HANDBOOK OF PROBIOTICS AND PREBIOTICS

Second Edition

Edited by

YUAN KUN LEE
National University of Singapore, Singapore

SEppo Salminen
University of Turku, Turku, Finland
CONTENTS

PREFACE xv
CONTRIBUTORS xvii

PART I PROBIOTICS 1

1 Probiotic Microorganisms 3

1.1 Definitions, 3

1.2 Screening, Identification, and Characterization of Lactobacillus and Bifidobacterium Strains, 4

1.2.1 Sources of Screening for Probiotic Strains, 5

1.2.2 Identification, Classification, and Typing of Bifidobacterium Strains, 7

1.2.2.1 Taxonomy, 7

1.2.2.2 Identification and Typing, 8

1.2.3 Identification, Classification, and Typing of Lactobacillus Strains, 14

1.2.3.1 Taxonomy, 14

1.2.3.2 Identification and Typing, 15

1.2.4 Characterization of Probiotic Properties in Bifidobacterium and Lactobacillus Strains, 19

1.2.4.1 Survival to GIT Stressing Conditions, 19

1.2.4.2 Adhesion/Colonization to/of GIT, 23

1.2.4.3 Antimicrobial Activity, 24

1.2.4.4 Other Probiotic Properties, 24
1.3 Detection and Enumeration of Gastrointestinal Microorganisms, 25

1.3.1 Methods for Intestinal Microbiota Assessment, 25

1.3.1.1 Culture-Dependent Methods, 25

1.3.1.2 Culture-Independent Methods, 30

1.3.2 Detection and Enumeration in Dairy Products, 37

1.3.3 Detection and Enumeration of Specific Probiotics in the Gut, 38

1.3.4 The Problem of the Viability and Physiological State of Intestinal Bacteria, 41

1.3.5 Conclusions, 42

1.4 Enteric Microbial Community Profiling in Gastrointestinal Tract by Terminal-Restriction Fragment Length Polymorphism (T-RFLP), 43

1.4.1 T-RFLP, 43

1.4.2 Universal and Group-Specific Primers, 44

1.4.3 Fluorescent Dyes, 44

1.4.4 DNA Extraction, 46

1.4.5 PCR Amplification, 46

1.4.6 Generation of Terminal Restriction Fragments (TRF) by Digestion of Amplicons with Restriction Enzymes, 46

1.4.7 Software and Data Processing, 47

1.4.8 Microbial Diversity in Different Intestinal Compartments of Pigs, 47

1.4.9 Tracking the Fate of Orally Delivered Probiotics in Feces, 48

1.4.10 Conclusion, 51

1.5 Effective Dosage for Probiotic Effects, 52

1.5.1 Acute (Rotavirus) Diarrhea in Children, 53

1.5.2 Antibiotic-Associated Diarrhea, 54

1.5.2.1 Combination of L. acidophilus + bifidobacteria or Streptococcus thermophilus, 54

1.5.2.2 L. rhamnosus GG or Saccharomyces boulardii Applied Singly, 57

1.5.3 Helicobacter pylori, 58

1.6 Incorporating Probiotics into Foods, 58

1.6.1 Probiotic Ingredients, 60

1.6.2 Factors Affecting the Viability of Probiotics in Foods, 60

1.6.2.1 Choice of Probiotic Organism/Food Combinations, 61

1.6.2.2 Physiologic State of the Probiotic, 63

1.6.2.3 Temperature, 63

1.6.2.4 pH, 64

1.6.2.5 Water Activity, 64

1.6.2.6 Oxygen, 65

1.6.2.7 Toxicity of Ingredients, 66
CONTENTS

1.6.2.8 Growth Factors, Protective, and Synergistic Ingredients, 67
1.6.2.9 Freeze–Thawing, 67
1.6.2.10 Sheer Forces, 67
1.6.3 Synbiotics, 67
1.6.4 Delivery Systems, 68
 1.6.4.1 Microencapsulation, 68
 1.6.4.2 Delivery Devices, 69
1.6.5 Probiotic Foods, 69
1.6.6 Conclusions, 69

1.7 Safety of Probiotic Organisms, 75
 1.7.1 Current Proposals for Probiotic Safety, 77
 1.7.2 Taxonomic Identification, 79
 1.7.3 Pathogenicity, 81
 1.7.4 Antibiotic Resistance and Susceptibility, 83
 1.7.5 Immune Modulation, 87
 1.7.6 Clinical Studies, 90
 1.7.7 Postmarket Surveillance, 92
 1.7.8 GMO Probiotics, 93
 1.7.9 Conclusion, 94

