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FOREWORD

Machine learning is a subfield of artificial intelligence and is concerned with the
development of algorithms and techniques that allow computers to learn. It has a wide
spectrum of applications such as natural language processing, search engines, medical
diagnosis, bioinformatics and cheminformatics, stock market analysis, computer
vision, and game playing. Recently, the amount of biological data requiring analysis
has exploded and many machine learning methods have been developed to deal with
this explosion of data. Hence, machine learning in bioinformatics has become an
important research area for both computer scientists and biologists.

The aim of this book is to provide applications of machine learning to problems in
the biological sciences, with particular emphasis on problems in bioinformatics. The
book consists of a number of stand-alone chapters that explain and apply machine
learning methods to central bioinformatics problems such as feature selection,
sequence-based prediction of residue-level properties, promoter recognition, protein
structure prediction, gene selection, and SNPS selection, classification, and data
mining. This book represents the unification of two important fields in sciences—
biology and computer science—with machine learning as a common theme. The
chapters are written by well-known researchers in these interdisciplinary areas, and
applications of various machine learning methods to different bioinformatics pro-
blems are presented. Students and scientists in biology and computer science will find
this book valuable and accessible.

Several books in the similar areas have been published. However, this book is
unique in that it presents cutting-edge research topics and methodologies in the area
of machine learning methods when applied to bioinformatics. Many results pre-
sented in this book have never been published in the literature and represent the most
advanced technologies in this exciting area. It also provides a comprehensive and
balanced blend of topics, implementations, and case studies. I firmly believe that
this book will further facilitate collaboration between machine learning researchers
and bioinformaticians.

Both editors, Dr. Yan-Qing Zhang and Dr. Jagath C. Rajapakse, are rising stars in
the areas of machine learning and bioinformatics. They have achieved a lot of research
results in these areas. Their vision of creating such a book in a timely manner deserves
our loud applause. This book is ideally suited both as a reference and as a text for a
graduate course on machine learning or bioinformatics. This book can also serve as a

ix



X FOREWORD

repository of significant reference materials because the references cited in each
chapter serve as useful sources for further study in this area.

I highly recommend this timely and valuable book. I believe that it will benefit
many readers and contribute to the further development of machine learning in
bioinformatics.

Atlanta, Georgia Dr. Y1 Pan
August 2008 Chair and Professor

Georgia State University



PREFACE

In recent decades, machine learning techniques have been widely applied to bioin-
formatics. Many positive results have indicated that machine learning methods are
useful for solving complex biomedical problems too difficult to solve by experts.
Traditionally, researchers do biomedical research by using their knowledge and
intelligence, performing experiments by hands and eyes, and processing data by
basic statistical and mathematical tools. Due to huge amounts of biological data and a
very large number of possible combinations and permutations of various biological
sequences, the conventional human intelligence-based methods cannot work effec-
tively and efficiently. So artificial intelligence techniques such as machine learning
can play a critical role in complex biomedical applications.

Experts from different domains have contributed chapters to this book, which feature
novel machine learning methods and their applications in bioinformatics. Relevant
machine learning methods include support vector machines, kernel machines, feature
selection, neural networks, evolutionary computation, statistical learning, fuzzy logic,
supervised learning, clustering, ensemble learning, Bayesian networks, linear regres-
sion, principal components analysis, hidden Markov models, entropy-based informa-
tion methods, and many others. The 20 chapters of the book are organized in a
convenient order, based on their contents, so as to enable the readers to easily gather
information in a progressive manner. A concise summary of each chapter follows.

