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 Rapid technological progress is transforming our world into one in which 
electronic capabilities integrate throughout all aspects of everyday life. Cell 
phones, laptops, digital assistants, and portable media players now provide 
unprecidented connectivity among people, information, and entertainment. 
Future advances promise to bring even more seamless integration, including 
fl exible, wearable, and/or very large - area electronics with advanced function-
ality. Renewable forms of power generation (e.g., photovoltaics) will also 
hopefully replace carbon - based power sources in order to address both growing 
energy needs as well as environmental concerns. All of these changes require 
fundamental invention in the area of electronic materials processing to attain 
technological/economical viablity — including most notably in the area of low -
 cost deposition of high - quality functional fi lms, which form the basis of modern 
electronics. Solution - based approaches for thin - fi lm deposition are particu-
larly desirable because of the low capital cost of the deposition equipment, 
relative simplicity of the processes, and potential compatibility with high -
 throughput (e.g., roll - to - roll) processing. Although most of the work toward 
this goal has focused on molecular and polymeric organic  fi lms, the search for 
solution - processible  inorganic  materials is at least as important, offering the 
potential for much higher performance and better thermal/mechanical stabil-
ity than comparable organic - based systems. This book offers an exploration 
of the various means of overcoming technological barriers to the solution -
 deposition and patterning of inorganic electronic components. Throughout 
the text, emphasis is also placed on providing concrete examples of applica-
tions that employ the described solution - processed inorganic fi lms (e.g., tran-
sistors, solar cells, and sensors). 

 In Chapter  1 , the issues confronting the solution - based processing of inor-
ganic fi lms will be introduced, with a primary focus on two questions. The fi rst 
question is why solution processing of inorganics (versus solution - processed 
organics and inorganics processed by other means) is important in the context 
of current trends and needs in the electronics and energy industries. The term 
 “ macroelectronics, ”  or low - cost, potentially large - area and/or fl exible, high -
 performance electronics (e.g., from fl exible displays to solar panels and antenna 
arrays), will be introduced as an important future direction of technology 
evolution. The second question relates to what needs to be achieved, with 
respect to fi lm performance, fabrication costs, and device characteristics, in 
order to have the desired impact on selected applications. 

PREFACE
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 Chapter  2  introduces techniques for solution deposition (e.g., spin coating, 
spray coating, printing, and stamping) and discusses some of the basic concepts 
common to the solution deposition of inorganic materials, using chemical solu-
tion deposition (e.g., sol - gel, chelate, and metal - organic deposition) as an 
example. The concepts explored include the issues of substrate surface prepa-
ration, solution properties, fi lm formation, crystal nucleation and growth, 
removal of reaction products during heating, and thermodynamic phase stabil-
ity. Many of the issues introduced in this chapter reappear in later chapters. 

 After discussion of basic issues confronting solution - based fi lm deposition, 
the next chapters address specifi c developments in the deposition of three 
important classes of electronic materials — chalcogenides (Chapter  3 ), oxides 
(Chapter  4 ), and silicon (Chapter  5 ) — with discussion of both the deposition 
techniques as well as the device results employing these fi lms. The focus in 
these chapters is on how to get a relatively insoluble inorganic material into 
solution so that it can be deposited on a substrate, and the common theme is 
the formation of a soluble precursor that can be thermally and cleanly decom-
posed to yield the desired phase. Once in solution, spin coating is used as the 
primary means of delivering the inorganic material to the substrate. Relatively 
high - performance solar cells and thin - fi lm transistors (TFTs) have been dem-
onstrated using these approaches. 

 Beyond spin coating, Chapters  6  –  8  explore other means of delivering the 
inorganic material to a substrate. For example, spray pyrolysis and spray CVD 
(Chapter  6 ) represent a promising direction for high - throughput deposition. 
Particular emphasis is placed on the development of single - source precursors 
for use in the spray - based preparation of photovoltaic components. Chemical -
 bath - based techniques are described in Chapter  7 . Rather than effecting a rapid 
chemical reaction of sprayed precursors on a heated substrate (as for spray 
deposition), the reaction between soluble metal salt and chalcogen source 
occurs more slowly in a chemical bath under more mild thermal conditions. 
Chemical bath deposition, electrodeposition, and electroless deposition are 
each explored as a means of depositing fi lms for solar cells and superconductors. 
Successive - ionic - layer - adsorption - and - reaction (SILAR), ion layer gas reac-
tion (ILGAR), and electrochemical atomic layer epitaxy (ECALE) deposition 
are described in Chapter  8  and rely on the sequential deposition of the cationic 
and anionic components of the desired inorganic materials. Film thickness is 
controlled in these techniques by the number of dipping cycles completed. 