1.8 Legal Status and Regulatory Issues, 95
 1.8.1 Human Probiotics, 95
 1.8.1.1 Asia, 95
 1.8.1.2 Europe, 106
 1.8.1.3 The United States of America, 111
 1.8.2 Animal Probiotics, 123
 1.8.2.1 United States, 123
 1.8.2.2 European Union, 123
 1.8.2.3 China, 125
 1.8.2.4 Japan, 125
 1.8.2.5 Korea, 125
 1.8.2.6 Thailand, 125
 1.8.2.7 Australia, 125
 1.8.2.8 New Zealand, 135
 1.8.2.9 Indonesia, Malaysia, Philippines, and Vietnam, 139

References, 139

2 Selection and Maintenance of Probiotic Microorganisms 177

 2.1 Isolation of Probiotic Microorganisms, 177
 2.2 Selection of Probiotic Microorganisms, 178
 2.2.1 Manufacturing Criteria (General Criteria), 179
 2.2.2 Shelf Life and Gut Transit (General Criteria), 179
 2.2.2.1 Shelf Life of Viable Probiotics Under Different Storage Conditions, 179
2.2.2.2 Tolerance to Digestive Juices, 180
2.2.2.3 Adhesion and Colonization onto Specific Site of Body Surface, 181
2.2.3 Health Properties (Specific Criteria), 181
2.2.4 Safety, 182
2.2.5 Identification, 182
2.3 Maintenance of Probiotic Microorganisms, 184
References, 187

3 Genetic Modification of Probiotic Microorganisms 189

3.1 Mutants Obtained from Probiotic Microorganisms by Random Mutagenesis, 189
3.2 Plasmids, 202
3.3 Vectors for Lactobacilli and Bifidobacteria, 212
3.4 Genetic Recombination, 222
References, 229

4 Role of Probiotics in Health and Diseases 257

4.1 Cell Line Models in Research, 259
4.2 Laboratory Animal Models in Research, 263
4.3 Effects on Human Health and Diseases, 267
 4.3.1 Nutritional Effects, 267
 4.3.1.1 Lactose Maldigestion, 268
 4.3.1.2 β-Galactosidase in Fermented Milk Products, 269
 4.3.2 Prevention and Treatment of Oral Infection and Dental Caries, 270
 4.3.3 Prevention and Treatment of Diarrhea, 272
 4.3.3.1 Acute (Rotavirus) Diarrhea in Children, 272
 4.3.3.2 Antibiotic-Associated Diarrhea, 276
 4.3.3.3 Clostridium difficile Associated Diarrhea, 279
 4.3.3.4 Radiation-Induced Diarrhea, 279
 4.3.3.5 Traveler’s Diarrhea, 280
 4.3.3.6 Diarrhea in Tube-Fed Patients, 281
 4.3.4 Treatment of Irritable Bowel Syndrome, 282
 4.3.5 Prevention and Treatment of Inflammatory Bowel Diseases, 287
 4.3.6 Treatment of H. pylori Infection, 292
 4.3.7 Prevention of Postoperative Infections, 295
 4.3.8 Prevention and Treatment of Respiratory Tract Infections, 299
 4.3.9 Prevention and Treatment of Allergic Diseases, 302
 4.3.10 Antitumor Effects, 310
 4.3.11 Reduction of Serum Cholesterol, 313
 4.3.12 Enhancement of Vaccine Responses, 318
4.4 Effects on Farm Animals, 321
 4.4.1 Poultry, 322
 4.4.2 Swine, 323
 4.4.3 Ruminants, 331
 4.4.4 Rabbits, 339
 4.4.5 Pets, 339
References, 350

5 Mechanisms of Probiotics 377
 5.1 Adhesion to Intestinal Mucus and Epithelium by Probiotics, 377
 5.1.1 Adhesion to Gastrointestinal Epithelial Cell Lines, 378
 5.1.2 Adhesion to Intestinal Mucus, 378
 5.1.3 Colonization of Probiotics in Human Intestine as
 Assessed by Biopsies, 379
 5.1.4 Comparisons Between In Vitro and In Vivo Results, 379
 5.1.5 Adhesins, 379
 5.1.6 Factors Affecting the Adhesion Properties of Probiotics, 379
 5.1.7 Adhesive and Inhibitory Properties of Nonviable
 Probiotics, 380
 5.1.8 Role of Age and Diseases on Adhesion, 383
 5.2 Combined Probiotics and Pathogen Adhesion
 and Aggregation, 384
 5.2.1 Aggregation, 385
 5.2.2 Adhesion, 385
 5.2.3 Assay for Adhesion, 386
 5.2.4 Assay for Aggregation, 386
 5.2.5 Factors that Determine Adhesion, 389
 5.2.6 In Vitro Models, 389
 5.2.7 Probiotics in Combination, 390
 5.2.8 Conclusion, 391
 5.3 Production of Antimicrobial Substances, 391
 5.3.1 Organic Acids, 392
 5.3.2 Hydrogen Peroxide, 392
 5.3.3 Carbon Dioxide, 393
 5.3.4 Bacteriocins, 393
 5.3.5 Low Molecular Weight Antimicrobial Compounds, 394
 5.3.6 Other Antimicrobial Agents, 394
 5.4 Immune Effects of Probiotic Bacteria, 395
 5.4.1 The Neonatal Intestinal Microbiota, 395
 5.4.2 The Importance of the Intestinal Microbiota
 in Immune Development, 395
 5.4.3 Interaction of Commensal and Pathogenic Bacteria
 with the Intestinal Immune System, 396
 5.4.4 Probiotic Effects on Immune Responses, 396
5.4.5 Probiotic Effects on Epithelial Cells, 397
5.4.6 Probiotic Effects on DCs, 397
5.4.7 Probiotic Effects on Adaptive Immune Responses: T Helper Cells and T Regulatory Cells, 397
5.4.8 Delivery of Probiotic Bacteria, 398
5.4.9 The Specificity of Probiotic Effects, 399
5.4.10 Summary, 399

