Go beyond the basics to build practical, real-world Semantic Web applications

They fully cover such key technologies as Microformats, Resource Description Framework (RDF), RDF Schema (RDFS), the Web Ontology Language (OWL), Semantic Web Rule Language (SWRL), SPARQL Protocol and RDF Query Language (SPARQL).

In addition, Semantic Web Programming covers:

- Semantic Web architectures, tools, and best practices
- Ways in which knowledge representation and application integration drive a Semantic Web application
- The methods that integrate, align, and output data and information in many formats and locations
- A look into the future of the Semantic Web, including advanced integration and distribution, advanced reasoning, visualization, and more
- A detailed look into the burgeoning OWL 2 W3C Recommendations and how they will affect and improve your software architectures

An extensive Semantic Web application that ingests data from many sources include Facebook™, mySQL®, Jabber, and others, aligns and unifies the information, queries across the unified information and then exports to various formats

John Hebeler has more than two decades of large-scale software development experience. Matt Fisher has more than fifteen years in software and systems development. Ryan Blace is a Semantic Web developer and has worked on multiple large-scale Semantic Web-based knowledge management systems. Andrew Perez-Lopez is a software developer with several years of experience with Semantic Web information systems.

The companion Web site offers access to all related articles, complete code examples, an active blog and wiki, and any book or code updates.

Visit our website at www.wiley.com/compbooks/
Visit the companion website at www.wiley.com/go/semanticwebprogramming

ISBN: 978-0-470-41801-7

John Hebeler
Matthew Fisher
Ryan Blace
Andrew Perez-Lopez

Foreword by Mike Dean, Principal Engineer, BBN Technologies
Semantic Web Programming
To my wife, Christi, who for twenty-five years continues to offer support, wisdom, and love while putting up with my innate geekiness. And to my dad, John, who gave me the gift of curiosity. Thank you!

—John Hebeler

To Brenna, Denny, Brody, Mallory, Grace, and Olivia: You had patience in a father whose playtime and energy slipped while I wrote this book, but your love never faltered—you are each a blessing. To Erin, my wife, who had the world at her feet and still chose to be with me. You make this world a better place to be. I am the luckiest.

—Matthew Fisher

To my parents, Jorge and Kathleen; to my siblings, Dan, Tom, Anya, and Tonya; and to Erika. Without your love, patience, and support I could never have written this book. Thank you!

—Andrew Perez-Lopez

To my beautiful and infinitely patient wife Luci, for allowing me to spend nights and weekends writing this book. And to my “kids,” Daisy, Mini, Midas, India, and Lily, for providing plenty of mental health breaks.

—Ryan Blace

To my wife, Nancy, and my sons, Jason and Noah, for allowing me the time to review chapters.

—Mike Dean
About the Authors

John Hebeler is an avid, aging, yet still excited explorer of new technologies for the development of large-scale, distributed systems. In the last five years, he has focused on the Semantic Web and emergent, distributed systems. He has published several papers, has co-written a P2P networking book, and presents at major technical conferences around the world. He is currently pursuing his PhD in Information Systems at the University of Maryland. He is a division scientist for BBN technologies.

Matthew Fisher has over fifteen years experience in the fields of software and systems development. He has worked in a wide range of engineering environments, ranging from small technology startups and research and development companies to large Fortune 50 firms. He regularly contributes to the Semantic Report and has been involved with conferences such as OWLED, ISWC, and the Semantic Technology Conference. Matthew is a principal systems engineer at Progeny Systems and holds a BS in Computer Science from Penn State University and a MS in Computer Science from George Mason University.

Andrew Perez-Lopez is a software developer who has worked at BBN Technologies since 2005 on large-scale information integration systems using the Semantic Web technologies discussed in this book. He holds an MS in Computer Science from Virginia Tech and an BA in Cognitive Science from the University of Virginia.

Ryan Blace has been a Semantic Web developer and BBN Technologies employee for five years. He works on multiple large-scale Semantic Web–based knowledge management systems for the government and commercial sectors. Ryan holds a BS in Computer Engineering from the University of Maryland and is pursuing his master's in Computer Science at Virginia Tech.
When not spending late nights on his computer hacking away, Ryan spends his time cycling, mountain biking, and instructing at car club track days.

About The Technical Editors

Mike Dean (reviewer/editor) is principal engineer at BBN Technologies, where he has worked since 1984. He started working with Semantic Web in 2000, as a principal investigator in the DARPA Agent Markup Language (DAML) program. He was co-editor of the W3C OWL Reference, a co-author of SWRL, and has developed various Semantic Web tools, data sets, and applications. He currently provides technical direction for a number of Semantic Web projects at BBN. He holds a BS in Computer Engineering from Stanford University.

