SMART LIGHT-RESPONSIVE MATERIALS Azobenzene-Containing Polymers and Liquid Crystals

EDITED BY

Yue Zhao University of Sherbrooke Sherbrooke, Quebec, Canada

Tomiki Ikeda

Tokyo Institute of Technology Tokyo, Japan

A JOHN WILEY & SONS, INC., PUBLICATION

SMART LIGHT-RESPONSIVE MATERIALS

SMART LIGHT-RESPONSIVE MATERIALS Azobenzene-Containing Polymers and Liquid Crystals

EDITED BY

Yue Zhao University of Sherbrooke Sherbrooke, Quebec, Canada

Tomiki Ikeda

Tokyo Institute of Technology Tokyo, Japan

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2009 John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Zhao, Yue, 1961-

Smart light-responsive materials : azobenzene-containing polymers and liquid crystals/Yue Zhao and Tomiki Ikeda.

p. cm. Includes index. ISBN 978-0-470-17578-1 (cloth) 1. Smart materials. 2. Polymers–Optical properties. 3. Azo compounds. 4. Liquid crystals. I. Ikeda, Tomiki. II. Title. TA418.9.S62.Z53 2009 620.1/1295–dc22

2008035493

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

Pre	face		xiii
Co	ntributo	rs	xvii
1	AZOBEN Kevin G.	VZENE POLYMERS FOR PHOTONIC APPLICATIONS Yager and Christopher J. Barrett	1
	1.1.	Introduction to Azobenzene	1
		1.1.1. Azobenzene Chromophores	2
		1.1.2. Azobenzene Photochemistry	4
		1.1.3. Classes of Azobenzene Systems	8
	1.2.	Photoinduced Motions and Modulations	14
		1.2.1. Molecular Motion	15
		1.2.2. Photobiological Experiments	15
		1.2.3. Photoorientation	18
		1.2.4. Domain Motion	22
		1.2.5. Macroscopic Motion	23
		1.2.6. Other Applications of Azobenzenes	24
		Acknowledgment	27
		References	27
2	PHOTO AZOBEN Joachim S	-INDUCED PHENOMENA IN SUPRAMOLECULAR NZENE MATERIALS Stumpe, Olga Kulikovska, Leonid M. Goldenberg, and Yuriy Zakrevskyy	47
	2.1.	Introduction	47
	2.2.	Photoorientation	54
	2.3.	Surface Relief Gratings	68
	2.4.	Conclusion and Outlook	82
		References	84

PHOTO EFFECTS AND LIO Yanlei Yu	DEFORMABLE MATERIALS AND PHOTOMECHANICAL S BASED ON AZOBENZENE-CONTAINING POLYMERS QUID CRYSTALS and Tomiki Ikeda	95
3.1.	Introduction	95
3.2.	Photodeformable Materials Based on	
	Azobenzene-Containing Polymer Gels	97
3.3.	Photodeformable Materials Based on	
	Azobenzene-Containing Solid Films	100
3.4.	Photodeformable Materials Based on	
	Azobenzene-Containing LCs	106
	3.4.1. LCs and LCEs	106
	3.4.2. General Methods of Preparation of LCEs	107
	3.4.3. Temperature-/Electricity-/pH-Responsive LCEs	110
	3.4.4. Photoresponsive Behavior of	
	Chromophore-Containing LCs	114
	3.4.5. Light-Responsive LCEs	122
3.5.	Summary and Outlook	136
	References	136
AMORF SURFAC Kevin G.	PHOUS AZOBENZENE POLYMERS FOR LIGHT-INDUCED CE PATTERNING Yager and Christopher J. Barrett	145
4.1.	Surface Mass Transport	145
	4.1.1. Experimental Observations	146
	4.1.2. Patterning	151
	4.1.3. Dependence on Material Properties	152
	4.1.4. Photosoftening	154
	4.1.5. Photomechanical Effects	155
	4.1.6. Measuring Gratings	156
	4.1.7. Dynamics	158
4.2.	Mechanism	159
	4.2.1. Thermal Considerations	160
	4.2.2. Asymmetric Diffusion	161
	PHOTO EFFECT AND LIQ Yanlei Yu 3.1. 3.2. 3.3. 3.4. 3.5. AMORE SURFAC Kevin G. 4.1. 4.2.	 PHOTODEFORMABLE MATERIALS AND PHOTOMECHANICAL EFFECTS BASED ON AZOBENZENE-CONTAINING POLYMERS AND LIQUID CRYSTALS Yanlei Yu and Tomiki Ikeda 3.1. Introduction 3.2. Photodeformable Materials Based on Azobenzene-Containing Polymer Gels 3.3. Photodeformable Materials Based on Azobenzene-Containing Solid Films 3.4. Photodeformable Materials Based on Azobenzene-Containing LCs 3.4.1. LCs and LCEs 3.4.2. General Methods of Preparation of LCEs 3.4.3. Temperature-/Electricity-/pH-Responsive LCEs 3.4.4. Photoresponsive Behavior of Chromophore-Containing LCs 3.4.5. Light-Responsive LCEs 3.5. Summary and Outlook References AMORPHOUS AZOBENZENE POLYMERS FOR LIGHT-INDUCED SURFACE PATTERNING Kevin G. Yager and Christopher J. Barrett 4.1. Surface Mass Transport 4.1.1. Experimental Observations 4.1.2. Patterning 4.1.3. Dependence on Material Properties 4.1.4. Photosoftening 4.1.5. Photomechanical Effects 4.1.6. Measuring Gratings 4.1.7. Dynamics 4.2. Asymetric Diffusion