5.5 Alteration of Microecology in Human Intestine, 399
5.5.1 Impact on Human Health: in Infants and the Elderly, 399
 5.5.1.1 Stepwise Establishment of Microbiota, 400
 5.5.1.2 Methodological Improvements in Microbiota Assessment, 401
 5.5.1.3 Microbiota After Infancy, 403
 5.5.1.4 Host–Microbe Cross Talk, 403
 5.5.1.5 Microbiota in the Elderly, 404
 5.5.1.6 Maintenance of Healthy Microbiota, 405
 5.5.1.7 Conclusion, 405
5.5.2 Impact on Animal Health: Designer Probiotics for the Management of Intestinal Health and Colibacillosis in Weaner Pigs, 406
 5.5.2.1 The Farrowing Environment, 406
 5.5.2.2 The Weaning Environment, 406
 5.5.2.3 Colibacillosis in Pigs, 407
 5.5.2.4 Control of Colibacillosis, 408
 5.5.2.5 Mechanism of Action, 408
 5.5.2.6 Pathogenic and Commensal E. coli—the Concept of Gene Signatures, 409
 5.5.2.7 Mosaicism and Genome Plasticity in Porcine E. coli (Clone Gene Signatures), 410
 5.5.2.8 Population Gene Signatures in Epidemiological Study, 412
 5.5.2.9 Designer Lactic Acid Bacteria as Probiotics, 415
 5.5.2.10 Population Gene Signatures as a Measure of Probiotic Bioefficacy, 417
 5.5.2.11 Creation of Enteric Microbial Communities for Sustainable Intestinal Health (Probiosis), 419

References, 421

6 Commercially Available Human Probiotic Microorganisms 441

6.1 Lactobacillus acidophilus, LA-5®, 441
 6.1.1 Gastrointestinal Effects, 441
 6.1.1.1 Intestinal Microbial Balance, 441
 6.1.1.2 Diarrhea, 442
 6.1.1.3 Other Gastrointestinal Effects, 442
6.1.2 Immunomodulatory Effects, 443
 6.1.2.1 Nonspecific Immune Responses, 443
 6.1.2.2 Specific Immune Responses, 443
6.1.3 Other Health Effects, 443
6.1.4 Safety, 444

6.2 *Lactobacillus acidophilus* NCDO 1748, 444
 6.2.1 Origin and Safety, 445
 6.2.2 *In Vitro* and Animal Studies, 445
 6.2.3 Human Studies, 446

6.3 *Lactobacillus acidophilus* NCFM®, 447
 6.3.1 *L. acidophilus* NFCM Basic Properties, 447
 6.3.2 Survival of Intestinal Transit and Change in Intestinal Microbiota Composition and Activity, 447
 6.3.3 Lactose Intolerance, 448
 6.3.4 Relief of Intestinal Pain, 448
 6.3.5 Prevention of Common Respiratory Infections and Effects on Immunity, 449
 6.3.6 Application, 449
 6.3.7 Conclusion, 449

6.4 *Lactobacillus casei* Shirota, 449
 6.4.1 Effects on Intestinal Environment, 450
 6.4.2 Adhesive Property, 450
 6.4.3 Intestinal Physiology, 451
 6.4.4 Immunomodulation, 452
 6.4.5 Effects on Cancer, 453
 6.4.6 Prevention of Infectious Diseases, 454
 6.4.7 Prevention of Life Style Diseases, 454
 6.4.8 Clinical Application, 455
 6.4.9 Safety Assessment, 456

6.5 *Lactobacillus gasseri* OLL2716 (LG21), 457
 6.5.1 *Helicobacter pylori*, 458
 6.5.2 Selection of a Probiotic for *H. pylori* Infection, 458
 6.5.3 Effects of LG21 on *H. pylori* Infection in Humans, 458
 6.5.4 Mechanisms of Therapeutic Effects of LG21 on *H. pylori* Infection, 461
 6.5.5 Conclusion, 462

