continuous Spectra Estimation 317 
9.1 Non-parametric estimation of the PSD 317 

9.1.1 Estimation from the autocovariance function 317 
9.1.2 Estimation based on the periodogram 320 

9.2 Parametric estimation 329 
9.2.1 AR estimation 329 
9.2.2 Estimating the spectrum of an AR process 337 
9.2.3 The Durbin method of MA estimation 338 

Chapter 10 Discrete Spectra Estimation 341 
10.1 Estimating the amplitudes and the frequencies 341 

10.1.1 The case of a single complex exponential 341 
10.1.2 Real harmonic mixtures 343 
10.1.3 Complex harmonic mixtures 345 

10.2 Periodograms and the resolution limit 347 
10.3 High resolution methods 358 

10.3.1 Periodic signals and recursive equations 358 
10.3.2 The Prony method 363 
10.3.3 The MUSIC algorithm 366 
10.3.4 Introduction to array processing 379 



Contents 11 

Chapter 11 The Least Squares Method 389 
11.1 The projection theorem 389 
11.2 The least squares method 393 

11.2.1 Formulating the problem 393 
11.2.2 The linear model 394 
11.2.3 The least squares estimator 395 
11.2.4 The RLS algorithm (recursive least squares) 402 
11.2.5 Identifying the impulse response of a channel 405 

11.3 Linear predictions of the WSS processes 407 
11.3.1 Yule-Walker equations 407 
11.3.2 Predicting a WSS harmonic process 408 
11.3.3 Predicting a causal AR-P process 411 
11.3.4 Reflection coefficients and lattice filters 412 

11.4 Wiener filtering 417 
11.4.1 Finite impulse response solution 419 
11.4.2 Gradient algorithm 420 
11.4.3 Wiener equalization 427 

11.5 The LMS (least mean square) algorithm 430 
11.5.1 The constant step algorithm 430 
11.5.2 The normalized LMS algorithm 439 
11.5.3 Echo canceling 442 

11.6 Application: the Kaiman algorithm 446 
11.6.1 The Kaiman filter 446 
11.6.2 The vector case 449 

Chapter 12 Selected Topics 451 
12.1 Simulation of continuous-time systems 451 

12.1.1 Simulation by approximation 451 
12.1.2 Exact model simulation 452 

12.2 Dual Tone Multi-Frequency (DTMF) 455 
12.3 Speech processing 461 

12.3.1 A speech signal model 461 
12.3.2 Compressing a speech signal 468 

12.4 D T W 471 
12.5 Modifying the duration of an audio signal 474 

12.5.1 PSOLA 475 
12.5.2 Phase vocoder 477 

12.6 Quantization noise shaping 478 
12.7 Elimination of the background noise in audio 482 
12.8 Eliminating the impulse noise 484 

12.8.1 The signal model 484 
12.8.2 Click detection 485 
12.8.3 Restoration 488 



12 Digital Signal and Image Processing using MATLAB 

12.9 Tracking the cardiac rhythm of the fetus 490 
12.9.1 Objectives 490 
12.9.2 Separating the EKG signals 491 
12.9.3 Estimating cardiac rhythms 494 

12.10 Extracting the contour of a coin 501 
12.11 Principal component analysis (PCA) 503 

12.11.1 Determining the principal components 503 
12.11.2 2-Dimension PCA 507 
12.11.3 Linear discriminant analysis (LDA) 509 

12.12 Separating an instantaneous mixture 514 
12.13 Matched filters in radar telemetry 516 
12.14 Kaiman filtering 518 
12.15 Compression 524 

12.15.1 Scalar quantization 524 
12.15.2 Vector quantization 526 

12.16 Digital communications 538 
12.16.1 Introduction 538 
12.16.2 8-phase shift keying (PSK) 541 
12.16.3 PAM modulation 543 
12.16.4 Spectrum of a digital signal 545 
12.16.5 The Nyquist criterion in digital communications . . . 549 
12.16.6 The eye pat tern 555 
12.16.7 PAM modulation on the Nyquist channel 556 