		4.2.3. Mean-Field Theory	161
		4.2.4. Permittivity Gradient Theory	162
		4.2.5. Gradient Electric Force	162
		4.2.6. Isomerization Pressure	163
		4.2.7. Applications of Surface Mass Transport	165
	4.3.	Conclusions	166
		Acknowledgment	167
		References	167
5	AZO PO TWO-DI PROPER Xiaogong	LYMER COLLOIDAL SPHERES: FORMATION, MENSIONAL ARRAY, AND PHOTORESPONSIVE TIES Wang	177
	5.1.	Introduction	177
	5.2.	Azo Polymer Synthesis	179
	5.3.	Self-Assembly of Polydispersed Amphiphilic	
		Azo Polymers in Solutions	182
		5.3.1. Characteristics of Polydispersed Azo Polymer	
		Self-Assembly	183
		5.3.2. Colloidal Sphere Formation and Characterization	184
		5.3.3. Colloidal Sphere Formation Mechanism	188
		5.3.4. Hybrid Colloids Composed of Two Types	
		of Amphiphilic Azo Polymers	190
	5.4.	Photoresponsive Properties of Azo Polymer Colloidal	
		Spheres	192
		5.4.1. Deformation Induced by Interfering Ar^+ Laser Beams	192
		5.4.2. Deformation Induced by a Single Ar^+ Laser Beam	195
		5.4.3. Photoresponsive Porperties of Hybrid Colloids	198
	5.5.	Photoresponsive 2-D Colloidal Array and Its in situ	
		Structure Inversion	202
		5.5.1. Colloidal Array and Photoinduced Dichroism	202
		5.5.2. Porous Structure from in situ Colloidal Array	
		Structure Inversion	205
	5.6.	Closing Remarks	208

5.6. Closing Remarks References vii

208

6	AZOBEN TOWAR Yue Zhao	IZENE-CONTAINING BLOCK COPOLYMER MICELLES: D LIGHT-CONTROLLABLE NANOCARRIERS	215
	6.1.	What is the Use of Light-Controllable Polymer Micelles?	215
	6.2.	How to Design Azobenzene Block Copolymers for Light-Controllable Micelles?	218
	6.3.	Synthesis of Azobenzene-Containing Amphiphilic Block Copolymers	221
	6.4.	Reversible Dissociation and Formation of Azobenzene Block Copolymer Micelles	223
	6.5.	Factors Influencing the Reversible Dissociation and	226
		Formation Processes	226
		6.5.1. Effect of Solution Surring	227
		6.5.2. Effect of Irradiation Light Intensity	229
		6.5.3. Effects of Solvent and Block Copolymer Composition	231
	6.6.	Other Light-Responsive Azobenzene-Based Polymer Micelles	234
	6.7.	Perspectives and Future Work	237
		Acknowledgments	239
		References	239
7 ASSOCIATION BETWEEN AZOBENZENE-MODIFIED POLYMERS AND SURFACTANTS OR NANOPARTICLES TO AMPLIFY MACROSCOPIC PHOTOTRANSITIONS IN SOLUTION Christophe Tribet		ATION BETWEEN AZOBENZENE-MODIFIED POLYMERS IRFACTANTS OR NANOPARTICLES TO AMPLIFY SCOPIC PHOTOTRANSITIONS IN SOLUTION Tribet	243
	7.1.	Light Responsiveness of Solution Properties:	
		A Question of Amplification	243
	7.2.	From Cloud Point to Associative Phase Separation	
		of Photopolymers	245
		7.2.1. Polymers in Poor Solvents or at Low Critical	
		Solubility Temperature	246
		7.2.2. Complexation and Solubility of Chains	249
		7.2.3. Associative Phase Separation	251
	7.3.	Intrachain Association with Colloid Particles:	
		Photorecognition	254
		7.3.1. Complexes with Protein and Micelles in the Dilute	
		Regime	255
		7.3.2. Sol-Gel Transition in Semidilute Conditions	260

	7.4.	Complexes on Disperse Interfaces: Photoreversible Emulsions	265
	7.5.	Conclusion	267
		Acknowledgments	268
		References	268
8	light-r In Azoi	ESPONSIVE 2-D MOTIONS AND MANIPULATIONS BENZENE-CONTAINING LIQUID CRYSTALLINE	
	POLYME Takahiro S	ER MATERIALS Seki	273
	8.1.	Introduction	273
	8.2.	Alignment of Functional Materials by Command Surface 8.2.1. Photoalignment of Polymer Main Chain	274
		of Polysilane	274
		8.2.2. Surfactant-Silica Nanohybrids	275
		8.2.3. Photoalignment of Chromonic LC-Silica Nanohybrid	277
	8.3.	Surface-Grafted Az-Containing LC Polymer	280
	8.4.	Photogenerated Mass Migrations	282
		8.4.1. Conventional Type	282
		8.4.2. Phase Transition Type	284
		8.4.3. On the Migration Features of the PT Type	284
		8.4.4. Extended Studies in the PT-Type Mass Migration	285
	8.5.	Photoresponsive LC Block Copolymer Systems	291
		8.5.1. Monolayer Systems	291
		8.5.2. Photocontrolled Macroscopic Alignment	202
		01 MPS Structures	292
		8.5.3. Micropatterning of MPS Structure in the Hierarchical	206
	9.6	Structure Conduction and Scene	290
	8.6.	References	297
			270
9	PHOTOI THE SUI	NDUCED IMMOBILIZATION OF MOLECULES ON RFACE OF AZOBENZENE POLYMERS: PRINCIPLES	
	AND AP Osamu W	'PLICATION /atanabe	303
	9.1.	Introduction	303
	9.2.	Background Study: Nanofabrication	306
	9.3.	Principles of Photoinduced Immobilization	308