6.6 *Lactobacillus paracasei* ssp. *paracasei*, F19®, 462
 6.6.1 Identification and Safety, 462
 6.6.2 *In Vitro* Studies, 463
 6.6.3 Global Gene Expression, 463
 6.6.4 Human Studies, 464

6.7 *Lactobacillus paracasei* ssp *paracasei*, *L. casei* 431®, 466
 6.7.1 Adhesion and Survival Through the GI Tract, 466
 6.7.2 Gastrointestinal Effects, 466
6.7.2.1 Intestinal Microbial Balance, 466
6.7.2.2 Diarrhea, 466
6.7.3 Immunomodulatory Effects, 468
6.7.4 Other Health Effects, 468
6.7.5 Safety, 468
6.8 Lactobacillus rhamnosus GG, LGG®, 469
6.8.1 Storage Stability, 469
6.8.2 Gastrointestinal Persistence and Colonization, 469
6.8.3 Health Benefits, 469
6.8.4 Source of LGG®, 470
6.9 Lactobacillus rhamnosus, GR-1® and
Lactobacillus reuteri RC-14®, 470
6.9.1 The Strains, 471
6.9.2 In Vitro Properties, 471
6.9.3 Animal Safety, Toxicity, and Effectiveness Studies, 471
6.9.4 Clinical Evidence, 472
6.9.4.1 Safety, Effectiveness, and Efficacy, 472
6.9.5 Summary, 473
6.10 Lactobacillus rhamnosus HN001 and Bifidobacterium lactis
HN019, 473
6.10.1 Basic Properties of L. rhamnosus HN001
and B. lactis HN019, 473
6.10.2 Survival During the Intestinal Transit and Modulation
of the Intestinal Microbiota, 474
6.10.3 Modulation of the Immune System, 474
6.10.4 Reduction of Disease Risk, 477
6.10.5 Application, 477
6.10.6 Conclusions, 477
6.11 LGG®Extra, A Multispecies Probiotic Combination, 477
6.11.1 Strain Selection for the Combination, 477
6.11.2 Adhesion and Gastrointestinal Survival, 478
6.11.3 Health Benefits, 478
6.11.4 Technological Characteristics, 479
6.11.5 Source of LGG®Extra, 480
6.12 Bifidobacterium animalis ssp. lactis, BB-12®, 480
6.12.1 Adhesion and Survival Through the GI Tract, 480
6.12.2 Gastrointestinal Effects, 480
6.12.2.1 Intestinal Microbial Balance, 480
6.12.2.2 Diarrheas, 481
6.12.2.3 Gastrointestinal Health of Infants, 482
6.12.2.4 Other Gastrointestinal Effects, 482
6.12.3 Immunomodulatory Effects, 483
6.12.3.1 Nonspecific Immune Responses, 483
6.12.3.2 Specific Immune Responses, 483
6.12.3.3 Other Immunomodulatory Effects, 484
6.12.4 Other Health Effects, 484
6.12.5 Safety, 485
6.13 *Bifidobacterium breve* Strain Yakult, 485
 6.13.1 Effects on Intestinal Environment, 485
 6.13.2 Intestinal Physiology, 485
 6.13.3 Effects on Cancer, 486
 6.13.4 Prevention of Infectious Diseases, 486
 6.13.5 Prevention of Life Style Diseases, 486
 6.13.6 Clinical Application, 487
6.14 *Bifidobacterium longum* BB536, 488
 6.14.1 Evaluation of Safety of BB536, 488
 6.14.2 Physiological Effects of BB536, 489
 6.14.2.1 Improvement of Intestinal Environment, 489
 6.14.2.2 Effects on Immunity and Cancer, 490
 6.14.2.3 Antiallergic Activity, 490
 6.14.3 Technologies in BB536 Applications, 491
6.15 *Bifidobacterium longum* Strains BL46 and BL2C—Probiotics for Adults and Ageing Consumers, 492
 6.15.1 Safety of BL2C and BL46, 492
 6.15.2 The Health Effects of BL2C and BL46, 493
 6.15.2.1 BL2C and BL46 Stabilize the Gut Function in the Elderly, 493
 6.15.2.2 Modulation of Gut Microbiota by BL2C and BL46, 493
 6.15.2.3 BL46 is Effective Against Harmful Bacteria, 493
 6.15.2.4 Effects of BL2C and BL46 on the Immune System and Infections, 493
 6.15.2.5 BL2C and BL46 Can Bind Toxic Compounds, 493
 6.15.3 Technical Properties and Sensory Qualities of BL2C and BL46, 494
 6.15.4 Conclusions, 494
References, 494

