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PREFACE

Azobenzene and its derivatives are fascinating molecules display that the rever-
sible photoisomerization between the more stable trans and the less stable cis
isomers. Although photoisomerization can result in important changes of proper-
ties for azobenzene molecules on their own, such as a large change in molecular
shape and dipole moment, changes that can be imparted to polymers and liquid
crystals when azobenzene is part of their structures or is associated with them are
more interesting. Indeed, reversible photoisomerization in azobenzene-containing
polymers and liquid crystals enables the use of light as a powerful external
stimulus to control or trigger the change of the properties of these two important
classes of soft materials. For this reason, over the past two decades or so, there has
been considerable worldwide research dedicated to azo polymers and liquid
crystals-, ranging from fundamental studies to exploitation for applications. A
number of important discoveries made in the 1990s have had a particular impact
on this field. These include the surface relief grating that can readily be inscribed
on azobenzene polymers using an interference pattern as a result of photoinduced
mass transport and the isothermal photochemical liquid crystalline (LC)-to-
isotropic (order-disorder) phase transitions because of the perturbation effect
arising from the trans-cis photoisomerization. Today, the research field of azo-
functional materials remains extremely active.

Although most research in the 1990s mainly dealt with the physical and
optical properties of azo polymers and liquid crystals important for optical
information storage and switching, the field has witnessed important new
developments and directions over the past 6 to 7 years. Amazing new phenom-
ena continue to be discovered, such as the light-controllable bending of cross-
linked LC azo polymers, which, by showing how drastic the effect of azo
photoisomerization can have on a material, offer new appealing opportunities.
In recent years, there have been increasing efforts toward the development of
diverse functional materials through rational molecular and material designs that
make use of established knowledge, and newer applications other than informa-
tion storage and switching have emerged. Convinced that ongoing and future
research on azobenzene-based light-enabled smart materials will have great
potential and impact on both fundamental and applied research, we think it is



time to edit a book that, by reviewing recent developments and showing
perspectives, provides a forum for discussions and exchange of new ideas.
We would like to thank the great effort of all the contributors who have helped
us put together a book that should not only benefit researchers who work
on azo polymers and liquid crystals but should also be of interest to those who
develop light-responsive materials without using azobenzene, as many of the
discussed strategies and ideas about azobenzene could be adapted to other
chromophores.

The vitality and sustained interest of this field can easily be noticed from the
many research papers on azobenzene-based materials that continue to appear.
Obviously, this book cannot cover all new, post-2000 developments. As editors,
we have tried to ensure that all chapters are relevant to the theme of the book,
with regard to research works that promise development of light-enabled smart
materials based mainly on azo polymers and liquid crystals. Despite the
apparent diversity of the topics covered in this book, the cohesion of all chapters
and the link between the different chapters are solid. Chapter 1 (Yager and
Barrett) introduces basic azobenzene photochemistry, photophysics, and the
wide variety of azo materials. With Chapter 2 (Stumpe et al.) that reviews and
discusses the photoinduced phenomena in supramolecular azo materials, the
basic background is set to help the general readership understand the funda-
mental aspects involved in and the ideas and interests behind the various types of
smart azo materials discussed in this book. This is followed by three chapters on
photoinduced motion and the photomechanical effect of LC azo polymers
(Chapter 3, Yu and Ikeda), amorphous azo polymers (Chapter 4, Yager and
Barrett), and colloidal particles (Chapter 5, Wang). The conversion of photo-
energy into mechanical energy is certainly a major new direction in the field. In
contrast to the colloidal particles self-assembled by amphiphilic random copo-
lymers, micellar aggregates are the subjects of Chapter 6 (Zhao) and Chapter 7
(Tribet) and involve the self-assembly of amphiphilic block copolymers and
hydrophobically modified polymers, respectively. Solution self-assembled light-
responsive micro- and nanostructures of azo polymers and their potential
applications as discussed in these chapters represent another exciting new
research direction. Likewise, the research works presented in Chapter 8 (Seki)
and Chapter 9 (Watanabe) explore azo polymers in two dimensions and on
surface. The next two chapters, Chapter 10 (Kurihara) and Chapter 11 (Zhao),
mainly concern smart light-sensitive materials of small-molecule LCs. The last
two chapters, Chapter 12 (Yu and Ikeda) and Chapter 13 (Liu and Brinker),
provide excellent examples of new azo materials and architectures, with a focus
on azo block copolymers in the solid state and azo hydride silica materials,
respectively.