363

9.4.	Application for Immunochips	314
9.5.	Immobilization Depending on the Azobenzene Moiety	316
9.6.	Two-Dimensional Arrangement and Area-Selective	
	Immobilization of Microspheres	321
9.7.	Summary	324
	References	325

$10\,$ phototuning of helical structure of cholesteric LIQUID CRYSTALS 329 Seiji Kurihara

10.1.	Introduction	329
10.2.	Properties and Design of Chiral Azobenzenes	331
	10.2.1. Effect of Spacer Length	331
	10.2.2. Effects of Molecular Shape	335
	10.2.3. Effects of Chiral Groups on Photochemical Change	
	in HTP	339
10.3.	Applications	346
	10.3.1. Photochemical Switching of Selective Reflection	347
	10.3.2. Control of Transparency	348
	10.3.3. Photochemical Inversion of Helix	349
	10.3.4. Photochemical Control of Lasing	353
10.4.	Conclusion	358
	References	358

$11\,$ tunable diffraction gratings based on azobenzene POLYMERS AND LIQUID CRYSTALS Yue Zhao

11.1.	Diffraction Gratings Can Easily Be Recorded on		
	Azobenzene-Containing Polymers and Liquid Crystals	363	
11.2.	What are Tunable Diffraction Gratings?	365	
11.3.	Mechanically Tunable Diffraction Gratings	365	
	11.3.1. Preparation of Azobenzene Thermoplastic		
	Elastomers	367	
	11.3.2. Coupled Mechanical and Optical Effects	369	

CONTENTS

		11.3.3. Elastic Diffraction Gratings Recorded Using	
		a Photomask	372
		11.3.4. Grating Formation Dynamics and Mechanisms	376
	11.4.	Electrically Tunable Diffraction Gratings	381
		11.4.1. Use of Liquid Crystals	381
		11.4.2. Grating Formation in Photosensitive Self-Assembled	
		Liquid Crystal Gels	382
		11.4.3. Electrical Switching	387
	11.5.	Optically Tunable Diffraction Gratings	389
		11.5.1. Dynamic Holographic Gratings	389
		11.5.2. Optically Tunable Diffraction Gratings	
		in Polymer-Stabilized Liquid Crystals	391
		11.5.3. Optically Switchable Reflection Gratings	400
	11.6.	Concluding Remarks and Perspectives	404
		Acknowledgments	406
		References	406
12	AZO BL Haifeng	LOCK COPOLYMERS IN THE SOLID STATE Yu and Tomiki Ikeda	411
	12.1.	Introduction	411
	12.2.	Preparation Method	413
		12.2.1. Direct Polymerization of Azo Monomers	413
		12.2.2. Polymer Analogue Reaction	415
		12.2.3. Supramolecular Self-Assembly	417
		12.2.4. Special Reactions	419
	12.3.	Properties	419
		12.3.1. Basic Properties	419
		12.3.2. Properties from Non-Azo Blocks	423
		12.3.3. Properties Originating from Microphase Separation	424
	12.4.	Control of Microphase Separation	426
		12.4.1. Thermal Annealing	427
		12.4.2. Rubbing Method	429
		12.4.3. Photoalignment	433
		12.4.4. Electric Field	435
		12.4.5. Magnetic Field	436
		12.4.6. Shearing Flow and Other Methods	437

12.5.	Applications	438
	12.5.1. Enhancement of Surface Relief Gratings	438
	12.5.2. Enhancement of Refractive Index Modulation	441
	12.5.3. Nanotemplates	441
	12.5.4. Volume Storage	447
	12.5.5. Other Applications	448
12.6.	Outlook	448
	References	450
13 рното	RESPONSIVE HYBRID SILICA MATERIALS	
CONTA		457
Nanguo	Liu and C. Jettrey Brinker	
13.1.	Introduction	457
13.2.	Azobenzene-Containing Organosilanes	458
	13.2.1. Synthesis and Photoisomerization of TSUA	
	and BSUA	459
	13.2.2. Crystallography of the TSUA Compound	460
	13.2.3. Self-Directed Self-Assembly of the BSUA Compound	462
13.3.	Photoresponsive Mesoporous Materials	464
	13.3.1. Synthesis and Characterization of Photoresponsive	
	Nanoporous Materials	466
	13.3.2. Photoisomerization of Azobenzene Ligands in	
	Mesoporous Materials	473
	13.3.3. Photoswitched Azobenzene Nanovalves	479
	13.3.4. Photocontrolled Release of Dye Molecules from	
	Azobenzene-Modified Nanocomposite Particles	489
	13.3.5. Reversible Photoswitching Liquid-Adsorption	
	of Azobenzene-Modified Mesoporous Silica Materials	491
13.4.	Photoresponsive Polysilsesquioxane Gels	493
	13.4.1. Azobenzene-Modified Polysilsesquioxanes	
	for Photocontrol of Refractive Index	493
	13.4.2. Azobenzene-Modified Polysilsesquioxane Gels	
	for Optomechanical Devices	494
13.5.	Future Work	503
	References	504

PREFACE

Azobenzene and its derivatives are fascinating molecules display that the reversible photoisomerization between the more stable trans and the less stable cis isomers. Although photoisomerization can result in important changes of properties for azobenzene molecules on their own, such as a large change in molecular shape and dipole moment, changes that can be imparted to polymers and liquid crystals when azobenzene is part of their structures or is associated with them are more interesting. Indeed, reversible photoisomerization in azobenzene-containing polymers and liquid crystals enables the use of light as a powerful external stimulus to control or trigger the change of the properties of these two important classes of soft materials. For this reason, over the past two decades or so, there has been considerable worldwide research dedicated to azo polymers and liquid crystals-, ranging from fundamental studies to exploitation for applications. A number of important discoveries made in the 1990s have had a particular impact on this field. These include the surface relief grating that can readily be inscribed on azobenzene polymers using an interference pattern as a result of photoinduced mass transport and the isothermal photochemical liquid crystalline (LC)-toisotropic (order-disorder) phase transitions because of the perturbation effect arising from the trans-cis photoisomerization. Today, the research field of azofunctional materials remains extremely active.