In Chapter 1, Kung and Mak present feature selection methods such as the support
vector machine recursive feature elimination (SVM-RFE), filter methods, and wrap-
per methods, in application to microarray data. Filter methods are based on input and
output correlation statistics between input and predictions, or signal-to-noise (SNR)
statistics, independent of the classifier or predictor. The development of microarray
technology has brought with it problems that are interesting, both from statistical and
biological perspectives. One important problem is to identify important genes that are
relevant to distinguish cancerous samples from benign samples, or different cancer
types. In the SVM-RFE, the magnitude of the weight connected to a particular feature
is used as the ranking criteria for selection. The methods are illustrated in selection of
important genes and in prediction of protein subcellular localization. In the protein
subcellular localization, whether a protein lies in the cytoplasm, nuclear, extracellular,
mitochondrial, or nuclear location is predicted from its amino acid sequence.

xi
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In Chapter 2, Menjoge and Welsch give a new feature selection method using
I-norm SVM and 2-norm SVM techniques, where the weights are used as regulariza-
tion terms of 1-norm and 2-norm forms. Results show that these methods perform well
as compared with other methods. The elastic net, in particular, demonstrates excellent
classification accuracy. However, none of the methods dominate the other methods in
both selecting a small number of variables and classifying data sets.

In Chapter 3, Kim and Park discuss adaptive supervised machine learning algo-
rithms since the adaptive classifiers avoid expensive recomputation of the solution
from scratch. Both an adaptive KDA/RMSE (aKDA/RMSE) based on updating the QR
decomposition and an adaptive KDA/MSE based on updating the UTV decomposition
KDA/MSE-UTV is proposed. These new kernel classifiers can be applied to compute
leave-one-out cross-validation efficiently for bioinformatics applications.

In Chapter 4, Pang, Havukkala, Hu, and Kasabov propose a new gene selection
method with better bootstrapping consistency for reliable microarray data analysis.
The method ensures the reliability and generalizability of microarray data analysis,
which thereby leads to an improvement of disease classification performance.
Compared with the traditional gene selection methods without using consistency
measurement, bootstrapping consistency method provides more accurate classifica-
tion results. More importantly, results demonstrate that gene selection with the
consistency measurement is able to enhance the reproducibility and consistency in
microarray data analysis and proteomics-based diagnostics systems.

In Chapter 5, Wang and Palade introduce a series of fuzzy-based techniques,
including the fuzzy gene selection method, the fuzzy C-mean clustering-based
enhanced gene selection method, and the neuro-fuzzy ensemble approach for building
a microarray cancer classification system. Three benchmark microarray cancer data
sets, namely, the leukemia cancer data set, colon cancer data set, and lymphoma cancer
data set, are used for simulations. The experimental results show that fuzzy-based
systems can be efficient tools for microarray data analysis.

In Chapter 6, Li and Yang provide an ensemble learning method with feature
selection to improve generalization performance of single classifiers from three
aspects. Experiments on benchmark data show that genetic algorithm-based multitask
learning (GA-MTL) is more effective than the earlier heuristic algorithms. The
algorithms are demonstrated on a brain glioma data set to show the use of the
algorithm as an alternative tool for bioinformatics applications.

In Chapter 7, Ahmad, Singh, Aratzo-Bravo, and Sarai study machine learning
methods such as neural networks and support vector machines to predict one-
dimensional features of protein structures, such as secondary structure, solvent
accessibility, and coordination number, and more recently one-dimensional functional
properties such as binding sites. The prediction techniques have been shown to have
good performance even in the absence of known homology to other proteins. The
computational similarities of the methods are highlighted. Common standards for
making such sequence-based predictions are also developed.

In Chapter 8, Bu, Li, Gao, Yu, Xu, and Li give a new protein structure prediction
method. Despite significant progresses made recently, every protein structure predic-
tion method still possesses limitations. To overcome such shortcomings, a natural idea



PREFACE Xiii

is integrating the strengths of different methods to obtain more accurate structures by
boosting some weaker predictors into a stronger one. As suggested by recent CASP
competitions, the consensus-based prediction strategies usually outperform others by
generating better results.

In Chapter 9, Gubbi, Shilton, and Palaniswami investigate different kernel ma-
chines in relation to protein structure prediction. Amino acids arrange themselves in
3D space in stable thermodynamic conformations, referred to as native conformation,
and the protein becomes active in this state. Thermodynamic interactions include
formation of hydrogen bonding, hydrophobic interactions, electrostatic interactions,
and complex formation between metal ions. Protein molecules are quite complex in
nature and often made up of repetitive subunits.