PART II PREBIOTICS

7 Prebiotics

 7.1 The Prebiotic Concept, 535
 7.2 A Brief History of Prebiotics, 536
 7.3 Advantages and Disadvantages of the Prebiotic Strategy, 536
 7.4 Types of Prebiotics, 537
 7.5 Production of Prebiotics, 540
 7.6 Prebiotic Mechanisms, 546
7.7 Modulating the Intestinal Microbiota in Infants, 546
 7.7.1 Breast Milk, 546
 7.7.2 Infant Milk Formulas, 547
7.8 Modulating the Intestinal Microbiota in Adults, 548
 7.8.1 Effects at the Genus Level, 548
 7.8.2 Effects at the Species Level, 548
 7.8.3 Altering the Physiology of the Microbiota, 549
7.9 Modifying the Intestinal Microbiota in the Elderly, 549
7.10 Health Effects and Applications of Prebiotics, 549
 7.10.1 Laxatives, 550
 7.10.2 Hepatic Encephalopathy, 550
 7.10.3 Primary Prevention of Allergy in Infants, 551
 7.10.4 Amelioration of Inflammatory Bowel Disease, 551
 7.10.5 Prevention of Infections, 555
 7.10.6 Mineral Absorption, 556
 7.10.7 Prevention of Colorectal Cancer, 556
 7.10.8 Reduction in Serum Lipid Concentrations, 559
 7.10.9 Use in Weight Management and Improving Insulin Sensitivity, 559
7.11 Functional Foods for Animals, 559
7.12 Safety of Prebiotics, 560
7.13 Regulation of Prebiotics, 560
7.14 Conclusion, 561

References, 562

AUTHOR INDEX 583
SUBJECT INDEX 585
PREFACE

The first edition of the *Handbook of Probiotics* was published in 1999 when probiotics was still a relatively new scientific discipline. The idea of compiling a handbook came from our review article, “The coming of age of probiotics,” published in the *Trends in Food Science and Technology* (61: 241–245, 1995), confirming probiotics to be a scientific discipline. The handbook was meant to serve as a source book for aspiring scientists, and it was the first handbook of its kind.

Probiotics have since developed into a major research focus area. Product applications include several commercially successful functional foods, health supplements, and therapeutic components and preparations. Cutting-edge methodologies, such as molecular approaches for the identification and quantification of intestinal probiotics, viability of probiotics under processing and storage conditions, and markers for host immune modulation, have been developed. Therefore, it is timely to update the scientific research and clinical trial data and to review and compile advances in methodology for easy reference.

At the time of publication of the first edition of the handbook, prebiotics were only at a concept level. Substantial research and clinical interventions on specific prebiotics have since been published to provide scientific basis for their reported effects. It is timely to include prebiotics in this updated handbook.

The aim of this updated handbook is to put together information and technology required in the development of a successful probiotic and prebiotic product from the laboratory to the marketplace. The book would continue to serve as a resource material for students, researchers, and company product development technologists.
This second edition of the *Handbook of Probiotics and Prebiotics* includes the following changes:

1. New chapters on methods for the analysis (enumeration, identification) of gastrointestinal microbiota.
2. The safety issue in novel probiotic bacteria is expanded, in view of the new regulation requirements for novel food products in Asia, Europe, and North America.
3. Understanding on probiotic mechanisms is incorporated in a new chapter.
4. A new chapter on commercially available human probiotic microorganisms covers in detail most of the early and new strains and preparations as well as the scientific information.
5. The chapter on “Enhancement of Indigenous Probiotic Organisms” is renamed as “Prebiotics” and expanded to accommodate the most recent findings.

YUAN KUN LEE

SEppo SalmiNen
CONTRIBUTORS

Andrew W. Bruce, Canadian Research and Development Centre for Probiotics, Lawson Health Research Institute, Canada

Toni Chapman, Immunology and Molecular Diagnostic Research Unit (IMDRU), Elizabeth Macarthur Agricultural Institute, Australia

James J.C. Chin, Immunology and Molecular Diagnostic Research Unit (IMDRU), Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Australia.
Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
School of Veterinary Science, University of Queensland, Brisbane, Australia

M. Carmen Collado, Functional Foods Forum, University of Turku, Finland

Ross Crittenden, Food Science Australia, Australia

Fred H. Degnan, King & Spalding LLP, Washington, DC, USA

Clara G. de los Reyes-Gavilán, Instituto de Productos Lácteos de Asturias (CSIC), Spain

Diana Donohue, Toxicology Centre, School of Medical Sciences, RMIT University, Australia

Dorte Eskesen, Chr. Hansen A/S, Health & Nutrition Division, Denmark

Rangne Fondén, Finnboda Kajväg 15, Sweden.