Although most research in the 1990s mainly dealt with the physical and optical properties of azo polymers and liquid crystals important for optical information storage and switching, the field has witnessed important new developments and directions over the past 6 to 7 years. Amazing new phenomena continue to be discovered, such as the light-controllable bending of cross-linked LC azo polymers, which, by showing how drastic the effect of azo photoisomerization can have on a material, offer new appealing opportunities. In recent years, there have been increasing efforts toward the development of diverse functional materials through rational molecular and material designs that make use of established knowledge, and newer applications other than information storage and switching have emerged. Convinced that ongoing and future research on azobenzene-based light-enabled smart materials will have great potential and impact on both fundamental and applied research, we think it is

time to edit a book that, by reviewing recent developments and showing perspectives, provides a forum for discussions and exchange of new ideas. We would like to thank the great effort of all the contributors who have helped us put together a book that should not only benefit researchers who work on azo polymers and liquid crystals but should also be of interest to those who develop light-responsive materials without using azobenzene, as many of the discussed strategies and ideas about azobenzene could be adapted to other chromophores.

The vitality and sustained interest of this field can easily be noticed from the many research papers on azobenzene-based materials that continue to appear. Obviously, this book cannot cover all new, post-2000 developments. As editors, we have tried to ensure that all chapters are relevant to the theme of the book, with regard to research works that promise development of light-enabled smart materials based mainly on azo polymers and liquid crystals. Despite the apparent diversity of the topics covered in this book, the cohesion of all chapters and the link between the different chapters are solid. Chapter 1 (Yager and Barrett) introduces basic azobenzene photochemistry, photophysics, and the wide variety of azo materials. With Chapter 2 (Stumpe et al.) that reviews and discusses the photoinduced phenomena in supramolecular azo materials, the basic background is set to help the general readership understand the fundamental aspects involved in and the ideas and interests behind the various types of smart azo materials discussed in this book. This is followed by three chapters on photoinduced motion and the photomechanical effect of LC azo polymers (Chapter 3, Yu and Ikeda), amorphous azo polymers (Chapter 4, Yager and Barrett), and colloidal particles (Chapter 5, Wang). The conversion of photoenergy into mechanical energy is certainly a major new direction in the field. In contrast to the colloidal particles self-assembled by amphiphilic random copolymers, micellar aggregates are the subjects of Chapter 6 (Zhao) and Chapter 7 (Tribet) and involve the self-assembly of amphiphilic block copolymers and hydrophobically modified polymers, respectively. Solution self-assembled lightresponsive micro- and nanostructures of azo polymers and their potential applications as discussed in these chapters represent another exciting new research direction. Likewise, the research works presented in Chapter 8 (Seki) and Chapter 9 (Watanabe) explore azo polymers in two dimensions and on surface. The next two chapters, Chapter 10 (Kurihara) and Chapter 11 (Zhao), mainly concern smart light-sensitive materials of small-molecule LCs. The last two chapters, Chapter 12 (Yu and Ikeda) and Chapter 13 (Liu and Brinker), provide excellent examples of new azo materials and architectures, with a focus on azo block copolymers in the solid state and azo hydride silica materials, respectively.

The state of research on azobenzene-based smart materials is progressing. We hope this book gives a critical review of the new developments and shows new directions. However, what we want most for this book is to really generate interest among graduate students and young researchers in this exciting field and help spark in them their imagination and ideas for creative research. This is essential to ensure further research and development and maintain the excitement in this field for many years to come.

> Yue Zhao Tomiki Ikeda

Sherbrooke, Quebec, Canada Tokyo, Japan January 2009

CONTRIBUTORS

- **PROFESSOR CHRISTOPHER J. BARRETT** Department of Chemistry, McGill University, Montreal, Canada
- **PROFESSOR C. JEFFREY BRINKER** Advanced Materials Laboratory, University of New Mexico and Sandia National Laboratories, Albuquerque, New Mexico
- **LEONID M. GOLDENBERG** Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Potsdam, Germany
- **PROFESSOR TOMIKI IKEDA** Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
- **OLGA KULIKOVSKA** Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Potsdam, Germany
- **PROFESSOR SEIJI KURIHARA** Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
- **DR. NANGUO LIU** Specialty Chemicals Business, Dow Corning Corporation, Midland, Michigan
- **PROFESSOR TAKAHIRO SEKI** Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, Japan
- **DR. JOACHIM STUMPE** Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Potsdam, Germany
- **PROFESSOR CHRISTOPHE TRIBET** Macromolecular Laboratory of Physics and Chemistry, University of Paris, Paris, France
- **PROFESSOR XIAOGONG WANG** Department of Chemical Engineering, Tsinghua University, Beijing, China
- **DR. OSAMU WATANABE** Toyota Central Research and Development Laboratories, Inc., Nagakute, Aichi, Japan
- **DR. KEVIN G. YAGER** Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland
- **PROFESSOR HAIFENG YU** Department of Chemistry, Nagaoka University of Technology, Nagaoka, Japan

CONTRIBUTORS

- **PROFESSOR YANLEI YU** Department of Materials Science, Fudan University, Shanghai, China
- YURIY ZAKREVSKYY Fraunhofer Institute for Applied Polymer Research, Science Campus Golm, Potsdam, Germany
- **PROFESSOR YUE ZHAO** Polymer and Liquid Crystal Laboratory, Department of Chemistry, University of Sherbrooke, Québec, Canada