Mike Smith (technical editor) is a senior engineer at Clark & Parsia LLC, a software development and consulting firm specializing in the development and application of artificial intelligence technologies. Mike is a member of the W3 OWL WG, participates actively in the OWL community, and publishes content at http://clarkparsia.com/weblog/. He is one of the primary developers of Pellet, the open-source OWL reasoner, and frequently contributes to the Protégé and OWL API projects. He holds BS and MS degrees in Systems and Information Engineering from the University of Virginia.
Executive Editor
Robert Elliott

Development Editor
Christopher J. Rivera

Technical Editor
Michael Smith

Production Editor
Melissa Lopez

Copy Editor
Linda Recktenwald

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Proofreader
Corina Copp and Jen Larsen,
Word One

Indexer
Ted Laux

Cover Image
Tony Sweet/ Digital Vision/
Getty Images
The idea for this book grew over two years with the support of many BBN folks but especially Pete Pflugrath, our Semantic Web visionary; Ted Benson, an all-round awesome dude who motivated us to take on this challenge; Dana Moore, whose ideas and enthusiasm are simply limitless; and Mike Dean, whose boundless knowledge and expertise in all things technological is simply an inspiration to us all.

Strong support went well beyond BBN to include Walt Kitonis, Mike MacKay and Fred Vignovich of Progeny Systems and Gary Sikora for his advocacy of Semantic Web solutions in industry. Also to Tom Dietz, vice president of iJet, a truly rare and special person whose confidence in our abilities never wavered even when ours did.

A special thank-you to Mike Smith for his detailed technical reviews that gave the book its high quality and for keeping us on the leading edge of the rapidly advancing Semantic Web. And thanks to all the folks at Wiley publishing, especially Bob Elliott (our executive editor), whose initial belief in the project made it all possible, and Christopher Rivera (our editor), whose patience and whip kept us in line and writing throughout the entire process.
Contents

Foreword

xxiii

Introduction

xxv

Part One Introducing Semantic Web Programming

1

Chapter 1 Preparing to Program a Semantic Web of Data

3

- Defining the Semantic Web
- Identifying the Major Programming Components
- Determining Impacts on Programming
 - Establishing a Web Data-Centric Perspective
 - Expressing Semantic Data
 - Sharing Data
 - Making Data Dynamic and Flexible
- Avoiding the Roadblocks, Myths, and Hype
 - Semantic Web Roadblocks
 - Semantic Web Myths
 - Semantic Web Hype
- Understanding Semantic Web Origins
 - Exploring Semantic Web Examples
 - Semantic Wikis (semantic-mediawiki.org)
 - Twine (www.twine.com)
 - The FOAF Project (www.foaf-project.org)
 - RDFa and Microformats
 - Semantic Query Endpoint (dbpedia.org/sparql)
 - Semantic Search (www.trueknowledge.com)
- Summary and Onward
- Notes

xiii
Chapter 2 Hello Semantic Web World 35
 Setting Up Your Semantic Web Development Environment 36
 Programming the Hello Semantic Web World Application 38
 Summary 58

Part Two Foundations of Semantic Web Programming 61
Chapter 3 Modeling Information 63
 Modeling Information in Software 64
 Sharing Information: Syntax and Semantics 65
 Serialized Objects 66
 Relational Databases 66
 Extensible Markup Language (XML) 66
 Metadata and Data in Information Sharing 67
 The Semantic Web Information Model: The Resource
 Description Framework (RDF) 68
 Nodes: Resources and Literals 69
 Edges: Predicates 71
 Exchanging Information with RDF 72
 Statements as Points 73
 RDF Serializations 74
 RDF/XML 74
 Terse RDF Triple Language (Turtle) 78
 N-Triples 81
 Quick Hack 82
 More RDF 84
 Blank Nodes 84
 Reification 88
 RDF Organizational Constructs 88
 Summary 91

Chapter 4 Incorporating Semantics 93
 Semantics on the Web 94
 Motivating Factors 94
 Understanding the World Wide Web 95
 Knowledge Domain Integration 97
 Expressing Semantics in RDF 98
 Vocabularies, Taxonomies, and Ontologies 99
 A Vocabulary Language for RDF 100
 An Ontology Language for the Web 101
 Introduction to Ontologies 102
 Distributed Knowledge 102
 Open World Assumption 103
 No Unique Names Assumption 104
 Overview of Ontology Elements 104
Contents xv