 The next three chapters (Chapters  9  –  11 ) focus on the deposition of nano-
structured or microstructured fi lms and entities. Porous oxide thin fi lms are, for 
example, of great interest due to potential application of these fi lms as low - K 
dielectrics and in sensors, selective membranes, and photovoltaic applications. 
One of the key challenges in this area is the problem of controlling, ordering, 
and combining pore structure over different length scales. Chapter  9  provides 
an introduction and discussion of evaporation - induced self - assembly (EISA), 
a method that combines sol - gel synthesis with self - assembly and phase separa-
tion to produce fi lms with a tailored pore structure. Chapter  10  describes how 
nanomaterials can be used as soluble precursors for the preparation of extended 
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inorganic fi lms. In this respect, nano - entities (e.g., nanoparticles, nanorods, 
nanowires, and nanotetrapods) provide an exciting pathway to tailor material 
properties through size/shape selection, compositional fl exibility, and forma-
tion of core - shell structures. Chapter  11  focuses on how functional structures 
can be assembled from nanowire building blocks (i.e., nanowire electronics). 
In recent studies, fl uids have been used to disperse nanowires, and these fl uids 
are used to solution - deposit and orient these entities onto a substrate, yielding 
an array of nano -  or micro - entities. A  “ holy grail ”  for this type of research 
would be to have the capability to chemically and physically functionalize the 
substrate and nano - entities such that they would self - assemble into relatively 
complex and predetermined patterns on a substrate. 

 In addition to depositing and characterizing blanket fi lms, modern electron-
ics relies on the ability to pattern and assemble the resulting insulating, 
semiconducting and metallic entities into functional devices. Many of the solu-
tion - based techniques offer a natural opportunity to achieve this goal during 
deposition. Chapter  12  gives an overview of patterning techniques that are 
unique to solution processing, such as ink - jet printing, fl exography, gravure, 
and screen printing. All of these techniques rely on the ability to put the 
inorganic material or a precursor into solution (i.e., the formation of an ink) 
and there will therefore also be a discussion of what is needed to make an 
optimal ink for the different solution - based patterning techniques. Chapter  13  
continues with the theme of printing by providing an introduction to rubber -
 stamping approaches, focusing on techniques that can be used to deposit and 
pattern single - crystalline micro -  and nano - entities on a substrate (no heating 
of the substrate required). The versatile transfer printing process enables 
facile integration into heterogeneous 2D and 3D electronic devices and cir-
cuits. Although the approaches described in Chapter  13  are primarily  “ dry ”  
techniques (no solutions required), they are included because they represent 
an exciting new direction in the low - cost processing of inorganic materials and 
involve related issues with respect to the stamping process. 

 Finally, the concluding chapter will discuss the potential implications of the 
above - described thin - fi lm deposition techniques with respect to technology, 
highlighting common issues and imminent (or actual) applications of solution -
 processed inorganics. Although solution - based inorganic fi lm technology is 
largely in its infancy, commercialization efforts are beginning to ramp up. It 
is hoped that the current book will give the reader not only a snapshot of the 
state - or - the - art and a primer on the basics of solution - processing of inorganic 
materials but also a view of critical areas that need to be addressed (from a 
materials point of view) before the new technologies can become a commer-
cial reality, thereby giving a direction for future research in the fi eld.    