In Chapter 10, Jin and Zhang give a new method to predict protein subcellular
locations based on SVM with evolutionary granular kernel trees (EGKT) and the one-
versus-one voting approach. The new method can effectively incorporate amino acid
composition information and combine binary SVM models for protein subcellular
location prediction.

In Chapter 11, Liao discusses three applications, where the long-range correlations
are believed to be essential, by using specific classification and prediction schemes:
hidden Markov models for transmembrane protein topology, stochastic context-free
grammars for RNA folding, and global structural profiling for antisense oligonucleo-
tide efficacy. By first examining the limitations of present models, some expansions to
capture and incorporate long-range features from the aspects of model architecture,
learning algorithms, hybrid models, and model equivalence are made. The perfor-
mance has been improved consequently.

In Chapter 12, Reddy, Weng, and Chiang give a novel optimization framework that
searches the neighborhood regions of the initial alignment in a systematic manner to
explore the multiple local optimal solutions. This effective search is achieved by
transforming the original optimization problem into its corresponding dynamical
system and estimating the practical stability boundary of the local maximum. Results
show that the popularly used EM algorithm often converges to suboptimal solutions,
which can be significantly improved by the proposed neighborhood profile search.

In Chapter 13, Rajapakse and Ho give a novel approach to encode inputs to neural
networks for the recognition of transcription start sites in RNA polymerase II promoter
regions. The Markovian parameters are used as inputs to three neural networks, which
learn potential distant relationships between the nucleotides at promoter regions. Such
an approach allows for incorporating biological contextual information at the pro-
moter sites into neural networks and in general implementing higher-order Markov
models of the promoters. Experiments on a human promoter data set show an increased
correlation coefficient rate of 0.69 on average, which is better than the earlier reported
by the NNPP 2.1 method.

In Chapter 14, Xie, Wu, and Yan propose three eukaryotic promoter prediction
algorithms, PromoterExplorer I, I, and III. PromoterExplorer I is developed based on
relative entropy and information content. PromoterExplorer Il takes different kinds of
features as the input and adopts a cascade AdaBoost-based learning procedure to select
features and perform classification. The outputs of these two methods are combined to



Xiv PREFACE

build a more reliable system, PromoterExplorer III. Consistent and promising results
have been obtained, indicating the robustness of the method. The new promoter
prediction technique compares favorably with the existing ones, including Promoter-
Inspector, Dragon Promoter Finder (DPF), and First Exon Finder (FirstEF).

In Chapter 15, Yang, King, and Elnitski introduce a bidirectional promoter—a
region along a strand of DNA that regulates the expression of genes that flank the
region on either side. An algorithm is developed for the purpose of finding unchar-
acterized bidirectional promoters. Results of the analysis have identified thousands of
new candidate head-to-head gene pairs, corroborated the 5’ ends of many known
human genes, revealed new 5’ exons of previously characterized genes, and in some
cases identified novel genes. More effective machine learning approaches to classi-
fying these features will be useful for future computational analyses of promoter
sequences.

In Chapter 16, Zhang and Nam review computational methods used for miRNA
research with a special emphasis on machine learning algorithms. In particular,
detailed descriptions of the case studies based on the kernel methods (support vector
machines), probabilistic graphical models (Bayesian networks and hidden Markov
models), and evolutionary algorithms (genetic programming) are given. The effec-
tiveness of these methods was validated by various approaches including wet
experiments and their contributions were successful in the domain of miRNA. A
well-defined generative model, such as Bayesian networks or hidden Markov models,
constructed from a known data set in the prediction of miRNAs, can be used for the
rational design of artificial pre-/shRNAs.

In Chapter 17, Lee and Shatkay present several works on tag SNP selection and
mapping disease locus based on association study using SNPs. Tag SNP selection uses
redundancy in the genotype/haplotype data to select the most informative SNPs that
predict the remaining markers as accurately as possible. In general, machine learning
methods tend to do better than purely combinatorial methods and also are applicable to
bigger data sets with hundreds of SNPs. Identifying SNPs in disease association study
is more difficult, largely depends on the population under study, and often faces the
problem of replication.