Ontology Header 105
Classes and Individuals 105
Properties 106
Annotations 106
Data types 106
Elements of an Ontology 107
OWL 2 Typing 107
Ontology Header 108
Annotations 109
Basic Classification 110
Classes and Individuals 110
rdfs:SubClassOf 111
Instance versus Subclass 112
owl:Thing and owl:Nothing 113
Defining and Using Properties 113
Property Domain and Range 114
Describing Properties 115
rdfs:subPropertyOf 115
Top and Bottom Properties 116
Inverse Properties 116
Disjoint Properties 117
Property Chains 118
Symmetric, Reflexive, and Transitive Properties 119
Functional and Inverse Functional Properties 120
Keys 121
Datatypes 122
Data type Restrictions 122
Defining Datatypes in Terms of Other Datatypes 124
Negative Property Assertions 126
Property Restrictions 127
Value Restrictions 127
Cardinality Restrictions 130
Qualified Cardinality Restrictions 132
Advanced Class Description 134
Enumerating Class Membership 134
Set Operators 134
Disjoint Classes 136
Equivalence in OWL 137
Equivalence among Individuals 138
Equivalence among Classes and Properties 139
Summary 139

Chapter 5 Modeling Knowledge in the Real World 141
Exploring the Components of the Semantic Web 141
Semantic Web Frameworks 143
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storing and Retrieving RDF</td>
</tr>
<tr>
<td>RDF Store Implementations</td>
</tr>
<tr>
<td>Retrieving Information in a Knowledgebase</td>
</tr>
<tr>
<td>Realizing the Semantics of OWL</td>
</tr>
<tr>
<td>Understanding Forward Chaining Inference</td>
</tr>
<tr>
<td>Understanding Backward Chaining Inference</td>
</tr>
<tr>
<td>Choosing the Right Inference Method</td>
</tr>
<tr>
<td>Common Frameworks and Components</td>
</tr>
<tr>
<td>RDF Store Implementations</td>
</tr>
<tr>
<td>Retrieval Components</td>
</tr>
<tr>
<td>Reasoning Engines</td>
</tr>
<tr>
<td>Knowledgebase Performance</td>
</tr>
<tr>
<td>Exploring the Profiles of OWL</td>
</tr>
<tr>
<td>OWL Full and OWL DL</td>
</tr>
<tr>
<td>The Profiles of OWL</td>
</tr>
<tr>
<td>OWL EL</td>
</tr>
<tr>
<td>OWL QL</td>
</tr>
<tr>
<td>OWL RL</td>
</tr>
<tr>
<td>Demonstrating OWL Inference</td>
</tr>
<tr>
<td>The Ontology</td>
</tr>
<tr>
<td>The Example Application</td>
</tr>
<tr>
<td>The Results</td>
</tr>
<tr>
<td>Performing No Inference</td>
</tr>
<tr>
<td>Performing RDFS Inference</td>
</tr>
<tr>
<td>Performing OWL Inference</td>
</tr>
<tr>
<td>Working with Ontologies</td>
</tr>
<tr>
<td>Decoupling the Knowledge Model from the Application</td>
</tr>
<tr>
<td>Sharing across Domain and Application Boundaries</td>
</tr>
<tr>
<td>What Is a Foundational Ontology?</td>
</tr>
<tr>
<td>Common Foundational Ontologies</td>
</tr>
<tr>
<td>BFO</td>
</tr>
<tr>
<td>Cyc and OpenCyc</td>
</tr>
<tr>
<td>DOLCE</td>
</tr>
<tr>
<td>SUMO</td>
</tr>
<tr>
<td>Dublin Core Metadata Initiative</td>
</tr>
<tr>
<td>FOAF</td>
</tr>
<tr>
<td>GeoRSS and OWL-Time</td>
</tr>
<tr>
<td>Finding Ontologies to Reuse or Extend</td>
</tr>
<tr>
<td>Choosing the Right Foundational Ontologies</td>
</tr>
<tr>
<td>Summary</td>
</tr>
</tbody>
</table>

Chapter 6 Discovering Information

Navigating the Semantic Web | 186 |
Searching the Semantic Web | 190 |
Chapter 7 Adding Rules

What Are Rules?
Reasons for Rules
 No Support for Property Composition
 Use of Built-ins
 Ontological Mediation
 Limiting Assumptions
Rule Languages
SWRL Essentials
The Abstract Syntax
The XML Concrete Syntax
 var
 imp
 _rlab
 _body
 _head
 classAtom
 datarangeAtom
 individualPropertyAtom
 datavaluedPropertyAtom
 same IndividualAtom
Contents