 David B. Mitzi

 Yorktown Heights, NY 
 August 2008 
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Introduction to Solution -Deposited
Inorganic Electronics 

ROBERT H. REUSS

  Fountain Hills, AZ         

CHAPTER 1

BABU R. CHALAMALA

 Research Triangle Park, NC   

1.1 BACKGROUND AND MOTIVATION 

1.1.1 Electronics Technologies 

 Two thrusts currently dominate efforts in electronics research. In both thrusts, 
the business opportunities stem from society ’ s desire for a more pervasive and 
integrated electronics environment. However, the technical methods and 
strategies for achieving this goal are fundamentally different. The fi rst and 
most widely discussed thrust focuses on what is popularly referred to as 
Moore ’ s Law and the seemingly endless progression to smaller device feature 
sizes and the increasing numbers of transistors integrated onto a chip.  1   These 
chips (i.e., microelectronics) have enabled everything from laptop computers 
to cell phones, from smart cards to smart toys. The essence of the success of 
Moore ’ s Law is that by creating technology to make devices smaller, the 
density and performance increases and the functionality goes up, whereas 
cost/function goes down. This amazingly successful thrust has created a tech-
nological revolution and has been an engine for worldwide economic growth 
because it results in faster and more compact products for computing and 
communications. 

 While over the last 40 years microelectronic integrated circuits based pre-
dominantly on silicon technology have made possible our current capabilities 
in everything from computers and phones to appliances and toys, even greater 
opportunities would exist if the circuits could be made more lightweight, 
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fl exible, and inexpensive. Everything from fl exible displays, to radio frequency 
identifi cation (RFID) tags that conform to a product ’ s shape, to large and 
pliable  “ sensor sheets ”  that are integrated into airplanes, bridges, or even people 
to monitor and augment their physical condition, could become possible.  2   This 
concept is much newer, and the required technology is not nearly as mature. 
The distinguishing feature of this newer approach is that small device size is not 
a critical factor. Rather than fabrication of smaller devices and circuits, described 
below are two microelectronics - related electronics technologies that have 
become successful by fabricating modest - sized devices over larger and larger 
glass substrates (large - area electronics). This work is just now being extended 
to plastic substrates to provide reduced weight and novel form factors. 

 Given that microelectronics and large - area electronics are both electronics 
technologies, it might be assumed that the second is derived from and will 
evolve with the mainstream semiconductor industry. However, microelectron-
ics is driven to produce smaller feature sizes and higher complexity chips. 
There are, however, many applications where microelectronics is not an 
appropriate technology, and in fact, it represents too complex or costly of a 
solution. Thus, the requirements and drivers are so different that few, if any, 
of the mainstream integrated circuit (IC) technologies are applicable to this 
second and newer thrust. While sharing many concepts with microelectronics, 
the second thrust is NOT for the most part derived from the IC industry and 
does not really benefi t from its learning curve, but rather it originates from 
needs not adequately addressed by conventional microelectronics. It has dif-
ferent drivers, product attributes, and metrics and will be successful in its own 
product space, or by complementing conventional ICs to create solutions that 
neither could provide individually. Because of this distinction, varieties of 
names have been used to describe this non - microelectronic, large - area elec-
tronics technology. Because the device dimensions are generally large com-
pared with microelectronics and product applications are physically large 
compared with microchips, one popular name for this form of electronics is 
 “ macroelectronics. ”   3 

1.1.2 Commercial Macroelectronic Technology 

 The most successful application of macroelectronics, the fl at panel display 
(FPD) industry,  4,5   now rivals the microelectronics industry in revenue; yet, 
from an electronics perspective, it is based on nothing more than manufacture 
of modest - sized transistor switches distributed over glass substrates as large 
as a meter on a side.  6   Within 10 years, the FPD industry has almost reached 
the  $ 100B mark (see Figure  1.1 ), whereas more traditional semiconductor 
industry growth has become relatively mature with slowing growth prospects. 
Another interesting aspect of the FPD story is that it has been accomplished 
while undergoing rapid changes in the manufacturing technologies. As shown 
in Figure  1.2 , the size of the glass panels used have progressed rapidly through 
multiple manufacturing generations, which means that the panel size has 
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Figure 1.1.     Growth of semiconductor and fl at panel display industries. [Data Source: 
Semiconductor industry sales data from Semiconductor Industry Association (SIA) 
and fl at panel display data from Displaysearch Corp, San Jose, CA.]  

Figure 1.2.     Substrate size comparison between Si wafers and glass substrates used in 
fl at panel displays.  
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Figure 1.3.     Worldwide production volume of photovoltaic modules. [Data source: 
European Photovoltaic Industry Association, 2006.]  

increased by more than 30 times to more than 2   m    ×    2   m for the current eighth -
 generation production facilities. In contrast, most semiconductor fabrication 
has been limited to wafer sizes of 300   mm or smaller.   