The state of research on azobenzene-based smart materials is progressing. We
hope this book gives a critical review of the new developments and shows new
directions. However, what we want most for this book is to really generate interest
among graduate students and young researchers in this exciting field and help

xiv PREFACE



spark in them their imagination and ideas for creative research. This is essential to
ensure further research and development and maintain the excitement in this field
for many years to come.

YUE ZHAO

TOMIKI IKEDA

Sherbrooke, Quebec, Canada
Tokyo, Japan
January 2009
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1
AZOBENZENE POLYMERS FOR

PHOTONIC APPLICATIONS
Kevin G. Yager and Christopher J. Barrett

1.1. INTRODUCTION TO AZOBENZENE

Azobenzene, with two phenyl rings separated by an azo (–N=N–) bond, serves as
the parent molecule for a broad class of aromatic azo compounds. These
chromophores are versatile molecules, and have received much attention in
research areas both fundamental and applied. The strong electronic absorption
maximum can be tailored by ring substitution to fall anywhere from the ultraviolet
(UV) to visible red regions, allowing chemical fine-tuning of color. This, combined
with the fact that these azo groups are relatively robust and chemically stable, has
prompted extensive study of azobenzene-based structures as dyes and colorants.
The rigid mesogenic shape of the molecule is well suited to spontaneous
organization into liquid crystalline (LC) phases, and hence polymers doped or
functionalized with azobenzene-based chromophores (azo polymers) are common
as LC media. With appropriate electron-donor–acceptor ring substitution, the
p electron delocalization of the extended aromatic structure can yield high optical
nonlinearity, and zo chromophores have seen extensive study for nonlinear optical
applications as well. One of the most interesting properties of these chromophores
however, and the main subject of this review, is the readily induced and reversible
isomerization about the azo bond between the trans and cis geometric isomers and
the geometric changes that result when azo chromophores are incorporated into
polymers and other materials. This light-induced interconversion allows systems
incorporating azobenzenes to be used as photoswitches, effecting rapid and
reversible control over a variety of chemical, mechanical, electronic, and optical
properties.

Smart Light-Responsive Materials. Edited by Yue Zhao and Tomiki Ikeda

Copyright r 2009 John Wiley & Sons, Inc.



Perhaps of a range as wide as the interesting phenomena displayed by azo
aromatic compounds is the variety of molecular systems into which these
chromophores can be incorporated. In addition to LC media and amorphous
glasses, azobenzenes can be incorporated into self-assembled monolayers and
superlattices, sol–gel silica glasses, and various biomaterials. The photochromic or
photoswitchable nature of azobenzenes can also be used to control the properties
of novel small molecules, using an attached aromatic azo group. A review will be
presented here of the photochemical and photophysical nature of chromophores
in host polymers, the geometric and orientational consequences of this isomeriza-
tion, and some of the interesting ways in which these phenomena have been
expolited recently to exert control over solution and biochemical properties using
light. This photoisomerization can be exploited as a photoswitch to orient the
chromophore (which induces birefringence), or even to perform all-optical surface
topography patterning. These photomotions enable many interesting applications,
ranging from optical components and lithography to sensors and smart materials.