12.17 Linear equalization and the Viterbi algorithm 562 
12.17.1 Linear equalization 564 
12.17.2 The Viterbi algorithm 566 

Part III Hints and Solutions 571 

Chapter 13 Hints and Solutions 573 
HI Signal fundamentals 573 
H2 Discrete t ime signals and sampling 573 
H3 Spectral observation 579 
H4 Linear filters 590 
H5 Filter implementation 610 
H6 An Introduction to image processing 614 
H7 Random variables 641 
H8 Random processes 646 
H9 Continuous spectra estimation 656 
H10 Discrete spectra estimation 661 
H l l The least squares method 668 
H12 Selected topics 676 



Contents 13 

Chapter 14 Appendix 727 
A l Fourier transform 727 
A2 Discrete t ime Fourier transform 728 
A3 Discrete Fourier transform 729 
A4 z-Transform 730 
A5 Jury criterion 732 
A6 F F T filtering algorithms revisited 734 

Bibliography 739 

Index 747 



This page intentionally left blank



Preface 

A practical approach through simulation 

Simulation is an essential tool in any field related to engineering techniques, 
whether it is used for teaching purposes or in research and development. 

When teaching technical subjects, lab works play an important role, as im-
portant as exercise sessions in helping students assimilate theory. The recent 
introduction of simulation tools has created a new way to work, halfway be-
tween exercise sessions and lab works. This is particularly the case for digital 
signal processing, for which the use of the MATLAB® Ian guage, or its clones, 
has become inevitable. Easy to learn and to use, it makes it possible to quickly 
illustrate a concept after introducing it in a course. 

As for research and development, obtaining and displaying results often 
means using simulation programs based on a precise "experimental protocol", 
as it would be done for actual experiments in chemistry or physics. 

These characteristics have led us, in a first step, to try to build a set of exer-
cises with solutions relying for the most part on simulation; we then a t tempted 
to design an introductory course mostly based on such exercises. Although this 
solution cannot replace the traditional combination of lectures and lab works, 
we do wonder if it isn't just as effective when associated with exercise sessions 
and a few lectures. There is of course no end in sight to the debate on educa-
tional methods, and the amount of experiments being conducted in universities 
and engineering schools shows the tremendous diversity of ideas in the mat ter . 

Basic concepts of DSP 

The recent technical evolutions, along with their successions of technological 
feats and price drops have allowed systems based on micro-controllers and 
microprocessors to dominate the field of signal and image processing, at the 
expense of analog processing. Reduced to its simplest form, signal processing 
amounts to manipulat ing da ta gathered by sampling analog signals. Digital 
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Signal and Image Processing, or DSIP, can therefore be defined as the art of 
working with sequences of numbers. 

T h e s a m p l i n g t h e o r e m 

The sampling theorem is usually the first element found in a DSIP course, be-
cause it justifies the operation by which a continuous t ime signal is replaced 
by a discrete sequence of values. It states that a signal can be perfectly recon-
structed from the sequence of its samples if the sampling frequency is greater 
than a fundamental limit called the Nyquist frequency. If this is not the case, 
it results in an undesired effect called spectrum aliasing. 

N u m e r i c a l S e q u e n c e s a n d D T F T 

The Discrete Time Fourier Transform, or D T F T , introduced together with 
the sampling theorem, characterizes the spectral content of digital sequences. 
The analogy between the D T F T and the continuous t ime Fourier transform is 
considered, with a detailed description of its properties: linearity, translation, 
modulation, convolution, the Parseval relation, the Gibbs phenomenon, ripples 
caused by windowing, etc. 

In practice, signals are only observed for a finite period of t ime. This 
"time truncation" creates ripples in the spectrum and makes it more difficult 
to the separate two close frequencies in the presence of noise. This leads to 
the concept of frequency resolution. The D T F T is a simple way of separating 
two frequencies, but only if the observation t ime is greater than the inverse of 
the difference between the two frequencies. The frequency resolution will allow 
us to introduce the reader to weighting windows. However, a more complete 
explanation of the concept of resolution can only be made if noise disturbing 
the signal is taken into account, which is why it will be studied further when 
random processes are considered. 