In Chapter 18, Chanda, Zhang, and Ramanathan elaborate the application of some
well-known machine learning techniques such as support vector machines, neural
networks, linear regression, principal components analysis, hidden Markov models,
and entropy-based information theoretic methods to locate genetic factors for complex
diseases such as cystic fibrosis and multiple myeloma. They focus on two aspects,
namely, tag SNP selection or selectively choosing some SNPs from a given set of
possibly thousands of markers as representatives of the remaining markers (that are not
chosen) and machine learning models for detecting markers that have potential high
association with given disease phenotypes.

In Chapter 19, Winters-Hilt presents a new channel current-based nanopore
cheminformatics to provide an incredibly versatile method for transducing single
molecule events into discernable channel current blockade levels. The DNA-DNA,
DNA-—protein, and protein—protein binding experiments that were described were
novel in that they made critical use of indirect sensing, where one of the molecules in
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the binding experiment is either a natural channel blockade modulator or is attached to
a blockade modulator.

In Chapter 20, Ganta, Narasimhamurthy, Kasturi, and Acharya propose an infor-
mation fusion model-based analytical and exploratory framework for biomedical
informatics. The framework presents a suite of tools and a workflow-based approach to
analyze and explore multiple biomedical information sources through information
fusion. The goal is to discover hidden trends and patterns that could lead to better
disease diagnosis, prognosis, treatment, and drug discovery. However, there is a limit
to the extent of knowledge that can be extracted from individual data sets. Recent focus
on techniques analyzing genomic data sources in an integrated manner through
information fusion could alleviate problems with individual techniques or data sets.

We sincerely thank all the authors for their important contributions and timely
cooperation for publication of this book. We also thank Jung-Hsien Chiang, Arpad
Kelemen, Rui Kuang, Ying Liu, Xinghua Lu, Lakshmi K. Matukumalli, Tuan D.
Pham, and Changhui C. Yan for their valuable comments. We thank editors Paul
Petralia and Anastasia Wasko from Wiley and Sanchari Sil of Thomson Digital for
their guidance and help. We would like to thank Nguyen N. Minh for formatting the
book. Finally, we would like to thank Dr. Yi Pan for his constant guidance.

Atlanta, Georgia YAN-QING ZHANG

Nanyang, Singapore JagaTH C. RAJAPAKSE
August 2008
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FEATURE SELECTION FOR
GENOMIC AND PROTEOMIC
DATA MINING

Sun-Yuan Kung and Man-Wai Mak

1.1 INTRODUCTION

The extreme dimensionality (also known as the curse of dimensionality) in genomic
data has been traditionally a serious concern in many applications. This has motivated
a lot of research in feature representation and selection, both aiming at reducing
dimensionality of features to facilitate training and prediction of genomic data.

In this chapter, N denotes the number of training data samples, M the original feature
dimension, and the full feature is expressed as an M-dimensional vector process

x(t) = [ (1) %2 (0), - o (D], 1= 1,0,
The subset of features is denoted as an m-dimensional vector process
y(©) = (0, 32(0), -, ym(0)] (1.1)
=[x, (1), x5 (0), x5, (O] (1.2)
where m < M and s; stands for index of a selected feature.

From the machine learning’s perspective, one metric of special interest is the
sample—feature ratio N/M. For many multimedia applications, the sample—feature

Machine Learning in Bioinformatics. Edited by Yan-Qing Zhang and Jagath C. Rajapakse
Copyright © 2009 by John Wiley & Sons, Inc.
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ratios lie in a desirable range. For example, for speech data, the ratio can be as high as
100: 1 or 1000 : 1 in favor of training data size. For machine learning, such a favorable
ratio plays a vital role in ensuring the statistical significance of training and validation.

Unfortunately, for genomic data, this is often not the case. It is common that the
number of samples is barely compatible with, and sometimes severely outnumbered
by, the dimension of features. In such situation, it becomes imperative to remove the
less relevant features, that is, features with low signal-to-noise ratio (SNR) [1].