1

AZOBENZENE POLYMERS FOR PHOTONIC APPLICATIONS

Kevin G. Yager and Christopher J. Barrett

1.1. INTRODUCTION TO AZOBENZENE

Azobenzene, with two phenyl rings separated by an azo (-N=N-) bond, serves as the parent molecule for a broad class of aromatic azo compounds. These chromophores are versatile molecules, and have received much attention in research areas both fundamental and applied. The strong electronic absorption maximum can be tailored by ring substitution to fall anywhere from the ultraviolet (UV) to visible red regions, allowing chemical fine-tuning of color. This, combined with the fact that these azo groups are relatively robust and chemically stable, has prompted extensive study of azobenzene-based structures as dyes and colorants. The rigid mesogenic shape of the molecule is well suited to spontaneous organization into liquid crystalline (LC) phases, and hence polymers doped or functionalized with azobenzene-based chromophores (azo polymers) are common as LC media. With appropriate electron-donor-acceptor ring substitution, the π electron delocalization of the extended aromatic structure can yield high optical nonlinearity, and zo chromophores have seen extensive study for nonlinear optical applications as well. One of the most interesting properties of these chromophores however, and the main subject of this review, is the readily induced and reversible isomerization about the azo bond between the trans and cis geometric isomers and the geometric changes that result when azo chromophores are incorporated into polymers and other materials. This light-induced interconversion allows systems incorporating azobenzenes to be used as photoswitches, effecting rapid and reversible control over a variety of chemical, mechanical, electronic, and optical properties.

Smart Light-Responsive Materials. Edited by Yue Zhao and Tomiki Ikeda Copyright © 2009 John Wiley & Sons, Inc.

Perhaps of a range as wide as the interesting phenomena displayed by azo aromatic compounds is the variety of molecular systems into which these chromophores can be incorporated. In addition to LC media and amorphous glasses, azobenzenes can be incorporated into self-assembled monolayers and superlattices, sol–gel silica glasses, and various biomaterials. The photochromic or photoswitchable nature of azobenzenes can also be used to control the properties of novel small molecules, using an attached aromatic azo group. A review will be presented here of the photochemical and photophysical nature of chromophores in host polymers, the geometric and orientational consequences of this isomerization, and some of the interesting ways in which these phenomena have been expolited recently to exert control over solution and biochemical properties using light. This photoisomerization can be exploited as a photoswitch to orient the chromophore (which induces birefringence), or even to perform all-optical surface topography patterning. These photomotions enable many interesting applications, ranging from optical components and lithography to sensors and smart materials.

1.1.1. Azobenzene Chromophores

In this text, as in most on the subject, we use "azobenzene" and "azo" in a general way: to refer to the class of compounds that exhibit the core azobenzene structure, with different ring substitution patterns (even though, strictly, these compounds should be referred to as "diazenes"). There are many properties common to nearly all azobenzene molecules. The most obvious is the strong electronic absorption of the conjugated π system. The absorption spectrum can be tailored, via the ring substitution pattern, to lie anywhere from the UV to the visible red region. It is not surprising that azobenzenes were originally used as dyes and colorants, and up to 70% of the world's commercial dyes are still azobenzene-based (Zollinger, 1987, 1961). The geometrically rigid structure and large aspect ratio of azobenzene molecules make them ideal mesogens: azobenzene small molecules and polymers functionalized with azobenzene can exhibit LC phases (Möhlmann and van der Vorst, 1989; Kwolek et al., 1985). The most startling and intriguing characteristic of the azobenzenes is their highly efficient and fully reversible photoisomerization. Azobenzenes have two stable isomeric states, a thermally stable trans configuration and a metastable cis form. Remarkably, the azo chromophore can interconvert between these isomers upon absorption of a photon. For most azobenzenes, the molecule can be optically isomerized from trans to cis with light anywhere within the broad absorption band, and the molecule will subsequently thermally relax back to the trans state on a timescale dictated by the substitution pattern. This clean photochemistry is central to azobenzene's potential use as a tool for nanopatterning.

Azobenzenes can be separated into three spectroscopic classes, well described by Rau (1990): azobenzene-type molecules, aminoazobenzene-type molecules, and pseudo-stilbenes (refer to Fig. 1.1 for examples). The particulars of their absorption spectra (shown in Fig. 1.2) give rise to their prominent colors: yellow, orange, and red, respectively. Many azos exhibit absorption characteristics similar to the unsubstituted azobenzene archetype. These molecules exhibit

Figure 1.1. Examples of azomolecules classified as (a) azobenzenes, (b) aminoazobenzenes, and (c) pseudo-stilbenes.

a low intensity $n \rightarrow \pi^*$ band in the visible region and a much stronger $\pi \rightarrow \pi^*$ band in the UV. Although the $n \rightarrow \pi^*$ is symmetry-forbidden for *trans*-azobenzene (C_{2h}), vibrational coupling and some extent of nonplanarity nevertheless make it observable (Rau, 1968).

Figure 1.2. Schematic of typical absorbance spectra for *trans*-azobenzenes. The azobenzene-type molecules (*solid line*) have a strong absorption in the UV, and a low intensity band in the visible (barely visible in the graph). The aminoazobenzenes (*dotted line*) and pseudo-stilbenes (*dashed line*) typically have strong overlapped absorptions in the visible region.