The Discrete Fourier Transform, or D F T is the tool used for a numerical 
computat ion of the D T F T . Because this calculation involves a finite number 
of frequency values, the problem of precision has to be considered. There are 
a few differences in properties between the D F T and the D T F T , particularly 
regarding the indexing of temporal sequences that are processed modulo N. 
Some examples of this are the calculation of the D T F T and the D F T of a 
sinusoid, or the relation between discrete convolution and the DFT . At this 
point, the fast algorithm calculation of the DFT, also called F F T (Fast Fourier 
Transform), will be described in detail. 

Fi l t er ing a n d E l e m e n t s of F i l ter D e s i g n 

Linear filtering was originally used to extract relevant signals from noise. The 
basic tools will be introduced: the discrete convolution, the impulse response, 
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the frequency response, the z-transform. We will then focus on the fundamen-
tal relation between linear filtering with rational transfer functions and linear 
constant-coefficient recursive equations. 

Filter design is described based on a few detailed examples, particularly the 
window method and the bilinear transform. The concepts of over-sampling and 
under-sampling are then introduced, some applications of which are frequency 
change and the reduction of quantization noise. From a broader perspective, 
multi-rate processing and filter banks which are described here, are two subjects 
tha t a t t ract a lot of at tention in the field of DSIP. 

A n i n t r o d u c t i o n t o i m a g e s 

Image processing is described in its own separate chapter. Many of the concepts 
used in signal processing are also used in image processing. The only difference 
is tha t two indices are used instead of one. However images have particular 
characteristics that require specific processing: erosion, expansion, etc. The 
computat ion t ime is usually much longer for images than it is for signals. It is 
nevertheless possible to conduct image processing with MATLAB or one of 
its clones. This theme will be discussed using examples on 2D filtering, contour 
detection, and other types of processing in cases where the 2D nature of the 
images does not make them too different from a ID signal. This chapter will 
also be the opportunity to discuss image compression and entropie coding. 

R a n d o m P r o c e s s e s 

Up until now, the signals used as observation models have been described by 
functions that depend on a finite number of well known parameters and on 
simple known basic functions: the sine function, the unit step function, the 
impulse function. . . This type of signal is said to be deterministic. 

There are other situations where deterministic functions cannot provide us 
with a relevant apprehension of the variability of the phenomena. Signals must 
then be described by characteristics of a probabilistic nature. This requires 
the use of random processes, which are time-indexed sequences of random vari-
ables. Wide sense stationary processes, or WSSP, are an important category 
of random processes. The study of these processes is mainly based on the es-
sential concept of power spectral density, or PSD. The PSD is the analog for 
WSSP of the square module of the Fourier transform for deterministic signals. 
The formulas for the linear filtering of WSSP are then laid down. Thus, we 
infer that WSSPs can also be described as the linear filtering of a white noise. 
This result leads to a large class of stationary processes: the AR process, the 
MA process, and the ARMA process. 
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Spectra l E s t i m a t i o n 

One of the main problems DSIP is concerned with is evaluating the PSD of 
WSSPs. In the case of continuous spectra, it can be solved by using non-
parametric approaches (smooth periodograms, average periodograms, etc.) or 
parametric methods based on linear models (AR, MA, ARMA). As for line 
spectra, the most commonly used methods are the periodogram and what are 
called high resolution methods, which use the structures of the signal and the 
noise: Prony, Pisarenko, MUSIC, ESPRIT, etc. 

T h e least squares 

This chapter discusses the use of the least squares method for solving problems. 
This method is used in a number of problems, in fields such as spectral analysis, 
modelling, linear prediction, communicat ions . . . We will discuss such methods 
as Wiener, RLS, LMS, K a i m a n . . . 