- **Part Three Building Semantic Web Applications**
 - Chapter 8 Applying a Programming Framework
 - Framing the Semantic Web
 - The Jena Semantic Web Framework
 - Defining Jena Programming Concepts
 - Programming with Jena
 - Establishing the Jena Development Environment
 - Establishing the Knowledgebase: Setting Up the Model
 - Populating the Model with Semantic Web Data
 - Combining Semantic Web Data
 - Interrogating Semantic Web Data
 - Reasoning across Semantic Web Data
 - Exporting Semantic Web Data
 - Deallocating Semantic Web Data Resources
 - Managing Semantic Web Data
 - Getting Information Regarding Your Semantic Web Data
 - Generating Events Based on Semantic Web Data
 - Dealing with Concurrency and Your Semantic Web Data
 - Customizing the Jena Framework
 - Serializing Semantic Web Data
 - Common App Overview: FriendTracker
 - Summary
 - Chapter 9 Combining Information
 - Combining Information
 - Representing Information
 - Translating between Representations
 - Addressing the Challenges of Translation
Maintaining Fidelity
Tracking Provenance Information
Reversing the Process
Handling Varying Data
Managing Data Volume
Introducing the FriendTracker Data Sources
Facebook XML Web Service
Jabber Java Client
Upcoming.org XML Web Service
WordPress Relational Database
Exposing XML-Based Web Services as RDF
Introducing the Weather.gov XML Feed
Exposing XML Using XSL Transformations
Traversing XML Documents with XPath
Applying XSLT to a Simple Example
Processing XML and XSLT Programatically
Applying XSLT to the Facebook Data Source
Weighing the Benefits and the Costs of XSLT
Exposing XML Using XML Bindings and Velocity
Generating Java Bindings for XML Data
Unmarshalling XML Data into Java
Introducing the Velocity Template Engine
Generating RDF with Velocity
Weighing the Benefits and the Costs
Exposing Relational Databases as RDF
Exposing a WordPress Blog Using D2RQ
Creating D2RQ Mappings for the WordPress Database
Wrapping the D2RQ Instance in a Jena Model
Querying the D2RQ Exposed WordPress Database
Weighing the Benefits and the Costs of D2RQ
Exposing Other Sources of Data
Exposing Jabber with a Custom Streaming RDF Writer
Exposing Java Objects Using Reflection
Applying the RDF Generator to the Weather.gov XML Feed
Applying the RDF Generator to the Upcoming.org XML Feed
Summary

Chapter 10 Aligning Information
Data Source, Domain, and Application Ontologies
Aligning Ontologies
Ontology Constructs
Translation via Rules
Chapter 11 Sharing Information 389
Microformats 390
eRDF 392
RDFa 395
Supported Attributes 396
 xmlns 396
 rel 396
 rev 398
 content 398
 href 399
 src 399
 about 399
 property 399
 resource 400
 datatype 401
 typeof 401
Blank Nodes 402
Language Support 403
Tools and Frameworks 404
 RDF Transformational Tools 404
 SPARQL Endpoints 404
 Joseki Installation and Operation 405
 xOperator 408
 Installation and Operation 409
 Example Query 410
FriendTracker in RDFa 411
Summary 417

Part Four Expanding Semantic Web Programming 419
Chapter 12 Developing and Using Semantic Services 421
Background 422
 Discovery 424
 Invocation 424
 Negotiation 425
Contents

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Managing Space and Time</th>
<th>437</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Space and Time in Software</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Spatial Information</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Temporal Information</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Representing Spatiotemporal Data on the Semantic Web</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Spatial and Temporal Software with Jena</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Working with Spatial Data</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>Example: Spatial Queries</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Framing the Problem</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Approach and Rationale</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>Components</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>Example: Transaction Time–Bounded Queries</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Framing the Problem</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Approach and Rationale</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>Components</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>Notes</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14</th>
<th>Semantic Web Patterns and Best Practices</th>
<th>467</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregating Disparate Data Sources</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>Exposing Data Sources as RDF</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Bringing Data into the Domain Knowledge Model</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Storing Information in the Knowledgebase</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Initiating the Flow of Data</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Annotating Unstructured Data</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Annotation Management</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>Ontology Management</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Unstructured Data Sources and the Client Application</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>Coordinating Semantic Services</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>Applying Semantic Web Best Practices</td>
<td>480</td>
</tr>
</tbody>
</table>
Contents