Adding substituents to the azobenzene rings may lead to minor or major changes in spectroscopic character. Of particular interest is ortho- or parasubstitution with an electron-donating group (usually an amino, $-NH_2$), which results in a new class of compounds. In these aminoazobenzenes, the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ bands are much closer. In fact, the $n \rightarrow \pi^*$ may be completely buried beneath the intense $\pi \rightarrow \pi^*$. Although azobenzenes are fairly insensitive to solvent polarity, aminoazobenzene absorption bands shift to higher energy in nonpolar solvents and shift to lower energy in polar solvents. Substituting azobenzene at the 4 and 4' positions with an electron-donor and an electron-acceptor (such as an amino and a nitro, $-NO_2$, group) leads to a strongly asymmetric electron distribution (often referred to as a "push-pull" substitution pattern). This shifts the $\pi \rightarrow \pi^*$ absorption to lower energy, toward the red and past the $n \rightarrow \pi^*$. This reversed ordering of the absorption bands defines the third spectroscopic class, the pseudo-stilbenes (in analogy to stilbene, phenyl-C=C-phenyl). The pseudo-stilbenes are very sensitive to local environment, which can be useful in some applications.

Especially in condensed phases, the azos are also sensitive to packing and aggregation. The π - π stacking gives rise to shifts of the absorption spectrum. If the azo dipoles have a parallel (head-to-head) alignment, they are called J-aggregates, and give rise to a redshift of the spectrum (bathochromic) as compared with the isolated chromophore. If the dipoles are antiparallel (head-to-tail), they are called H-aggregates and lead to a blueshift (hypsochromic). Fluorescence is seen in some aminoazobenzenes and many pseudo-stilbenes but not in azobenzenes, whereas phosphorescence is absent in all the three classes. By altering the electron density, the substitution pattern necessarily affects the dipole moment, and in fact all the higher order multipole moments. This becomes significant in many nonlinear optical (NLO) studies. For instance, the chromophore's dipole moment can be used to orient with an applied electric field (poling), and the higher order moments of course define the molecule's nonlinear response (Delaire and Nakatani, 2000). In particular, the strongly asymmetric distribution of the delocalized electrons that results from push-pull substitution results in an excellent NLO chromophore.

1.1.2. Azobenzene Photochemistry

Key to some of the most intriguing results and interesting applications of azobenzenes is the facile and reversible photoisomerization about the azo bond, converting between the trans (*E*) and cis (*Z*) geometric isomers (Fig. 1.3). This photoisomerization is completely reversible and free from side reactions, prompting Rau to characterize it as "one of the cleanest photoreactions known."(Rau, 1990) The trans isomer is more stable by $\sim 50 \text{ kJ mol}^{-1}$ (Mita et al., 1989; Schulze et al., 1977), and the energy barrier to the photoexcited state (barrier to isomerization) is on the order of 200 kJ mol⁻¹ (Monti et al., 1982). Thus, in the dark, most azobenzene molecules will be found in the trans form. On absorption of a photon (with a wavelength in the trans absorption band), the azobenzene will convert, with high efficiency, into the cis isomer. A second wavelength of light (corresponding to the cis absorption band) can cause the back-conversion.

Figure 1.3. (a) Azobenzene can convert between trans and cis states photochemically and relaxes to the more stable trans state thermally. (b) Simplified state model for azobenzenes. The trans and cis extinction coefficients are denoted by ε_{trans} and ε_{cis} . The Φ refer to quantum yields of photoisomerization, and γ is the thermal relaxation rate constant.

These sphotoisomerizations usually have picosecond timescales (Lednev et al., 1996; Kobayashi et al., 1979). Alternately, azos will thermally reconvert from the cis into trans state, with a timescale ranging from milliseconds to hours, depending on the substitution pattern and local environment. More specifically, the lifetimes for azobenzenes, aminoazobenzenes, and pseudo-stilbenes are usually on the order of hours, minutes, and seconds, respectively. The energy barrier for thermal isomerization is on the order of 90 kJ mol⁻¹ (Brown and Granneman, 1975; Haberfield et al., 1975). Considerable work has gone into elongating the cis lifetime, with the goal of creating truly bistable photoswitchable systems. Bulky ring substituents can be used to hinder the thermal back reaction. For instance, a polyurethane main-chain azo exhibited a lifetime of 4 days (thermal rate constant of $k = 2.8 \times 10^{-6} \text{ s}^{-1}$, at 3°C) (Lamarre and Sung, 1983), and an azobenzene parasubstituted with bulky pendants had a lifetime of 60 days ($k < 2 \times 10^{-7} \text{ s}^{-1}$, at room temperature) (Shirota et al., 1998). The conformational strain of macrocylic azo compounds can also be used to lock the cis state, where lifetimes of 20 days $(k=5.9 \times 10^{-7} \text{ s}^{-1})$ (Norikane et al., 2003), 1 year (half-life 400 days, $k=2 \times 10^{-8} \text{ s}^{-1}$) (Rottger and Rau, 1996; Rau and Roettger, 1994), or even 6 years $(k = 4.9 \times 10^{-9} \text{ s}^{-1})$ (Nagamani et al., 2005) were observed. Similarly, using the hydrogen bonding of a peptide segment to generate a cyclic structure, a cis lifetime of ~40 days ($k = 2.9 \times 10^{-7} \text{ s}^{-1}$) was demonstrated (Vollmer et al., 1999). Of course, one can also generate a system that starts in the cis state and where isomerization (in either direction) is completely hindered. For instance, attachment to a surface (Kerzhner et al., 1983), direct synthesis of ringlike azo molecules (Funke and Gruetzmacher, 1987), and crystallization of the cis form (Hartley, 1938, 1937) can be used to maintain one state, but such systems are obviously not bistable photoswitches.