A p p l i c a t i o n s 

This last chapter presents case studies that go a little further in depth than the 
examples described earlier. The emphasis is set on audio signal processing, on 
compression as well restoring and denoising for speech and music, and on mod-
ulation, demodulation and equalization issues for digital communications. This 
chapter is also an opportunity to discover typical approaches and algorithms: 
pitch detection, PSOLA, DTW, ACP, LBG, Vi te rb i . . . 

As a Conclusion 

One of the issues raised by many of those who use signal processing has to 
do with the artificial aspect introduced by simulation. For example, we use 
sampling frequencies equal to 1, and therefore frequencies with no dimension. 
There is a risk that the student may lose touch with the physical aspect of 
the phenomena and, because of that , fail to acquire the intuition of these 
phenomena. Tha t is why we have tried, at least in the first chapters, to give 
exercises that used values with physical units: seconds, Hz, etc. 

This work discusses important properties and theorems, but its objective 
is not to be a book on mathematics . Its only claim, and certainly an excessive 
one, is to show how interesting signal and image processing can be, by providing 
themes of study we chose because they were good examples, because they were 
simple, while trying not to be too trivial. 

All of the subjects discussed far from cover the extent of knowledge required 
in this field. However they seem to us to be a solid foundation for an engineer 
who would happen to deal with DSIP problems. 



Notations and Abbreviations 

0 Empty Set 

r e c t ^ i ) 
( 1 when \t\ < T/2 
I 0 otherwise 

sin(7r;c) 

πχ 
, I l when x E A . . . 

t(x E A) = < . (Indicator Function oí A) 
0 otherwise 

S(t) 

(a,b] = {x : a < x < b} 

Í Dirac Distribution when í £ R 

Kronecker Symbol when Í G Z 

Re(z) Real Par t of z 

Im(z) Imaginary Part of z 
i or j = v—1 

x(t) ^± X(f) Fourier Transform 

(x*y)(t) Continuous Time Convolution 

= / x(u)y(t — u)du 
JR 

(x*y)(t) Discrete Time Convolution 

= Σ x{u)y{t - w) 
uez 
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Ijv 

A* 

Α τ 

AH 

A " 1 

P{X e A) 
Έ{Χ} 

Xc = X -Έ{Χ} 

v a r ( X ) = E { | X c | } 2 

Έ{Χ\Υ} 

(N x 7V)-dimension Identity Matrix 

Complex Conjugate of A 

Transpose of A 

Transpose-Conjugate of A 

Inverse Matrix of A 

Probability that X E A 

Expectation Value of X 
Zero-mean Random Variable 

Variance of X 
Conditional Expectation of X given Y 

ADC Analog to Digital Converter 

ADPCM Adaptive Differential PCM 

AMI Alternate Mark Inversion 

AR Autoregressive 

ARMA AR and MA 

BER Bit Error Rate 

bps Bits per second 

cdf Cumulative distribution function 

CF Clipping Factor 

CZT Causai z-Transform 

DAC Digital to Analog Converter 

D C T Discrete Cosine Transform 

d.e./de Difference equation 

D F T Discrete Fourier Transform 

D T F T Discrete Time Fourier Transform 

D T M F Dual Tone Multi-Frequency 

dsp Digital signal processing/processor 

e.s.d./esd Energy spectral density 

FIR Finite Impulse Response 

F F T Fast Fourier Transform 

F T Continuous Time Fourier Transform 
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HDB 

I D F T 

i.i.d./iid 

IIR 

ISI 

LDA 

1ms 

MA 

MAC 

O T F 

PAM 

PCA 

p.d. 