It is commonly acknowledged that more features means more information avail-
able for disposal, that is,

1[A] < TAUB) < -, (1.3)

where A and B represent two features, say x; and x;, respectively, and /(X) denotes
information of X. However, the redundant and noisy nature of genomic data makes it
not always advantageous but sometimes imperative to work with properly selected
features.

1.1.1 Reduction of Dimensionality (Biological Perspectives)

In genomic applications, each gene (or protein sequence) corresponds to a feature in
gene profiling (or protein sequencing) applications. Feature selection/representation
has its own special appeal from the genomic data mining perspective. Forexample, itis
avital preprocessing stage critical for processing microarray data. For gene expression
profiles, the following factors necessitate an efficient gene selection strategy.

1. Unproportionate Feature Dimension w.r.t. Number of Training Samples. For
most genomic applications, the feature dimension is excessively higher than the
size of the training data set. Some examples of the sample—feature ratios N/M
are

protein sequences — 1:1

microarray data — 1:100r1:100

Such an extremely high dimensionality has a serious and adverse effect on the
performance. First, high dimensionality in feature spaces increases the compu-
tational cost in both (1) the learning phase and (2) the prediction phase. In the
prediction phase, the more the features used, the more the computation required
and the lower the retrieval speed. Fortunately, the prediction time is often
linearly proportional to the number of features selected. Unfortunately, in the
learning phase, the computational demand may grow exponentially with the
number of features. To effectively hold down the cost of computing, the features
are usually quantified on either individual or pairwise basis. Nevertheless, the
quantification cost is in the order of O(M) and O(M?) for individual and
pairwise quantification, respectively (see Section 1.2).
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3. Plenty of Irrelevant Genes. From the biological viewpoint, only a small portion
of genes are strongly indicative of a targeted disease. The remaining
“housekeeping” genes would not contribute relevant information. Moreover,
their participation in the training and prediction phases could adversely affect
the classification performance.

4. Presence of Coexpressed Genes. The presence of coexpressed genes implies
that there exists abundant redundancy among the genes. Such redundancy plays
a vital role and has a great influence on how to select features as well as how
many to select.

5. Insight into Biological Networks. A good feature selection is also essential for
us to study the underlying biological process that lead to the type of genomic
phenomenon observed. Feature selection can be instrumental for interpretation/
tracking as well as visualization of a selective few of most critical genes for
in vitro and in vivo gene profiling experiments. The selective genes closely
relevant to a targeted disease are called biomarkers. Concentrating on such a
compact subset of biomarkers would facilitate a better interpretation and
understanding of the role of the relevant genes. For example, for in vivo
microarray data, the size of the subset must be carefully controlled in order to
facilitate an effective tracking/interpretation of the underlying regulation
behavior and intergene networking.

1.1.2 Reduction of Dimensionality (Computational Perspectives)

High dimensionality in feature spaces also increases uncertainty in classification. An
excessive dimensionality could severely jeopardize the generalization capability due
to overfitting and unpredictability of the numerical behavior. Thus, feature selection
must consider a joint optimization and sometimes a delicate trade-off of the compu-
tational cost and prediction performance. Its success lies in a systematic approach to an
effective dimension reduction while conceding minimum sacrifice of accuracy.

Recall from Equation 1.3 that the more the features the higher the achievable
performance. This results in a monotonically increasing property: the more the
features selected, the more the information is made available, as shown in the lower
curve in Fig. 1.1a.

However, there are a lot of not-so-informative genomic features that are noisy and
unreliable. Their inclusion is actually much more detrimental (than beneficial),
especially in terms of numeric computation. Two major and serious adverse effects
are elaborated below:

e Data Overfitting. Note that overoptimizing the training accuracy as the exclu-
sive performance measure often results in overfitting the data set, which in turn
degrades generalization and prediction ability.