Rafael Frias, Central Animal Laboratory, University of Turku, Finland
Miguel Gueimonde, Instituto de Productos Lácteos de Asturias (CSIC), Spain
Camilla Hoppe, Chr. Hansen A/S, Health & Nutrition Division, Denmark
Kajsa Kajander, Valio Ltd, R&D, Helsinki, Finland
Katsunori Kimura, Food Science Institute, Division of Research and Development, Meiji Dairies Corporation, Japan
Mayumi Kiwaki, Yakult Central Institute for Microbiology Research, Tokyo, Japan
Riitta Korpela, Valio Ltd, R&D, Helsinki, Finland
Sampo Lahtinen, Health & Nutrition, Danisco, Finland
J.M. Laparra, Department of Food Science, Cornell University, Ithaca, NY, USA
Charlotte Nexmann Larsen, Chr. Hansen A/S, Health & Nutrition Division, Business Unit, Denmark
Yuan Kun Lee, Department of Microbiology, National University of Singapore, Singapore
Allan Lim, Kemin Industries (Asia) Pte Ltd, Singapore
Abelardo Margolles, Instituto de Productos Lácteos de Asturias (CSIC), Spain
Baltasar Mayo, Instituto de Productos Lácteos de Asturias (CSIC), Spain
Koji Nomoto, Yakult Central Institute for Microbiology Research, Tokyo, Japan
Päivi Nurminen, Health & Nutrition, Danisco, Finland
Arthur Ouwehand, Health & Nutrition, Danisco, Finland
Martin J. Playne, Melbourne Biotechnology, Australia
Gregor Reid, Canadian Research and Development Centre for Probiotics, Lawson Health Research Institute, Canada
Patricia Ruas-Madiedo, Instituto de Productos Lácteos de Asturias (CSIC), Spain
Jose M. Saavedra, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Seppo Salminen, Functional Foods Forum, University of Turku, Finland
Reetta Satokari, Functional Foods Forum, University of Turku, Finland
Maija Saxelin, Valio Ltd, R&D, Helsinki, Finland
Ulla Svensson, Arla Foods, Sweden
Hai-Meng Tan, Kemin Industries (Asia) Pte Ltd, Singapore
Mimi Tang, Department of Allergy and Immunology, Royal Children’s Hospital, Australia

William Hung Chang Tien, Lytone Enterprise Inc., Taiwan

Hirokazu Tsuji, Yakult Central Institute for Microbiology Research, Japan

Satu Vesterlund, Functional Foods Forum, University of Turku, Finland

Jin-Zhong Xiao, Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd, Japan
PART I

PROBIOTICS
1

PROBIOTIC MICROORGANISMS

1.1 DEFINITIONS

YUAN KUN LEE

Department of Microbiology, National University of Singapore, Singapore

“Probiotics” is derived from Greek and means “prolife.” It has been redefined throughout the years as more scientific knowledge and better understanding on its relationship between intestinal health and general well-being has been gained. The following are definitions of “probiotics” derived through times.

Lilly and Stillwell in 1965 (5) defined probiotics as “Growth promoting factors produced by microorganisms.”

Parker in 1974 (7) suggested an interaction between microorganisms with the host: “Organisms and substances with beneficial effects for animals by influencing the intestinal microflora.”

Fuller in 1989 (3) defined it as “A live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial balance.”

Havenaar and Huis Int Veld in 1992 (4) said probiotics are “A mono- or mixed culture of live microorganisms which, applied to animal or man, affect beneficially the host by improving the properties of the indigenous microflora.”

ILSI (International Life Sciences Institute) Europe Working Group (1998) (9): “A viable microbial food supplement which beneficially influences the health of the host.”
Diplock et al. in 1999 (1) puts it as
“Probiotic food is functional if they have been satisfactorily demonstrated to beneficially affect one or more target functions in the body beyond adequate nutritional effects, in a way that is relevant to either an improved state of health and well-being and/or reduction in the risk of diseases.”

Naidu et al. in 1999 (6) said “A microbial dietary adjuvant that beneficially affects the host physiology by modulating mucosal and systemic immunity, as well as improving nutritional and microbial balance in the intestinal tract.”

Tannock in 2000 (11) observed that long-term consumption of probiotics was not associated with any drastic change in the intestinal microbiota composition, and thus proposed an alternative definition: “Microbial cells which transit the GI tract and which, in doing so, benefit the health of consumer.”

Schrezenmeir and de Vrese in 2001 (10) defined probiotics as “A preparation of a product containing viable, defined microorganisms in sufficient numbers, which alter the microflora (by implantation or colonization) in a compartment of the host and by that exert beneficial health effects in this host.”

FAO/WHO (Food and Agriculture Organization and World Health Organization) (2001)(2) and Reid et al. (2003) (8) concentrated exclusively on its health purpose: “Live microorganisms which when administered in adequate amounts confer a health benefit on the host.”

1.2 SCREENING, IDENTIFICATION, AND CHARACTERIZATION OF Lactobacillus AND Bifidobacterium STRAINS

Abelardo Margolles, Baltasar Mayo, and Patricia Ruas-Madiedo

Instituto de Productos Lácteos de Asturias (CSIC), Villaviciosa, Asturias, Spain

Several genera of bacteria (and yeast) have been proposed as probiotic cultures, the most commonly used are Lactobacillus and Bifidobacterium species. However, the selection of a strain to be used as an effective probiotic is a complex process (Fig. 1.1). The work begins with the source of screening of strains, the most suitable approach being the natural intestinal environment.