ppi 

p .s .d . /PSD 

PSF 

PSK 

QAM 

rls 

rms 

r .p . / rp 

SNR 

r .v . / rv 
S T F T 

T F 

wss 
ZOH 

ZT 

High Density Bipolar 

Inverse Discrete Fourier Transform 

Independent and Identically Distributed 

Infinite Impulse Response 

InterSymbol Interference 

Linear discriminant analysis 

Least mean squares 

Moving Average 

Multiplication Accumula t ion 

Optical Transfer Function 

Pulse Amplitude Modulation 

Principal Component Analysis 

Probability Distribution 

Points per Inch 

Power Spectral Density 

Point Spread Function 

Phase Shift Keying 

Quadrature Amplitude Modulation 

Recursive least squares 

Root mean square 

Random process 

Signal to Noise Ratio 

Random variable 
Short Term Fourier Transform 

Transfer Function 

Wide (Weak) Sense Stationary (Second Order) Process 

Zero-Order Hold 

z-Transform 
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Introduction to MATLAB 

} ® In this book the name MATLAB (short for Matrix Laboratory) will refer to: 

— the program launched by using the command matlab in Dos or Unix 
environments, or by clicking on its icon in a graphic environment such as 
x l l , Windows, M a c O S . . . , 

— or the language defined by a vocabulary and syntax rules. 
(R) · · 

MATLAB is an interpreter, tha t is to say a program that remains in 
the computer 's memory once it is launched. MATLAB® displays a com-
mand window used for interpreting commands. If they are considered correct, 
MATLAB will execute them. This execution will itself lead to verifications. 

E x a m p l e 1 ( D i r e c t i n t e r p r e t a t i o n ) Type a = 2 * l o g l 0 ( 5 ) then < r e t u r n > . 
The result is shown in a PC environment (Figure 1). 

■WWH.lJi.HUILI.LII 
File Edit Options Windows Help 
►a=2*logl0(5) 

Prompt 

■ Command line 

Result 

(R) 

Figure 1 - The MATLAB command window on MS-Windows 

Commands can be gathered together in text files called matlab programs. 
The user gives them a name that can be called from the prompt line. The 
MATLAB documentation explains how to use an editor to create such files. 
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This editor may either be integrated in the software or kept external (the 
user's favorite editor). Program files use the extension .m. If a program is 
called p rog l .m , all the user has to do is type p r o g l in the MATLAB com-

(R) 

mand window to have it executed. MATLAB then searches for the file in 
the routine directory. If it doesn't find the file there, it looks for p r o g l . m in 
the various files specified in the directory path. The latter can be defined di-
rectly in the command prompt window, or by using a program and executing 
commands such as path, addpath, rmpath, genpath, pa th too l , savepath (see 
documentation, online help, or type h e l p path). 

Eile Edit View Graphics Dej]ug Desktop Window Help 

D G Ì | A ^ E Ό « I DP E Í I ? I Current Director!: 'usrflocaUmatlapJmatlab7r14sp2Jbin / | ... I S 

Shortcuts Ξ HowtoAdd tu What's New 

CurrentDirectory| Workspace\ 

Command History 

Γ* 
1-11 

* - 4Í7ÍU5 4:34 PM -% 
* - 4J8Í05 3:29 AM -% 

•»Sari | 

Command Window 

< M A T L A B > 
Copyright 19S4-2005 The MathWorks, Inc. 
Vepsion 7.0.4.352 (R14) Service Pack 2 

To get slatted, select MATLAB Help or Demos fpom the Help menu. 

(R) 

F igure 2 — The MATLAB window in an X-windows environment. The definition 
of the routine folder can be done directly by clicking on the icon with ". . . " in the 
top-right corner of the window. The definition of the directory path can be done by 
selecting the item se t path . . . in the menu f i l e 

Clones of MATLAB are now available. Some belong to the public domain. 
There also exists a compiler that allows the user to translate MATLAB pro-
grams in machine language, making the execution quicker, and meaning that 
it is not required to own the interpreter. 

1 Variables 

1.1 Vec tors a n d m a t r i c e s 

The MATLAB® Ian guage is dedicated to matr ix calculations and was opti-
mized in this perspective. The variables handled as a priority are real or com-
plex matrices. A scalar is a 1 x 1 matr ix, a column vector is a matr ix with only 
one column, and a Une vector a matr ix with only one line. 