1.1.1. Azobenzene Chromophores

In this text, as in most on the subject, we use ‘‘azobenzene’’ and ‘‘azo’’ in a general
way: to refer to the class of compounds that exhibit the core azobenzene structure,
with different ring substitution patterns (even though, strictly, these compounds
should be referred to as ‘‘diazenes’’). There are many properties common to nearly
all azobenzene molecules. The most obvious is the strong electronic absorption of
the conjugated p system. The absorption spectrum can be tailored, via the ring
substitution pattern, to lie anywhere from the UV to the visible red region. It is not
surprising that azobenzenes were originally used as dyes and colorants, and up to
70% of the world’s commercial dyes are still azobenzene-based (Zollinger, 1987,
1961). The geometrically rigid structure and large aspect ratio of azobenzene
molecules make them ideal mesogens: azobenzene small molecules and polymers
functionalized with azobenzene can exhibit LC phases (Möhlmann and van der
Vorst, 1989; Kwolek et al., 1985). The most startling and intriguing characteristic of
the azobenzenes is their highly efficient and fully reversible photoisomerization.
Azobenzenes have two stable isomeric states, a thermally stable trans configuration
and a metastable cis form. Remarkably, the azo chromophore can interconvert
between these isomers upon absorption of a photon. For most azobenzenes, the
molecule can be optically isomerized from trans to cis with light anywhere within the
broad absorption band, and the molecule will subsequently thermally relax back to
the trans state on a timescale dictated by the substitution pattern. This clean
photochemistry is central to azobenzene’s potential use as a tool for nanopatterning.

Azobenzenes can be separated into three spectroscopic classes, well described
by Rau (1990): azobenzene-type molecules, aminoazobenzene-type molecules,
and pseudo-stilbenes (refer to Fig. 1.1 for examples). The particulars of their
absorption spectra (shown in Fig. 1.2) give rise to their prominent colors: yellow,
orange, and red, respectively. Many azos exhibit absorption characteristics
similar to the unsubstituted azobenzene archetype. These molecules exhibit
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a low intensity n-p* band in the visible region and a much stronger p-p* band
in the UV. Although the n-p* is symmetry-forbidden for trans-azobenzene (C2h),
vibrational coupling and some extent of nonplanarity nevertheless make it
observable (Rau, 1968).

N
N

NH2

N
N

NH2

N
N

NO2

(a) (b) (c)

Figure 1.1. Examples of azomolecules classified as (a) azobenzenes, (b) amino-

azobenzenes, and (c) pseudo-stilbenes.
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Figure 1.2. Schematic of typical absorbance spectra for trans-azobenzenes. The

azobenzene-type molecules (solid line) have a strong absorption in the UV, and a

low intensity band in the visible (barely visible in the graph). The aminoazo-

benzenes (dotted line) and pseudo-stilbenes (dashed line) typically have strong

overlapped absorptions in the visible region.
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Adding substituents to the azobenzene rings may lead to minor or major
changes in spectroscopic character. Of particular interest is ortho- or para-
substitution with an electron-donating group (usually an amino, –NH2), which
results in a new class of compounds. In these aminoazobenzenes, the n-p* and
p-p* bands are much closer. In fact, the n-p* may be completely buried beneath
the intense p-p*. Although azobenzenes are fairly insensitive to solvent polarity,
aminoazobenzene absorption bands shift to higher energy in nonpolar solvents and
shift to lower energy in polar solvents. Substituting azobenzene at the 4 and 4u
positions with an electron-donor and an electron-acceptor (such as an amino and a
nitro, –NO2, group) leads to a strongly asymmetric electron distribution (often
referred to as a ‘‘push–pull’’ substitution pattern). This shifts the p-p* absorption
to lower energy, toward the red and past the n-p*. This reversed ordering of
the absorption bands defines the third spectroscopic class, the pseudo-stilbenes
(in analogy to stilbene, phenyl–C=C–phenyl). The pseudo-stilbenes are very
sensitive to local environment, which can be useful in some applications.