According to FAO/WHO guidelines it is necessary to identify the microorganism to species/strain level given that the evidence suggests that the probiotic effects are strain specific (60). It is recommended to employ a combination of phenotypic and genetic techniques to accomplish the identification, classification, and typing. For the nomenclature of bacteria, scientifically recognized names must be employed and it is recommended to deposit the strains in an internationally recognized culture collection. Further characterization of strains must be undertaken taking into account the “functional” or probiotic aspects and safety assessment. In vitro tests, some of them summarized in Fig. 1.1, are useful to gain knowledge of both strains and mechanisms of the probiotic effect. In addition, even if these genera have a long history of safe consumption in traditionally fermented products and several species have been awarded a
“General Recognised As Safe” (GRAS) status by the American Food and Drug Association (63) or a qualified presumption of safety (QPS) consideration by the European Food Safety Authority (EFSA) (59), some characteristics (Fig. 1.1) must be studied to ensure the safety of the novel lactobacilli and bifidobacteria strains. Several of the \(\textit{in vitro} \) tests can be correlated with \(\textit{in vivo} \) studies with animal models, but probiotics for human use must be validated with human studies covering both safety (phase 1 trials) and efficacy (phase 2 trials) aspects. Phase 2 studies should be designed as double-blind, randomized, and placebo-controlled to measure the efficacy of the probiotic strain compared with a placebo and also to determine possible adverse effects (60).

This chapter focuses on the current techniques for bacterial identification, taxonomic classification, and typing of \textit{Lactobacillus} and \textit{Bifidobacterium} strains, and also reviews the \(\textit{in vitro} \) probiotic characterization of strains based on their functional aspects.

1.2.1 Sources of Screening for Probiotic Strains

Even though essentially all animals contain strains of both \textit{Lactobacillus} and \textit{Bifidobacterium} genera, it is well accepted that an effective human probiotic should
be of human origin. The underlying reason for this is that human intestines are sufficiently different from those of animals, such that the isolates suited to those environments would not necessarily be suited to the human intestine (121). The human gastrointestinal tract (GIT) is a very complex ecological niche and its bacteria inhabitants can achieve the highest cell densities recorded for any ecosystem. Nonetheless, diversity at a division level is among the lowest (19) and the lactobacilli and bifidobacteria comprise less than 5% of the total microbiota (92). A number of articles have been published in the last few years studying the diversity of the GIT ecosystem employing several culture-independent genetic tools. But, for the isolation of novel strains, classical cultivation techniques must be employed. Enrichment, selective media, and specific culture conditions are employed for the isolation of strains from human samples that are initially identified by morphological characterization under the microscope. Molecular tools, mainly based on the sequencing of the 16S rRNA gene, allow identification down to the species level. Using this basic scheme several collections of strains have been isolated from human (and other animal) samples. Commonly, fecal samples are donated by healthy adult or infant volunteers (49, 156). But other GIT sections obtained from healthy individuals and patients submitted to biopsies such as the terminal ileum (56) or colonic mucosa (49) can be screened. Also the oral cavity seems to be the origin of some allochthonous lactobacilli of the intestine (44). Recently, it has been indicated that the infant fecal microbiota reflects the bacterial composition of the breast milk (79, 101). Therefore, the natural microbiota of human milk could be proposed as a source for the isolation of novel probiotic bacteria.

Another approach to search for improved probiotic strains (Fig. 1.1) is the adaptation of wild types to the intestinal stressful conditions. After ingestion, the probiotic bacteria must survive the passage through the GIT and reach the colon in order to exert their beneficial effect. The low pH in the stomach and the high concentration of bile salts in the small intestine, which act as biological detergents disrupting the cell membrane, are the principal challenges that probiotics must overcome (21). Margolles and coworkers (100) obtained sodium-cholate-resistant Bifidobacterium derivatives by exposure to gradually increasing concentrations of this compound. The resistant phenotype remained stable and promoted some physiological changes that improved the survival of the adapted bacteria into the colon environment (52). Similarly, Collado and Sanz (39) developed a method for direct selection of acid-resistant Bifidobacterium strains by prolonged exposure of human feces to stressful conditions. The recovered strains were intrinsically resistant to acid gastric conditions (pH 2.0) and also showed good tolerance to high concentrations of bile salts and NaCl. This cross-resistance between low pH and bile salts was previously described in bile-adapted strains (118). Several strains with improved tolerance to these and other stressful factors have been described in literature (34, 111, 130, 146) as a method of selecting lactobacilli and bifidobacteria strains with improved viability to GIT and technological conditions.

Finally, taking advantage of the genome sequences, novel strains with improved or “designed” probiotic characteristics can be constructed toward specific therapies (157, 165). However, the use of recombinant strains is still far from being applied in
functional foods, at least in the European legal frame. Some *Bifidobacterium* strains have been genetically engineered for therapy against tumors after oral administration (74) and to fight against intestinal pathogens (114, 168).