It is well known that data overfitting may happen in two situations: one is
when the feature dimension is reasonable but too few training data are available;
the other is when the feature dimension is too high even though there is a
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Figure 1.1  (a) Monotonic increasing property of the total information available. (b) Relative
performance versus the feature size taking into consideration data overfitting and limited compu-
tational resources. (c) Nonmonotonic increasing property of the actual classification performance
achievable. The best performance is often achieved by selecting an optimal size instead of the full
set of available features.

reasonable amount of training data. What matters most is the ratio between the
feature dimension and the size of the training data set. In short, classification/
generalization depends on the sample—feature ratio.

Unfortunately, for many genomic applications, the feature dimension can be
as high or much higher than the size of the training data set. For these
applications, overtraining could significantly harm generalization and feature
reduction is an effective way to alleviate the overtraining problem.

e Suboptimal Search. Practically, the computational resources available for most
researchers are deemed to be inadequate, given the astronomical amounts of
genomic data to be processed. High dimensionality in feature spaces increases
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uncertainty in the numerical behaviors. As a result, a computational process
often converges to a solution far inferior to the true optimum, which may
compromise the prediction accuracy.

In conclusion, when the feature size is too large, the degree of suboptimality must
reflect the performance degradation caused by data overfitting and limiting computa-
tional resource (see Fig. 1.1b). This implies a nonmonotonic property on achievable
performance w.r.t. feature size, as shown in Fig. 1.1c. Accordingly, but not surpris-
ingly, the best performance is often achieved by selecting an optimal subset of features.
The use of any oversized feature subsets will be harmful to the performance. Such a
nonmonotonic performance curve, together with the concern on the processing speed
and cost, prompts the search for an optimal feature selection and dimension reduction.

Before we proceed, let us use a subcellular localization example to highlight the
importance of feature selection.

Example 1 (Subcellular localization). Profile alignment support vector machines
(SVMs) [2] are applied to predict the subcellular location of proteins in an eukaryotic
protein data set provided by Reinhardt and Hubbard [3]. The data set comprises 2427
annotated sequences extracted from SWISSPROT 33.0, which amounts to 684 cyto-
plasm, 325 extracellular, 321 mitochondrial, and 1097 nuclear proteins. Fivefold
cross-validation was used to obtain the prediction accuracy. The accuracy and testing
time for different number of features selected by a Fisher-based method [4] are shown
in Fig. 1.2. This example offers an evidence of the nonmonotonic performance property
based on real genomic data. O

Max. Acc. = 97.32%; No. of Features at Max Acc. =- 492
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Figure1.2 Real data supporting the monotonic increasing property. Upper curve: performance
reaches a peak by selecting an optimal size instead of the full set of the features available. Lower
curve: the computational time goes up (more than linear rate) as the number of features
increases.
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1.1.3 How Many Features to Select or Eliminate?

The question now is how many features should be retained, or equivalently how many
should be eliminated? There are two ways to determine this number.

1. Predetermined Feature Size. A common practice is to have a user-defined
threshold, but it is hard to determine the most appropriate threshold. For some
applications, we occasionally may have a good empirical knowledge of the
desirable size of the subset. For example, how many genes should be selected
from, say, the 7129 genes in the leukemia data set [5]? Some plausible feature
dimensions are as follows:

(a) From classification/generalization performance perspective, a sufficient
sample—feature ratio would be very desirable. For this case, empirically, an
order of 100 genes seems to be a good compromise.

(b) If the study concerns a regulation network, then a few extremely selective
genes would allow the tracking and interpretation of cause—effect between
them. For such an application, 10 genes would be the right order of
magnitude.

(c) For visualization, two to three genes are often selected for simultaneous
display.

2. Prespecified Performance Threshold. For most applications, one usually does
not know a priori the right size of the subset. Thus, it is useful to have a
preliminary indication (formulated in a simple and closed-form mathematical
criterion) on the final performance corresponding to a given size. Thereafter, it
takes a straightforward practice to select/eliminate the features whose corre-
sponding criterion functions are above/below a predefined threshold.