 The second large - area electronics technology to reach high volume and 
revenue, photovoltaics (PV), which is based on  “ simple ”  diodes distributed 
over many hundreds of square centimeters, is also now poised to grow into a 
major industry as new energy sources become more essential.  7,8   With the 
declining stock of fossil fuels and worries about global climate change, solar 
energy using photovoltaics has become increasingly attractive. The cumulative 
installed capacity of PV systems has reached over 4   GW and is expected to 
double every year over the next three years. The annual production volume 
of PV modules reached the 1 - GW milestone in 2004 (see Figure  1.3 ). With the 
commencement of a number of a high - volume PV manufacturing facilities 
over the last two years, production volumes have been growing rapidly ever 
since, with worldwide manufacturing capacity reaching more than 5   GW in 
2007. 9   Most expansion in photovoltaics is based on crystalline and multicrys-
talline silicon materials.  10   With the rapid growth of the solar energy market, 
the availability of reasonably priced silicon feedstock has become a major 
barrier for future growth. Thin - fi lm technologies offer effi cient materials uti-
lization and opportunities for large - area processing. Several companies are 
building thin - fi lm silicon PV production lines based on large glass substrates 
(e.g., 4 - m 2  glass sheets), which are similar to those employed by the FPD indus-
try. The main barriers for thin - fi lm PV technologies, which need to be over-
come in order for thin - fi lm PV to become pervasive, are improved conversion 
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effi ciencies (approaching that of crystalline Si devices) and lower capital cost 
of some production equipment, especially vacuum deposition tools.  11 

 To overcome these barriers, the industry is aggressively pursuing both 
alternative materials and manufacturing methods. Although the major focus 
of the PV industry is on silicon - based devices, several companies have devel-
oped products based on thin - fi lm chalcopyrite and cadmium telluride, as these 
materials offer opportunities for lower cost production through solution - based 
processing. Chalcopyrite, or more specifi cally the Cu(In,Ga)(Se,S) 2  family of 
compounds, has achieved the highest conversion effi ciencies (~20%) of any 
polycrystalline thin - fi lm material.  12   Several companies have commercialized 
the technology and are approaching volume production.  13   Several companies 
have started producing CdTe in volumes beyond pilot production. Small - area 
effi ciencies of 16% together with simple production technologies make this 
material very attractive. State - of - the - art commercial CdTe PV modules that 
have effi ciencies in the 9% range are in volume production.  14 

1.1.3 Macroelectronics Potential 

 The success of the FPD industry and the rapidly developing PV industry are 
testaments to the potential for large - area electronics for other system solu-
tions. For example, conformal and fl exible form factors are very desirable 
attributes to provide either portability and/or the ability to install large - area 
electronics in a variety of locations. These needs are receiving much attention, 
although fulfi lling them is proving to be diffi cult. Moreover, despite the success 
of microelectronics, there are applications where it has not been good enough 
to meet all requirements. Specifi cally, applications where very low cost is the 
product driver, rather than performance, can prove challenging for conven-
tional microelectronics. As much as microelectronics has reduced the cost/
transistor, the costs are still not low enough to meet the few pennies/item 
targets for electronic applications that are intended to be disposable, such as 
RFID tags and product expiration sensors. Similarly, although the number of 
microelectronic transistors per square centimeters (areal density) has remark-
ably increased over the last 40 years, the ability to distribute even moderate 
numbers of transistors over large areas onto a variety of substrates is just 
beginning to be commercialized for applications such as fl exible displays.  15 

Transistors at low density can be fabricated over large pieces of glass, but at 
great sacrifi ce to performance characteristics compared with mainstream 
 “ Moore ’ s Law ”  devices. 