Creating URIs 480
Making URIs Unique 480
Making URIs Consistent 481
Making URIs Resolvable 483
Specifying Units of Measurement 483
Unit-Specific Properties and Datatypes 484
Statement Reification 485
Value Containers 485
Representing N-ary Relationships 486
Managing Bad Data 487
Summary 487

Chapter 15 Moving Forward 489
Advancing Ontologies 491
Ontology Repositories and Registries 491
Linked Data 492
Versioning 493
Ontology Metrics 495
Advancing Integration 497
Semantic Pipes 497
Distributed Queries 498
Alignment 500
Advancing Reasoning 506
Rule Interchange Format (RIF) 506
Probabilistic Reasoning 507
Trust: Proof Markup Language 510
LarKC: The Large Knowledge Collider 512
Advancing Visualization 513
Summary 516

Appendix A RDF 519
Appendix B The OWL Web Ontology Language 525
Appendix C SWRL 533
Appendix D SPARQL 555
Appendix E Jena Reference Guide 567
Appendix F Installation Reference Guide 577
Index 585
Our group at BBN Technologies has been working at the forefront of the Semantic Web since 2000, first as part of the DARPA Agent Markup Language (DAML) program and then in developing a variety of tools, data sets, and applications for other government and commercial customers. The authors and technical editor of this book are current or former members of this group, which has grown to about 30 employees. Semantic Web Programming reflects our backgrounds as software developers, the experience we’ve gained over the past eight years, and a number of hard-won insights.

The Semantic Web is an international effort to represent data (including World Wide Web data currently designed for human users) in formats amenable to automated processing, integration, and reasoning. Data is king, and it provides even greater value when it’s connected with other data sources to create a linked data web. Current applications include data integration from mash-ups to the enterprise, improved search, service composition, intelligent agents, desktop and mobile applications, and collaboration.

Catalyzed by U.S. and EU research programs, the growing community includes the W3C Semantic Web Activity, a host of large and small vendors, several Semantic Web and Semantic Technology conference series, and a large number of open-source developers and projects.

While Web 3.0 is in many ways an appropriate moniker for the Semantic Web, the Semantic Web has always emphasized Web 2.0 social networking and collaboration aspects through FOAF, RSS 1.0, various semantic wiki projects, and participatory collections such as MusicBrainz. Semantic Web ontologies provide more structure than Web 2.0 tags, microformats, and folksonomies, while retaining much of their flexibility.

Semantic Web standards including RDF, OWL, and SPARQL continue to evolve based on usage. A wide range of high-quality tools, many of them
open source, have been developed for different programming environments. The Linking Open Data initiative has addressed a critical need by providing foundational data for many applications and continues to grow. Many tools and applications are now highly scalable.

Developers often benefit from seeing other people’s code. Throughout this book, we’ve taken a pragmatic approach, with lots of examples and an application that spans multiple chapters.

We hope that you’ll also find that Semantic Web technologies provide an effective means of addressing current and upcoming computing challenges and that you’ll enjoy working with them as much as we have.

Mike Dean
Ann Arbor, Michigan
November 2008
Semantic Web Programming takes the Semantic Web directly and boldly into solving practical, real-world problems that flexibly deliver real value from our growing ability to access information and services from our laptop to the enterprise to the World Wide Web. The chapters form a solid, code-based path addressing information and service challenges. As the code examples build, we pragmatically explore the many technologies that form the Semantic Web, including the knowledge representations such as microformats, Resource Description Framework (RDF), RDF Schema (RDFS), the Web Ontology Language (OWL) including its latest release OWL 2 and Semantic Web Rule Language (SWRL), Semantic Web programming frameworks such as Jena, and useful Semantic Web tools. We explore these technologies, not as ends in themselves but rather for their role and merits in solving real problems. Thus, your learning is based on results—the results that each technology brings to address your application challenges.

Semantic Web Programming benefits from our many years of experience in developing large-scale Semantic Web solutions, building Semantic Web tools, and contributing to the Semantic Web standards. We know this stuff! This background provides you with not only an understanding of this new powerful technology but the ability to apply it directly to your real-world application and information challenges.

Overview of the Book and Technology

The Semantic Web offers a powerful, practical approach to gain mastery over the multitude of information and information services. Semantics offer the leverage to make more information better and not overwhelmingly worse. This
xxvi Introduction

requires new data representations that improve our ability to capture and share knowledge and new programming constructs and tools to make this information work for your application.