1.1.4 Unsupervised and Supervised Selection Criteria

The features selected serve very different objectives for unsupervised versus super-
vised learning scenarios (see Fig 1.3). Therefore, each scenario induces its own type of
criterion functions.

1.1.4.1 Feature Selection Criteria for Unsupervised Cases In terms of
unsupervised cases, there are two very different ways of designing the selection
criteria. They depend closely on the performance metric, which can be either fidelity-
driven or classification-driven.

1. Fidelity-Driven Criterion. The fidelity-driven criterion is motivated by how
much of the original information is retained (or lost) when the feature
dimension is reduced. The extent of the pattern spread associated with that
feature is evidently reflected in the second-order moment for each feature x;,
i=1,---,M.Thelarger the second-order moment, the wider the spread, thus the
more likely the feature x; contains useful information.



INTRODUCTION 7

Samples
_
N1 N2
K—H_H
Teacher
Trainnings
patterns
@ Cancer
(0]
c
[0
S
(@

Samples

Training
patterns

Genes

(b)

Figure 1.3 Difference between (a) supervised and (b) unsupervised feature selection.

There are two major types of fidelity-driven metrics:

¢ A performance metric could be based on the so-called mutual information:
1(xly).

¢ An alternative measure could be one which minimizes the reconstruction
error:

c(xly) = min [[x =%yl

where Xy denotes the estimate of x based on y.

2. Classification-Driven Criterion. From the classification perspective, separa-
bility of data subclusters plays an important role. Thus, the corresponding
criterion depends on how well can the selected features reveal the subcluster
structure. The higher-order statistics, known as independent component ana-
lysis (ICA), has been adopted as a popular metric. For more discussion on this
subject, see Ref. [6].
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1.1.4.2 Feature Selection Criteria for Supervised Cases The ultimate
objective for supervised cases lies in a high classification/predition accuracy. Ideally
speaking, if the classification information is known, denoted by C, the simplest
criterion will be I(Cly). However, the comparison between I(C|x) and I(C|y) often
provides a more useful metric. For example, it is desirable to have

1(Cly)—1(Clx),

while keeping the feature dimension m as small as possible. However, the above
formulation is numerically difficult to achieve. The only practical solution known to
exist is the one making the full use of the feedback from the actual classification result,
which is computationally very demanding. (The feedback-based method is related to
the wrapper approach to be discussed in Section 1.4.5.)

To overcome this problem, an SNR-type criterion based on the Fisher discriminant
analysis is very appealing. (Note that the Fisher discriminant offers a convenient metric
tomeasure the interclass separability embedded in each feature.) Such a feature selection
approach entails computing Fisher’s discriminant denoted as FD,, i =1, ..., M, which
represents the ratio of intercluster distance to intracluster variance for each individual
feature. (This related to the filter approach to be discussed in Section 1.4.1.)

1.1.5 Chapter Organization

The organization of the chapter is as follows. Section 1.2 provides a systematic way
to quantify the information/redundancy of/among features, which is followed by
discussions on the approaches to ranking the relevant features and eliminating the
irrelevant ones in Section 1.3. Then, in Section 1.4, two supervised feature selection
methods, namely filter and warper, are introduced. For the former, the features are
selected without explicit information on classifiers nor classification results, whereas
for the latter, the select requires such information explicitly. Section 1.5 introduces a
new scenario called self-supervised learning in which prior known group labels are
assigned to the features, instead of the vectors. A novel SVM-based feature selection
method called Vector-Index-Adaptive SVM, or simply VIA-SVM, is proposed for this
new scenario. The chapter finishes with experimental procedures showing how self-
supervised learning and VIA-SVM can be applied to (protein-sequence-based)
subcellular localization analysis.