 Although initial applications of large - area electronics have focused on dis-
plays and PV, future product opportunities are expected to include sensors, 
imagers, distributed lighting, electronics that are embedded into clothing or 
gear already carried (radios, computers), and health monitoring/control of 
vehicles and even people (Figures  1.4  –   1.7 ).  3,16,17   Figure  1.4  captures a concept 
long championed by many display manufacturers. It proposes that at some 
point in the future, the display manufacturing capability will be able to provide 
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    Figure 1.4.     Schematic showing the evolution of displays toward a system on a fl exible 
panel. (a) Direct chip on glass attachment technology, moving toward (b) partial 
display driver integration, (c) fully integrated drivers on glass, followed by (d) a fully 
integrated “system on a fl exible panel,” showing how high - performance thin - fi lm tran-
sistors enable display drivers and other system components to be integrated on a fl ex-
ible metal foil. [Schematic courtesy of Sharp Corp, Osaka, Japan.]  

LSI Chip

Display Area Display Area Display Area

(a) TAB or COG

Antenna

Interface

CPU Memory

Micro-Camera

Pen

Solar Cell

Flat Microphone

Flat Speaker

IR Detector

(b) Scanner and switch matrix
      integration

Reflective
Display

(d) System integration on panel

(c) Driver full integration

    Figure 1.5.     Schematic of a fully integrated macroelectronic system and an example of 
an application concept for macroelectronic systems. (a) Building blocks for a generic 
macrosystem. (b) Mockup of a large - area antenna array. [Figure courtesy of Sarnoff 
Corporation. Used with permission.]  
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    Figure 1.6.     Application of large - area embedded fl exible control electronics includes 
structural health monitoring of large objects such as airframes.  
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    Figure 1.7.     Large - area electronic fabrics and health monitoring systems for soldiers 
and personnel employed in high - risk fi eld operations. (a) Operation of a personnel 
health monitoring system. (b) Example of a vest with integrated sensors for monitoring 
body temperature, respiration rate, and other bodily parameters.  
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not just a display, but also an entire wireless laptop tablet complete with 
camera, microphone, and solar cell for power. It is unclear when, or even if, 
such a vision will ever make technical (let alone economic) sense. Neverthe-
less, the point is that this is one example of a vision that is driving the creation 
of macroelectronics technology. Figure  1.5  shows yet another large - area 
concept. Here, the notion is a sensor system that comes integrated with control 
electronics, energy storage mechanism, and energy harvesting layer, all made 
via yet - to - be - determined manufacturing technology. Figure  1.6  takes this idea 
one step further and suggests how a conception suggested in Figure  1.5  might 
be implemented into an aircraft for structural health monitoring, active fl ight 
control and multifunctional applications such as load - bearing structural anten-
nas. Finally, in Figure  1.7 , the personal health status application involves a 
range of sensors, processors, and transmitters integrated within composite 
materials or mounted on/in human biomaterials (skin/tissues). This assembly 
is then able to sense and report faults to ensure proper drug usage, or to con-
tinuously sense, modify, and transmit physiological and cognitive status. The 
weight and material integration issues with conventional ICs make these appli-
cations impossible or unlikely with a purely microelectronics approach. The 
major challenge for macroelectronics technology is to enable applications 
beyond displays that involve large areas and applications that cannot be cost -
 effectively achieved through traditional packaged - chip fabrication followed 
by pick - and - place assembly. Nonetheless, these applications will still require 
sophisticated, high - functionality circuits. The large - scale applications envi-
sioned give rise to the requirement for properties heretofore not associated 
with IC applications, including the thinness, ductility, and elasticity of elec-
tronic components, even during operation. Potentially, cofabrication of elec-
tronics and physical structures might be possible. This process would enable 
the electronics to be built directly onto or within the structure from which it 
controls, senses, or communicates. Ideally, the electronics would be synergistic 
with and inseparable from the system. A conceptual model might be the 
human nervous system. However, the opposite is true for traditional micro-
electronics, in which passive devices, packaged chips, boards, and boxes are 
each fabricated separately and only later integrated into the fi nal structure. 
This difference in manufacturing approach creates major differences for the 
materials, electronic design, and fabrication methods for macroelectronics 
versus microelectronics.     

1.2 IMPORTANCE OF SOLUTION PROCESSING 

 Researchers have many obstacles to overcome in the quest to make macro-
electronics the  “ next big thing. ”  The keys to achieving the desired levels of 
functionality for a wide range of large - area electronic functions are advances 
in materials and processes and device structures that can get cost down to 
pennies (rather than dollars) per square centimeter. Tools and process methods 



that provide these devices and their interconnections, at adequate levels of 
integration and in high yield on a wide range of substrates, must be developed. 
Some of the required advances in processing and tools will be adopted from 
the display and photovoltaic industry. However, to achieve the device/circuit 
performance for more demanding electronic functions, signifi cant improve-
ment in materials and device characteristics must be achieved. 