The notation (£ x c) indicates that the considered variable has £ lines and 
c columns. 
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E x a m p l e 2 ( A s s i g n m e n t of a real m a t r i x ) Type a = [ l 2 3 ; 4 5 6] at 
the MATLAB prompt in the command window. The answer is shown in 
Figure 3. 

D « 
» a = | 

a = 

1 2 

1 
4 

3 ; 4 5 

2 
5 

6 ] 

3 
6 

Command ^ ^ ^ ^ = ^ ^ ^ ^ ^ 

^~"^- Assignment of matrix a 

-* Result 
(2 lines, 3 columns) 

¡EIE 

Π ■ 
1 1 

Figure 3 — Assigning a matrix 

Values are assigned to the elements of a matr ix by using brackets. A space 
(or a comma) is a separator, and takes you to the next column, while the semi-
colon takes you to the next line. E l e m e n t s are i n d e x e d s tar t ing from 1. 
The first index is the line number, the second one is the column number. In 
our example, a ( l , 1) = 1 and a ( 2 , 1 ) = 4 . The assignment a = [ l 2 ; 3 4 5] will of 
course lead to an error message, since the number of columns is different for 
the first and second lines. 

Character strings can also be assigned to the elements of a matr ix . However, 
the string length must be compatible with the structure of the matr ix . For 
example, N=[ 'pau l ' ; 'John' ] would be correct, whereas N=[ 'pau l ' ; ' p e t e r ' ] 
would cause an error. 

When the vector's components form a sequence of values separated by reg-
ular intervals, it is easier to use what is called an "implicit" loop of the type 
(indD : s t e p : indF) . This expression refers to a list of values starting at indD 
and going up to indF by increments of s t e p . Values cannot go beyond indF. 
The increment value s t e p can be omitted if it is equal to 1. 

E x a m p l e 3 ( Impl ic i t e n u m e r a t i o n ) Type a = ( 0 : l : 1 0 ) 
MATLAB® returns: 

a = ( 0 : 1 0 ) . 

2 3 4 5 6 7 8 9 10 

E x a m p l e 4 ( I n c r e m e n t e d impl ic i t e n u m e r a t i o n ) Type a=(0 : 4 : 1 0 ) . 
MATLAB® returns: 

0 4 8 
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The last element of a vector is indicated by the reserved word end. In the 
previous example, a ( e n d ) indicates that its value is 8. 

It is possible to extend the size of a matr ix . The interpreter takes care of 
available space by dynamically allocating memory space during the analysis of 
the typed phrase. 

E x a m p l e 5 ( E x t e n s i o n of m a t r i x ) Type the following commands one after 
the other: 

» a = [ i 2 3; 4 5 6] 
a = 

1 2 3 
4 5 6 

» a = [ a a] 
a = 

1 2 3 1 2 3 
4 5 6 4 5 6 

» a = [ l 2 3; 4 5 6] ; 
>>a=[a;a] 
a = 

1 2 3 
4 5 6 
1 2 3 
4 5 6 

C O M M E N T S : 

— When defining variables and objects, the language takes into account 
whether letters are capital or lowercase. 

— Typing ";" at the end of a command line prevents the program from 
displaying the results of an operation. 

— The display format can be modified by using the format command. Exe-
cuting format long , for example, changes the number of significant digits 
from 5 to 15. 

— The user must bear in mind that MATLAB® dedicates memory space 
every t ime a variable is used for the first t ime. All of the variables used 
during a work session are stored in the computer 's memory, which means 
it is necessary to free space from time to t ime so as not to get the OUT 
OF MEMORY error message (see the c l e a r command in the documentation 
or type h e l p c l e a r ) . 