Especially in condensed phases, the azos are also sensitive to packing and
aggregation. The p–p stacking gives rise to shifts of the absorption spectrum. If the
azo dipoles have a parallel (head-to-head) alignment, they are called J-aggregates,
and give rise to a redshift of the spectrum (bathochromic) as compared with the
isolated chromophore. If the dipoles are antiparallel (head-to-tail), they are called
H-aggregates and lead to a blueshift (hypsochromic). Fluorescence is seen in some
aminoazobenzenes and many pseudo-stilbenes but not in azobenzenes, whereas
phosphorescence is absent in all the three classes. By altering the electron density,
the substitution pattern necessarily affects the dipole moment, and in fact all the
higher order multipole moments. This becomes significant in many nonlinear
optical (NLO) studies. For instance, the chromophore’s dipole moment can be
used to orient with an applied electric field (poling), and the higher order moments
of course define the molecule’s nonlinear response (Delaire and Nakatani, 2000).
In particular, the strongly asymmetric distribution of the delocalized electrons
that results from push–pull substitution results in an excellent NLO chromophore.

1.1.2. Azobenzene Photochemistry

Key to some of the most intriguing results and interesting applications of
azobenzenes is the facile and reversible photoisomerization about the azo bond,
converting between the trans (E ) and cis (Z) geometric isomers (Fig. 1.3). This
photoisomerization is completely reversible and free from side reactions, prompt-
ing Rau to characterize it as ‘‘one of the cleanest photoreactions known.’’(Rau,
1990) The trans isomer is more stable by B50 kJmol�1 (Mita et al., 1989; Schulze
et al., 1977), and the energy barrier to the photoexcited state (barrier to
isomerization) is on the order of 200 kJmol�1 (Monti et al., 1982). Thus, in the
dark, most azobenzene molecules will be found in the trans form. On absorption
of a photon (with a wavelength in the trans absorption band), the azobenzene
will convert, with high efficiency, into the cis isomer. A second wavelength of
light (corresponding to the cis absorption band) can cause the back-conversion.
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These sphotoisomerizations usually have picosecond timescales (Lednev et al.,
1996; Kobayashi et al., 1979). Alternately, azos will thermally reconvert from the
cis into trans state, with a timescale ranging from milliseconds to hours, depending
on the substitution pattern and local environment. More specifically, the lifetimes
for azobenzenes, aminoazobenzenes, and pseudo-stilbenes are usually on the
order of hours, minutes, and seconds, respectively. The energy barrier for thermal
isomerization is on the order of 90 kJmol�1 (Brown and Granneman, 1975;
Haberfield et al., 1975). Considerable work has gone into elongating the cis
lifetime, with the goal of creating truly bistable photoswitchable systems. Bulky
ring substituents can be used to hinder the thermal back reaction. For instance, a
polyurethane main-chain azo exhibited a lifetime of 4 days (thermal rate constant
of k=2.8� 10�6 s�1, at 31C) (Lamarre and Sung, 1983), and an azobenzene
parasubstituted with bulky pendants had a lifetime of 60 days (ko2� 10�7 s�1, at
room temperature) (Shirota et al., 1998). The conformational strain of macrocylic
azo compounds can also be used to lock the cis state, where lifetimes of
20 days (k=5.9� 10�7 s�1) (Norikane et al., 2003), 1 year (half-life 400 days,
k=2� 10�8 s�1) (Rottger and Rau, 1996; Rau and Roettger, 1994), or even
6 years (k=4.9� 10�9 s�1) (Nagamani et al., 2005) were observed. Similarly, using
the hydrogen bonding of a peptide segment to generate a cyclic structure, a cis
lifetime of B40 days (k=2.9� 10�7 s�1) was demonstrated (Vollmer et al., 1999).
Of course, one can also generate a system that starts in the cis state and where
isomerization (in either direction) is completely hindered. For instance, attach-
ment to a surface (Kerzhner et al., 1983), direct synthesis of ringlike azo molecules
(Funke and Gruetzmacher, 1987), and crystallization of the cis form (Hartley,
1938, 1937) can be used to maintain one state, but such systems are obviously not
bistable photoswitches.