 To manufacture fl exible integrated circuits, it is not the transistors them-
selves that are infl exible; it is the relatively thick, bulk wafer on which that the 
transistors are manufactured. Thinning the wafer to harvest just the upper 
active circuits is possible but also time consuming, diffi cult, and expensive. 
Therefore, in the macroelectronics thrust, the focus is on developing tech-
niques for depositing semiconductors very inexpensively and, in most cases, 
over a large area on a variety of substrates (to include even plastics and 
fabrics). The result is a different transistor structure known as a thin - fi lm 
transistor (TFT; see Section  1.3.1 ).  2   The ideal method for fabrication of TFTs 
for macroelectronics requires that the materials used to create the devices be 
directly deposited on a thin (and ideally, fl exible) substrate. In contrast to 
microelectronics, with TFTs for macroelectronics, the feature size and level 
of performance are not the primary drivers. Rather, the processing cost, com-
patibility with diverse substrates, and attributes of the end item (area, weight, 
bendability, durability/ruggedness) represent the critical factors. These chal-
lenges generally require mild processing conditions not signifi cantly different 
from the ambient (in contrast to the temperatures and chemicals associated 
with microelectronics fabrication). Processing under such conditions is much 
more conducive to a variety of electronic substrates and to the integration of 
diverse functionality, including computational devices, sensors, photovoltaics, 
and displays. Therefore, fabrication technologies that promise lowest possible 
cost while delivering at least adequate electrical performance are of great 
interest. 

 Because cost/square centimeter is such a major driver for macroelectronic 
applications, established methods for low - cost manufacture are of great inter-
est. Solution processing for all manner of printed products has a long history 
and well - developed infrastructure that addresses multiple applications with a 
wide range of inexpensive materials and patterning methods. Therefore, solu-
tion processing has received signifi cant attention, because the essential steps 
of macroelectronic TFT circuit fabrication can (in principle) all be accom-
plished using the ordinary, relatively cheap, and widely available technologies 
used to print ink.  18 – 20   One method is a modifi cation of ink - jet printing, and 
another adapts roll - to - roll processing, which is commonly used to print fabrics 
and newspapers (for a more detailed discussion, see Chapter  12 ). Unfortu-
nately, to date, the problem with both of these approaches is the ability to 
produce transistors that can operate fast enough for potential applications of 
interest. Although adequate for displays, the TFTs produced easily with these 
printing methods are much too slow for many applications. Thus, macroelec-
tronics research seeks to exploit this rich printing infrastructure, but with 

IMPORTANCE OF SOLUTION PROCESSING 9
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incorporation of materials required to fabricate higher performance TFT -
 based electronics. 

 One means that has been pursued to achieve low - cost, multi - material pro-
cessing is based on organic semiconductors, because of the well - established 
potential for compatibility with printing technology.  21 – 24   However, to date, 
inorganic semiconductors have achieved the highest and most stable TFT 
performance.  25   Recent results have provided encouraging results based on 
solution deposition of inorganic materials rather than requiring the standard 
vacuum deposition methods. Because of the relatively mature theoretical 
understanding of inorganic semiconductor devices, and the diffi culty of obtain-
ing organic - based TFTs with adequate device characteristics, new ways to 
solution - deposit and fabricate inorganic semiconductors have received increas-
ing attention, as will be explored in subsequent chapters. 

 Macroelectronics thus seeks to create a new fabrication methodology based 
on techniques that are currently alien to microelectronics processing. Ideally, 
roll - to - roll substrate handling will replace wafer batches, with material deposi-
tion via solution processing replacing vacuum evaporation, and material pat-
terning by printing eliminating the need for etching. Given the diversity of 
materials, devices, and applications that may eventually encompass  “ large -
 area electronics technology, ”  it may well be that no  “ standard process ”  and 
 “ standard equipment ”  will ever exist for macroelectronics, as it does for main-
stream CMOS IC manufacturing. However, Figure  1.8  provides some idea of 

    Figure 1.8.     Conceptual roll - to - roll manufacturing process.  
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