1.2 QUANTIFYING INFORMATION/REDUNDANCY OF/AMONG
FEATURES

Quantification of information and redundancy depends on how the information is
represented. A representative feature is the one that can represent a group of similar
features. Denote S as a feature subset, that is, S={y;}, i=1, .. ., m. In addition to the
general case, what of most interest is either a single individual feature m = 1 or a pair of
features m = 2. A generic term /(S) will be used temporarily to denote the information
pertaining to S, as the exact form of it has to depend on the application scenarios.
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Recall that there are often a large number of features in genomic data sets. To
effectively hold down the cost of computing, we have to limit the number of features
simultaneously considered in dealing with the interfeature relationship. More exactly,
such computational consideration restricts us to three types of quantitative measure-
ments of the feature information:

1. Individual Information: The quantification cost is in the order of O(M).
2. Pairwise Information: The quantification cost becomes now oM>).
3. Groupwise Information: (with three or more features).

The details can be found in the following text.

1.2.1 Individual Feature Information

Given a single feature x;, its information is denoted as /(x;). Such a measure is often the
most effective when the features are statistically independent. This leads to the
individual ranking scheme in which only the information and/or discriminative ability
of individual features are considered. This scheme is the most straightforward, since
each individual feature is independently (and simultaneously) evaluated. Let us use a
hypothetical example to illustrate the individual ranking scheme.

Example 2 (Three-party problem—without interfeature redundancy). The individual
ranking method works the best when the redundancy plays no or minimal role in
affecting the final ranking. In this example, each areain Fig. 1.4 represents one feature.
The size of the area indicates the information or discriminativeness pertaining to a
feature. In the figure, no “overlapping” between elements symbolizes the fact that
there exists no mutual redundancy between the features. In this case, the combined
information of any two features is simply the sum of two individual amounts. For
example, I(AUB) =1(A) + I(B) =35+ 30=65.

When all the features are statistically independent, it corresponds to the fact that
there is no overlap pictorially. All methods lead to the same and correct result. It is,
however, a totally different story with the statistically dependent cases. O

Unfortunately, the downside of considering the feature individually is that it does
not fully account for the redundancy among the features. For example, it is very
possible that two highest-rank individual features share a great degree of similarity. As
aresult, the inclusion of both features would amount to a waste of resource. In fact, one
needs to take the interfeature relationship (such as mutual similarity/redundancy) into
account. This problem can be alleviated by adopting either pairwise or groupwise
information to be discussed next.

1.2.2 Pairwise Feature Information

Given a pair of features x; and x;, its information is denoted as I(x; U x;). The main
advantage of studying the pairwise relationship is to provide a means to identify the
similariy/redundancy of the pair. A fundamental and popular criterion is based on
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‘ I(A,B) = I(A) +I(B)

(a) Three-party problem

(b) Forward selection (¢) Backward elimination
Selection Method Select 1 | Select 2 out of 3
Feature Features
Independent ranking A AB
[Forward selection A AB
Backward elimination A AB
ICorrect solution A AB
(@

Figure 1.4 (a) Three-party problem without redundancy. No “overlapping” between elements
symbolizes the fact that no mutual redundancy exists between the features. (b) Consecutive result
of the step-by-step forward selection. (c) Consecutive result of the step-by-step backward
elimination. (d) Table illustrating search results of different strategies.

correlation. For example, the Pearson correlation coefficient is defined as

T, = M = E[x,»xj].
var(x;)var(x;)
Without loss of generality, here we shall simply assume that both the features x; and x;
are zero mean with unit variance var(x;)var(x;) = 1.
From the practical decision perspective, there are again two pairwise criteria: (1)
mutual predictability and (2) mutual information.

1. Mutual Predictability. The mutual predictability represents the ability of
estimating one feature from another feature. Such a metric is also closely tied
with the (Pearson) correlation coefficients, that is,

X = Elxj|x;] = Ty Xi- (1.4)

When there is no correlation, thatis, r,,,, = 0, then X; = Oregardless of whatever
the value of x;is. In other words, the information of x; offers no information about
x;. In general, the predictability is a function of Fs the higher the correlation,
the more predictable is x; given x;.

2. Mutual Information. Suppose that there exists pairwise redundancy, then [
(x; Ux;) <1(x;) + I(x;). The mutual information I(x;, x;) is also a function of 7y,
the higher the correlation, the greater the mutual information.