A bulk azo sample or solution under illumination will achieve a photosta-
tionary state, with a steady-state trans–cis composition based on the competing

(a) (b)
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�

Figure 1.3. (a) Azobenzene can convert between trans and cis states photoche-

mically and relaxes to the more stable trans state thermally. (b) Simplified state

model for azobenzenes. The trans and cis extinction coefficients are denoted by

etrans and ecis. The F refer to quantum yields of photoisomerization, and g is the

thermal relaxation rate constant.
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effects of photoisomerization into the cis state, thermal relaxation back to the
trans state, and possibly cis reconversion upon light absorption. The steady-state
composition is unique to each system, as it depends on the quantum yields for
the two processes (Ftrans and Fcis) and the thermal relaxation rate constant.
The composition also depends on irradiation intensity, wavelength, temperature,
and the matrix (gas phase, solution, liquid crystal, sol–gel, monolayer, polymer
matrix, etc.). Azos are photochromic (their color changes on illumination), since
the effective absorption spectrum (a combination of the trans and cis spectra)
changes with light intensity. Thus absorption spectroscopy can be conveniently
used to measure the cis fraction in the steady state (Rau et al., 1990; Fischer,
1967), and the subsequent thermal relaxation to an all-trans state (Beltrame et al.,
1993; Hair et al., 1990; Eisenbach, 1980a; Gabor and Fischer, 1971). Nuclear
magnetic resonance (NMR) spectroscopy can also be used (Magennis et al., 2005).
Under moderate irradiation, the composition of the photostationary state is
predominantly cis for azobenzenes, mixed for aminoazobenzenes, and predomi-
nantly trans for pseudo-stilbenes. In the dark, the cis fraction is below most
detection limits, and the sample can be considered to be in an all-trans state.
Isomerization is induced by irradiating with a wavelength within the azo’s
absorption spectrum, preferably close to lmax. Modern experiments typically
use laser excitation with polarization control, delivering on the order of
1–100mWcm�2 of power to the sample. Various lasers cover the spectral range
of interest, from the UV (Ar+ line at 350 nm) through blue (Ar+ at 488 nm), green
(Ar+ at 514 nm, YAG at 532 nm, HeNe at 545 nm), and into the red (HeNe at
633 nm, GaAs at 675 nm).

The ring substitution pattern affects both the trans and the cis absorption
spectra, and for certain patterns, the absorption spectra of the two isomers overlap
significantly (notably for the pseudo-stilbenes). In these cases, a single wavelength
of light effectuates both the forward and reverse reaction, leading to a mixed
stationary state and continual interconversion of the molecules. For some
interesting azobenzene photomotions, this rapid and efficient cycling of chromo-
phores is advantageous, whereas in cases where the azo chromophore is used as a
switch, it is clearly undesirable.

The mechanism of isomerization has undergone considerable debate. Isomer-
ization takes place either through a rotation about the N–N bond, with rupture of
the p bond, or through inversion, with a semilinear and hybrizidized transition
state, where the p bond remains intact (refer to Fig. 1.4). The thermal back-
relaxation is agreed to be via rotation, whereas for the photochemical isomeriza-
tion, both mechanisms appear viable (Xie et al., 1993). Historically, the rotation
mechanism (as necessarily occurs in stilbene) was favored for photoisomerization,
with some early hints that inversion may be contributing (Gegiou et al., 1968).
More recent experiments, based on matrix or molecular constraints to the
azobenzene isomerization, strongly support inversion (Altomare et al., 1997;
Liu et al., 1992; Naito et al., 1991; Rau and Lueddecke, 1982). Studies using
picosecond Raman and femtosecond fluorescence show a double bond (N=N) in
the excited state, confirming the inversion mechanism (Fujino et al., 2001; Fujino
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and Tahara, 2000). In contrast, Ho et al. (2001) found evidence that the pathway is
compound-specific: a nitro-substituted azobenzene photoisomerized via the rota-
tion pathway. Furthermore, ab initio and density functional theory calculations
indicate that both pathways are energetically accessible, although inversion is
preferred (Angeli et al., 1996; Jursic, 1996). Thus, both mechanisms may be
competing, with a different one dominating depending on the particular chromo-
phore and environment. The emerging consensus nevertheless appears to be that
inversion is the dominant pathway for most azobenzenes (Ikeda and Tsutsumi,
1995). The availability of the inversion mechanism explains how azos are able to
isomerize easily even in rigid matrices, such as glassy polymers, since the inversion
mechanism has a much smaller free volume requirement than rotation.