A bulk azo sample or solution under illumination will achieve a photostationary state, with a steady-state trans–cis composition based on the competing effects of photoisomerization into the cis state, thermal relaxation back to the trans state, and possibly cis reconversion upon light absorption. The steady-state composition is unique to each system, as it depends on the quantum yields for the two processes (Φ_{trans} and Φ_{cis}) and the thermal relaxation rate constant. The composition also depends on irradiation intensity, wavelength, temperature, and the matrix (gas phase, solution, liquid crystal, sol-gel, monolayer, polymer matrix, etc.). Azos are photochromic (their color changes on illumination), since the effective absorption spectrum (a combination of the trans and cis spectra) changes with light intensity. Thus absorption spectroscopy can be conveniently used to measure the cis fraction in the steady state (Rau et al., 1990; Fischer, 1967), and the subsequent thermal relaxation to an all-trans state (Beltrame et al., 1993; Hair et al., 1990; Eisenbach, 1980a; Gabor and Fischer, 1971). Nuclear magnetic resonance (NMR) spectroscopy can also be used (Magennis et al., 2005). Under moderate irradiation, the composition of the photostationary state is predominantly cis for azobenzenes, mixed for aminoazobenzenes, and predominantly trans for pseudo-stilbenes. In the dark, the cis fraction is below most detection limits, and the sample can be considered to be in an all-trans state. Isomerization is induced by irradiating with a wavelength within the azo's absorption spectrum, preferably close to λ_{max} . Modern experiments typically use laser excitation with polarization control, delivering on the order of $1-100 \,\mathrm{mW \, cm^{-2}}$ of power to the sample. Various lasers cover the spectral range of interest, from the UV (Ar⁺ line at 350 nm) through blue (Ar⁺ at 488 nm), green (Ar⁺ at 514 nm, YAG at 532 nm, HeNe at 545 nm), and into the red (HeNe at 633 nm, GaAs at 675 nm).

The ring substitution pattern affects both the trans and the cis absorption spectra, and for certain patterns, the absorption spectra of the two isomers overlap significantly (notably for the pseudo-stilbenes). In these cases, a single wavelength of light effectuates both the forward and reverse reaction, leading to a mixed stationary state and continual interconversion of the molecules. For some interesting azobenzene photomotions, this rapid and efficient cycling of chromophores is advantageous, whereas in cases where the azo chromophore is used as a switch, it is clearly undesirable.

The mechanism of isomerization has undergone considerable debate. Isomerization takes place either through a rotation about the N–N bond, with rupture of the π bond, or through inversion, with a semilinear and hybrizidized transition state, where the π bond remains intact (refer to Fig. 1.4). The thermal backrelaxation is agreed to be via rotation, whereas for the photochemical isomerization, both mechanisms appear viable (Xie et al., 1993). Historically, the rotation mechanism (as necessarily occurs in stilbene) was favored for photoisomerization, with some early hints that inversion may be contributing (Gegiou et al., 1968). More recent experiments, based on matrix or molecular constraints to the azobenzene isomerization, strongly support inversion (Altomare et al., 1997; Liu et al., 1992; Naito et al., 1991; Rau and Lueddecke, 1982). Studies using picosecond Raman and femtosecond fluorescence show a double bond (N=N) in the excited state, confirming the inversion mechanism (Fujino et al., 2001; Fujino

Figure 1.4. The mechanism of azobenzene isomerization proceeds either via rotation or inversion. The cis state has the phenyl rings tilted at 90° with respect to the CNNC plane.

and Tahara, 2000). In contrast, Ho et al. (2001) found evidence that the pathway is compound-specific: a nitro-substituted azobenzene photoisomerized via the rotation pathway. Furthermore, ab initio and density functional theory calculations indicate that both pathways are energetically accessible, although inversion is preferred (Angeli et al., 1996; Jursic, 1996). Thus, both mechanisms may be competing, with a different one dominating depending on the particular chromophore and environment. The emerging consensus nevertheless appears to be that inversion is the dominant pathway for most azobenzenes (Ikeda and Tsutsumi, 1995). The availability of the inversion mechanism explains how azos are able to isomerize easily even in rigid matrices, such as glassy polymers, since the inversion mechanism has a much smaller free volume requirement than rotation.

The thermal back-relaxation is generally first order, although a glassy polymer matrix can lead to anomalously fast decay components (Barrett et al., 1995, 1994; Paik and Morawetz, 1972; Priest and Sifain, 1971), attributed to a distribution of chromophores in highly strained configurations. Higher matrix crystallinity increases the rate of decay (Sarkar et al., 2001). The decay rate can act as a probe of local environment and molecular conformation (Tanaka et al., 2004; Norman and Barrett, 2002). The back-relaxation of azobenzene is acid catalyzed (Rau et al., 1981), although strongly acidic conditions will lead to side reactions (Hartley, 1938). For the parent azobenzene molecule, quantum yields (which can be indirectly measured spectroscopically (Shen and Rau, 1991; Priest and Sifain, 1971; Malkin and Fischer, 1962) are on the order of 0.6 for the trans \rightarrow cis

photoconversion, and 0.25 for the back photoreaction. Solvent has a small effect, increasing the trans \rightarrow cis and decreasing the cis \rightarrow trans yield as polarity increases (Bortolus and Monti, 1979). Aminoazobenzenes and pseudo-stilbenes isomerize very quickly and can have quantum yields as high as 0.7–0.8.