1.2 A r r a y s 

Multidimensional arrays (not supported by all versions) are an extension of the 
normal two-dimensional matr ix . One way to create such an array is to start 
with a 2-dimension matr ix that already exists and to extend it. Type: 
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A=[l :3;4:6] 
» A 
A = 

1 2 3 
4 5 6 

» A(: , : ,2)=zeros(2,3) , '/„ or A ( : , : , 2 ) = 0 
A ( : , : , l ) = 

1 2 3 
4 5 6 

A ( : , : , 2 ) = 
0 0 0 
0 0 0 

The repmat and c a t functions are provided in order to build multidimen-
sional arrays. 

1.3 Ce l l s a n d s t r u c t u r e s 

In the most recent versions of MATLAB®, there are two groups of da ta that 
are more elaborate than scalar arrays and character string arrays: the first one 
is called a cell and the second a structure. 

In an array of cells, the elements can be of any nature, numerical value, 
character string, array, etc. Type: 

langcell={'MATLAB', [6 .5;2 .3] ,2002} 
» l angce l l (2 ) 
ans = 

[2x1 double] 
» langce l l{2} 
ans = 

6.5000 
2.3000 

» langcell{2}(l) 
ans = 

6.5000 

l a n g c e l l is made up of three elements: the first one is a character string, 
the second one is a column vector, and the third one is a scalar. This 
example shows the difference in syntax between an array and a cell, a left 
brace ({) and a right brace (}) being used instead of a left square bracket 
([) and a right square bracket (]). As for the content, l a n g c e l l ( 2 ) refers 
to the vector [6 . 5000; 2 . 3] , l a n g c e l l { 2 } to the content of this vector, and 
l a n g c e l l { 2 } ( l ) to the numerical value 6.5. 

A structure is defined by the s t r u c t instruction. The following exam-
ple defines a structure, called l a n g s t r u c , comprising three fields: Language, 
Vers ion , and Year. The instruction assigns the character string MATLAB to the 
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first field, the character string 6 .5 to the second field, and the numerical value 
2002 to the third field: 

» l angs t ruc=s t ruc tCLanguage ' , 'MATLAB' , 'Version' , ' 6 . 5 ' , 'Year' ,2002) ; 
>>langstruc.Year 
ans = 

2002 
» 

The second instruction displays the content of l a n g s t r u c . Year, which is 
2002. A 1 x 1 dimension structure is organized in the same way as an n x 1 
dimension array of cells, where n is the number of fields of the structure. Cells 
can therefore be compared to structures with unnamed fields. 

The following example defines a structure named l a n g s t r u c , comprised of 
two recordings. Each recording contains all three fields Language, Vers ion , 
and Year to which were respectively assigned the sequences of two character 
strings MATLAB and C, of the two values 6.5 and 15.1, and of the two values 
2002 and 2003: 

» langs t ruc=st ruc t ( 'Langage ' ,{{ 'MATLAB' , 'C '}} , . . . 
'Vers ion ' , [6 .5 ;15 .1] , 'Year ' , [2002;2003] ) ; 

>> langs t ruc 
l angs t ruc = 

Language: {'MATLAB' ' C > 
Version: [2x1 double] 

Year: [2x1 double] 
>> langstruc.Langage{l} 
ans = 
MATLAB 
>> langstruc.Language(1) 
ans = 

'MATLAB' 
» 

These objects can be handled using certain functions: i s s t r u c t , 
f i e l d n a m e s , s e t f i e l d , r m f i e l d , c e l l f u n , c e l l d i s p , num2cel l , c e l l 2 m a t , 
c e l l 2 s t r u c t , s t r u c t 2 c e l l . . . An example of a conversion is as follows: 

>> c l ea r a l l 
» langcell={'MATLAB',[6.5;2.3],2002} 
>> chps={'Langage','Version','Year'}; 
>> cell2structClangceli,chps,2) 
ans = 

Language: 'MATLAB' 
Version: 6.5000 

Year: 2002 
» 

The 2 that is part of the instruction c e l l 2 s t r u c t C l a n g c e l i , chps ,2 ) indi-
cates the dimension of l a n g c e l l tha t needs to be taken into account to define 
the number of fields. Here, for example, s i z e ( l a n g c e l l , 2 ) means that the 
number of fields is 3. 