The thermal back-relaxation is generally first order, although a glassy
polymer matrix can lead to anomalously fast decay components (Barrett et al.,
1995, 1994; Paik and Morawetz, 1972; Priest and Sifain, 1971), attributed to a
distribution of chromophores in highly strained configurations. Higher matrix
crystallinity increases the rate of decay (Sarkar et al., 2001). The decay rate can act
as a probe of local environment and molecular conformation (Tanaka et al., 2004;
Norman and Barrett, 2002). The back-relaxation of azobenzene is acid catalyzed
(Rau et al., 1981), although strongly acidic conditions will lead to side reactions
(Hartley, 1938). For the parent azobenzene molecule, quantum yields (which can
be indirectly measured spectroscopically (Shen and Rau, 1991; Priest and Sifain,
1971; Malkin and Fischer, 1962) are on the order of 0.6 for the trans-cis
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N
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Figure 1.4. The mechanism of azobenzene isomerization proceeds either via

rotation or inversion. The cis state has the phenyl rings tilted at 901 with respect

to the CNNC plane.
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photoconversion, and 0.25 for the back photoreaction. Solvent has a small effect,
increasing the trans-cis and decreasing the cis-trans yield as polarity increases
(Bortolus and Monti, 1979). Aminoazobenzenes and pseudo-stilbenes isomerize
very quickly and can have quantum yields as high as 0.7–0.8.

1.1.3. Classes of Azobenzene Systems

Azobenzenes are robust and versatile moieties, and have been extensively
investigated as small molecules, pendants on other molecular structures, or
incorporated (doped or covalently bound) into a wide variety of amorphous,
crystalline, or LC polymeric systems. Noteworthy examples include self-assembled
monolayers and superlattices (Yitzchaik and Marks, 1996), sol–gel silica glasses
(Levy and Esquivias, 1995), and biomaterials (Gallot et al., 1996; Willner and
Rubin, 1996; Sisido et al., 1991a). A number of small molecules incorporating
azobenzene have been synthesized, including crown ethers (Shinkai et al., 1983),
cyclodextrins (Jung et al., 1996; Yamamura et al., 1996), proteins such as
bacteriorhodopsin (Singh et al., 1996), and three-dimensional (3-D) polycyclics
such as cubane (Chen et al., 1997b) and adamantane (Chen et al., 1995). Typically,
azo chromophores are embedded in a solid matrix for studies and devices. As a
result, matrix effects are inescapable: the behavior of the chromophore is altered
due to the matrix, and in turn, the chromophore alters the matrix (Ichimura,
2000). Although either could be viewed as a nuisance, both are in fact useful: the
chromophore can be used as a probe of the matrix (free volume, polarizability,
mobility, etc.), and when the matrix couples to chromophore motion, molecular
motions can be translated to larger length scales. Thus, the incorporation strategy
is critical to exploiting azobenzene’s unique behavior.