1.1.3. Classes of Azobenzene Systems

Azobenzenes are robust and versatile moieties, and have been extensively investigated as small molecules, pendants on other molecular structures, or incorporated (doped or covalently bound) into a wide variety of amorphous, crystalline, or LC polymeric systems. Noteworthy examples include self-assembled monolayers and superlattices (Yitzchaik and Marks, 1996), sol-gel silica glasses (Levy and Esquivias, 1995), and biomaterials (Gallot et al., 1996; Willner and Rubin, 1996; Sisido et al., 1991a). A number of small molecules incorporating azobenzene have been synthesized, including crown ethers (Shinkai et al., 1983), cyclodextrins (Jung et al., 1996; Yamamura et al., 1996), proteins such as bacteriorhodopsin (Singh et al., 1996), and three-dimensional (3-D) polycyclics such as cubane (Chen et al., 1997b) and adamantane (Chen et al., 1995). Typically, azo chromophores are embedded in a solid matrix for studies and devices. As a result, matrix effects are inescapable: the behavior of the chromophore is altered due to the matrix, and in turn, the chromophore alters the matrix (Ichimura, 2000). Although either could be viewed as a nuisance, both are in fact useful: the chromophore can be used as a probe of the matrix (free volume, polarizability, mobility, etc.), and when the matrix couples to chromophore motion, molecular motions can be translated to larger length scales. Thus, the incorporation strategy is critical to exploiting azobenzene's unique behavior.

1.1.3.1. Amorphous Polymer Thin Films. Doping azobenzenes into polymer matrices is a convenient inclusion technique (Birabassov et al., 1998; Labarthet et al., 1998). These "guest-host" systems can be cast or spin-coated from solution mixtures of polymer and azo small molecules, where the azo content in the thin film is easily adjusted via concentration. Although doping leaves the azo chromophores free to undergo photoinduced motion unhindered, it has been found that many interesting photomechanical effects do not couple to the matrix in these systems. Furthermore, the azo mobility often leads to instabilities, such as phase separation or microcrystallization. Thus, one of the most attractive methodologies for incorporating azobenzene into functional materials is by covalent attachment to polymers. The resulting materials benefit from the inherent stability, rigidity, and processability of polymers, in addition to the unusual photoresponsive behavior of the azo moieties. Both side-chain and main-chain azobenzene polymers have been prepared (Viswanathan et al., 1999) (Fig. 1.5). Reported synthetic strategies involve either polymerizing azobenzene-functionalized monomers (Ho et al., 1996; Natansohn et al., 1992) or postfunctionalizing

Figure 1.5. Examples of azo polymer structures, showing that both (a) side-chain and (b) main-chain architectures are possible.

a polymer that has an appropriate pendant group (usually a phenyl) (Wang et al., 1997a,b,c). The first method is preferred for its simplicity and control of sequence distribution. The second takes advantage of commonly available starting materials, but may require more reaction steps. Many different backbones have been used as scaffolds for azo moieties, including imides (Agolini and Gay, 1970), esters (Anderle et al., 1989), urethanes (Furukawa et al., 1967), ethers (Bignozzi et al., 1999), organometallic ferrocene polymers (Liu et al., 1997), dendrimers (Junge and McGrath, 1997; Mekelburger et al., 1993), and even conjugated polydiacetylenes (Sukwattanasinitt et al., 1998), polyacetylenes (Teraguchi and Masuda, 2000), and main-chain azobenzenes (Izumi et al., 2000a,b). The most common azo polymers are acrylates (Morino et al., 1998), methacrylates (Altomare et al., 2001), and isocyanates (Tsutsumi et al., 1996). Thin films are usually prepared by spincoating (Han and Ichimura, 2001; Blinov et al., 1998; Weh et al., 1998; Ichimura et al., 1996), although there are also many examples of using solvent evaporation, the Langmuir-Blodgett technique (Silva et al., 2002; Razna et al., 1999; Jianhua et al., 1998; Seki et al., 1993), and self-assembled monolayers (Evans et al., 1998). Spin-cast films are typically annealed above the polymer glass transition temperature (T_{o}) to remove residual solvent and erase any hydrodynamically induced anisotropy. Recently molecular glasses have been investigated as alternatives to amorphous polymer systems (Mallia and Tamaoki, 2003). These monodisperse systems appear to maintain the desirable photomotions and photoswitching properties, while allowing precise control of molecular architecture and thus material properties (Naito and Miura, 1993).

Azobenzenes are anisotropic, rigid molecules and 1.1.3.2. Liquid Crystals. as such are ideal candidates to act as mesogens: molecules that form LC mesophases. Many examples of small-molecule azobenzene liquid crystals have been studied. Some azo polymers also form LC phases (refer to Fig. 1.6 for a typical structure). For side-chain azobenzenes, a certain amount of mobility is required for LC phases to be present; as a rule, if the tether between the chromophore and the backbone is less than 6 alkyl units long, the polymer will exhibit an amorphous and isotropic solid-state phase, whereas if the spacer is longer, LC phases typically form. The photoisomerization of azobenzene leads to modification of the phase and alignment (director) in LC systems (Shibaev et al., 2003; Ichimura, 2000). The director of a liquid crystal phase can be modified by orienting chromophores doped into the phase (Sun et al., 1992; Anderle et al., 1991) by using an azobenzene-modified "command surface" (Chen and Brady, 1993; Ichimura et al., 1993; Gibbons et al., 1991), using azo copolymers (Wiesner et al., 1991), and, of course, in pure azobenzene LC phases (Hvilsted et al., 1995; Stumpe et al., 1991). One can force the LC phase to adopt an in-plane order (director parallel to surface), homeotropic alignment (director perpendicular to surface), tilted or even biaxial orientation (Yaroschuk et al., 2001). These changes are fast and reversible. Although the trans-azobenzenes are excellent mesogens, the cis-azos typically are not. If even a small number of azomolecules are

Figure 1.6. A typical liquid-crystalline side-chain azobenzene polymer.