Recombinant *Lactobacillus* strains are currently under study for the enhancement of the immune system (77, 78), treatment against *Helicobacter pylori* (41) and improvement of inflammatory colitis (76). Although the species *Lactococcus lactis* is generally not considered as a probiotic, recombinant strains have been constructed for the oral delivery of therapeutic molecules (87) for the treatment or alleviation of diverse diseases such as allergies (12) and colitis (164).

1.2.2 Identification, Classification, and Typing of *Bifidobacterium* Strains

1.2.2.1 Taxonomy

Microorganisms of the genus *Bifidobacterium* are nonspore-forming, nonmotile, and nonfilamentous rods, which can display various shapes, with slight bends or with a large variety of branchings, from which the most typical ones are slightly bifurcated club-shaped or spatulated extremities. They can be found singularly, in chains, in aggregates, in “V” or palisade arrangements when grown under laboratory conditions. They are strictly anaerobic, although some species can tolerate low oxygen concentrations, and they have a fermentative metabolism (151). Tissier described these bacteria at the beginning of the twentieth century (173). They were first included among the family *Lactobacillaceae*, but in 1924 Orla-Jensen proposed the reclassification of the species *Lactobacillus bifidum* into the new genus *Bifidobacterium* (151).

The species of the genus *Bifidobacterium* form a coherent phylogenetic group and show over 93% similarity to the 16S rRNA sequences among them (150). This genus is clustered in the subdivision of high G+C Gram-positive bacteria, and it is included in the phylum *Actinobacteria*, class *Actinobacteria*, subclass *Actinobacteridae*, order *Bifidobacteriales*, and family *Bifidobacteriaceae*. According to the DSMZ Bacterial Nomenclature database (http://www.dsmz.de/microorganisms/bacterial_nomenclature), the species included in the genus *Bifidobacterium* are 29: *B. adolescentis*, *B. angulatum*, *B. animalis*, *B. asteroides*, *B. bifidum*, *B. boum*, *B. breve*, *B. catenulatum*, *B. choerinum*, *B. coryneforme*, *B. cuniculi*, *B. dentium*, *B. gallicum*, *B. gallinarum*, *B. indicum*, *B. longum*, *B. magnus*, *B. merycicum*, *B. minimum*, *B. pseudocatenulatum*, *B. pseudolongum*, *B. psychraerophilum*, *B. pullorum*, *B. ruminantium*, *B. saeculare*, *B. scardovii*, *B. subtilis*, *B. thermaeidophilum*, and *B. thermophilum*. In turn two subspecies constitute the species *B. animalis* (subsp. *animalis* and *lactis*), *B. pseudolongum* (subsp. *globosum* and *pseudolongum*), and *B. thermaeidophilum* (subsp. *thermoacidophilum* and *porcinum*), and the species *B. longum* is subdivided in three different biotypes (longum, infantis, and suis).

All the currently known *Bifidobacterium* isolates are from a very limited number of habitats, that is human and animal GITs, food, insect intestine, and sewage (65, 196). Among the strains most commonly found in human intestines and feces are those belonging to the species *catenulatum*, *pseudocatenulatum*, *adolescentis*, *longum*, *breve*, *angulatum*, *bifidum*, and *dentium*, and the typical species isolated from functional foods is *B. animalis* subsp. *lactis* (104); therefore, strains belonging to these species are the first target for health-promoting studies.
A number of phylogenetic studies carried out during the last few years (108, 148, 196, 200), mainly based on sequence comparison of total or partial sequences of the 16S rRNA genes and other housekeeping genes, have grouped the bifidobacterial species in six groups, \(B. \) longum group, \(B. \) pullorum group, \(B. \) adolescentis group, \(B. \) pullarum group, \(B. \) longum group, and \(B. \) pseudologum group (Fig. 1.2).

FIGURE 1.2 Evolutionary relationships of *Bifidobacterium* strains obtained using 16S rDNA sequences. The evolutionary distances were inferred using the neighbor-joining method and were computed using the maximum composite likelihood method. Units indicate the number of base substitutions per site. All positions containing gaps and missing data were eliminated from the dataset.

A number of phylogenetic studies carried out during the last few years (108, 148, 196, 200), mainly based on sequence comparison of total or partial sequences of the 16S rRNA genes and other housekeeping genes, have grouped the bifidobacterial species in six groups, \(B. \) boum group, \(B. \) asteroides group, \(B. \) adolescentis group, \(B. \) pullarum group, \(B. \) longum group, and \(B. \) pseudologum group (Fig. 1.2).

Identification and Typing Currently, there is great concern that the correct identification of a probiotic strain is the first prerequisite to be able to state its microbiological safety. Many studies have revealed deep deficiencies in the microbiological quality and labeling of currently marketed probiotic products for human and animal use. The incorporation of incorrectly identified probiotic bacteria in functional