1.1.3.1. Amorphous Polymer Thin Films. Doping azobenzenes into poly-
mer matrices is a convenient inclusion technique (Birabassov et al., 1998;
Labarthet et al., 1998). These ‘‘guest–host’’ systems can be cast or spin-coated
from solution mixtures of polymer and azo small molecules, where the azo content
in the thin film is easily adjusted via concentration. Although doping leaves the
azo chromophores free to undergo photoinduced motion unhindered, it has been
found that many interesting photomechanical effects do not couple to the matrix
in these systems. Furthermore, the azo mobility often leads to instabilities, such as
phase separation or microcrystallization. Thus, one of the most attractive
methodologies for incorporating azobenzene into functional materials is by
covalent attachment to polymers. The resulting materials benefit from the inherent
stability, rigidity, and processability of polymers, in addition to the unusual
photoresponsive behavior of the azo moieties. Both side-chain and main-chain
azobenzene polymers have been prepared (Viswanathan et al., 1999) (Fig. 1.5).
Reported synthetic strategies involve either polymerizing azobenzene-functiona-
lized monomers (Ho et al., 1996; Natansohn et al., 1992) or postfunctionalizing
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a polymer that has an appropriate pendant group (usually a phenyl) (Wang et al.,
1997a,b,c). The first method is preferred for its simplicity and control of sequence
distribution. The second takes advantage of commonly available starting materi-
als, but may require more reaction steps. Many different backbones have been
used as scaffolds for azo moieties, including imides (Agolini and Gay, 1970), esters
(Anderle et al., 1989), urethanes (Furukawa et al., 1967), ethers (Bignozzi et al.,
1999), organometallic ferrocene polymers (Liu et al., 1997), dendrimers (Junge
and McGrath, 1997; Mekelburger et al., 1993), and even conjugated polydiace-
tylenes (Sukwattanasinitt et al., 1998), polyacetylenes (Teraguchi and Masuda,
2000), and main-chain azobenzenes (Izumi et al., 2000a,b). The most common azo
polymers are acrylates (Morino et al., 1998), methacrylates (Altomare et al., 2001),
and isocyanates (Tsutsumi et al., 1996). Thin films are usually prepared by spin-
coating (Han and Ichimura, 2001; Blinov et al., 1998; Weh et al., 1998; Ichimura
et al., 1996), although there are also many examples of using solvent evaporation,
the Langmuir–Blodgett technique (Silva et al., 2002; Razna et al., 1999; Jianhua
et al., 1998; Seki et al., 1993), and self-assembled monolayers (Evans et al., 1998).
Spin-cast films are typically annealed above the polymer glass transition tempera-
ture (Tg) to remove residual solvent and erase any hydrodynamically induced
anisotropy. Recently molecular glasses have been investigated as alternatives to
amorphous polymer systems (Mallia and Tamaoki, 2003). These monodisperse
systems appear to maintain the desirable photomotions and photoswitching
properties, while allowing precise control of molecular architecture and thus
material properties (Naito and Miura, 1993).
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Figure 1.5. Examples of azo polymer structures, showing that both (a) side-chain

and (b) main-chain architectures are possible.
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1.1.3.2. Liquid Crystals. Azobenzenes are anisotropic, rigid molecules and
as such are ideal candidates to act as mesogens: molecules that form LC
mesophases. Many examples of small-molecule azobenzene liquid crystals have
been studied. Some azo polymers also form LC phases (refer to Fig. 1.6 for a
typical structure). For side-chain azobenzenes, a certain amount of mobility is
required for LC phases to be present; as a rule, if the tether between the
chromophore and the backbone is less than 6 alkyl units long, the polymer will
exhibit an amorphous and isotropic solid-state phase, whereas if the spacer is
longer, LC phases typically form. The photoisomerization of azobenzene leads to
modification of the phase and alignment (director) in LC systems (Shibaev et al.,
2003; Ichimura, 2000). The director of a liquid crystal phase can be modified by
orienting chromophores doped into the phase (Sun et al., 1992; Anderle et al.,
1991) by using an azobenzene-modified ‘‘command surface’’ (Chen and Brady,
1993; Ichimura et al., 1993; Gibbons et al., 1991), using azo copolymers (Wiesner
et al., 1991), and, of course, in pure azobenzene LC phases (Hvilsted et al., 1995;
Stumpe et al., 1991). One can force the LC phase to adopt an in-plane order
(director parallel to surface), homeotropic alignment (director perpendicular to
surface), tilted or even biaxial orientation (Yaroschuk et al., 2001). These changes
are fast and reversible. Although the trans-azobenzenes are excellent mesogens,
the cis-azos typically are not. If even a small number of azomolecules are
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Figure 1.6. A typical liquid-crystalline side-chain azobenzene polymer.
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