This book explores it all through actual data formats, working code, and tools. We take a developer perspective aimed at application results. We focus the explanations and justifications on what you need to build and manage your Semantic Web applications. The multitude of working code examples throughout the book provides the credibility and insights that truly augment the background and explanatory text. In many cases, the code does the talking. We strongly recommend that you get hands on and adjust the examples to your needs. This will help you gain the understanding and perspective necessary to put the Semantic Web to work for you immediately.

How This Book Is Organized

The book has 15 chapters organized in four parts. Also included is an extensive set of references in the appendices for the key technologies.

Part 1: “Introducing Semantic Web Programming,” covers Chapters 1 and 2. This section quickly introduces you to Semantic Web programming. Chapter 1, “Preparing to Program a Semantic Web of Data,” covers the main Semantic Web concepts and their relationship with one another. This establishes your Semantic Web developer vocabulary. Chapter 1 also points out the advantages and programming impacts; it ends with some compelling examples of the Semantic Web in use today. Chapter 2, “Hello Semantic Web World,” dives right into working code with an exhaustive Hello Semantic World program. The example takes you from setting up your development environment to using reasoners. The explanations are brief because this chapter is merely an introduction to the rest of the book. This section is critical if you are new to the Semantic Web. Seasoned readers may choose to skim these two chapters.

Part 2, “Foundations of Semantic Web Programming,” covers Chapters 3 through 7. Two main areas drive a Semantic Web application: knowledge representation and application integration. This section focuses on the former—representing and manipulating knowledge. Chapter 3, “Modeling Information,” establishes the data model through RDF. Chapter 4, “Incorporating Semantics,” adds an ontology to create a knowledge model using RDFS and OWL. Chapter 5, “Modeling Knowledge in the Real World,” exercises the working ontology via application frameworks and reasoners. Chapter 6, “Discovering Information,” dives into the knowledge model to extract useful information through search, navigation, and formal queries via SPARQL. Chapter 7, “Adding Rules,” rounds out the knowledge representation through an exploration of the semantic rule languages, including the W3C standard SWRL.
Part 3, “Building Semantic Web Applications,” covers Chapters 8 through 11. This section deals with the second main area—integrating the knowledgebase with an application that acts upon it. This part provides a solid programming base for the Semantic Web. Chapter 8, “Applying a Programming Framework,” fully explores Semantic Web frameworks with extensive examples from the Jena Semantic Web Framework. The chapter ends with an outline of our FriendTracker Semantic Web application. This example spans the next three chapters as we explore methods to integrate, align, and output data and information in many formats and locations. Chapter 9, “Combining Information,” focuses on integrating the information into a knowledge model from sources such as relational databases, web services, and other formats. Chapter 10, “Aligning Information,” focuses on aligning the data along ontological concepts to unify the disparate information. Chapter 11, “Sharing Information,” outputs the information into many formats, including RDFa, microformats, SPARQL endpoints, and more. All along we add to the FriendTracker application to directly demonstrate the programming concepts.

Part 4, “Expanding Semantic Web Programming,” covers chapters 12 through 15. Here we build on your solid base of knowledge representation and Semantic Web application development to expand into powerful, useful areas, including semantic services, time and space, Semantic Web architectures and best practices, and unfolding Semantic Web tools that are almost here. Chapter 12, “Developing and Using Semantic Services,” adds semantics to services to allow them to participate in the Semantic Web. Chapter 13, “Managing Space and Time,” adds space and time considerations to your knowledge representations. Chapter 14, “Applying Patterns and Best Practices,” is a retrospective of sorts. It builds on everything we covered so far in the book by presenting a series of architecture patterns for constructing various Semantic Web applications. Chapter 15, “Moving Forward,” concludes the book by peering into the future. It focuses on four critical, evolving areas for the Semantic Web: ontology management, advanced integration and distribution, advanced reasoning, and visualization. This provides a solid view into what is on its way in the actively evolving Semantic Web.

Who Should Read This Book

The book provides a comprehensive, practical view for developing applications that use the Semantic Web. The Semantic Web takes advantage of the multitude of distributed information and services that exist in the World Wide Web, the business enterprise, and your personal resources. Therefore, many technical readers would benefit from this book whether you focus on the entire application or only the information.
Introduction

Developers gain first-hand experience with the many code examples throughout the book. These include both applications developers and information developers who focus on data in its many forms, from database schemas to XML formats. This book provides all the tools, background, and rich examples to jump-start your applications.

Architects gain insights into the role of the Semantic Web within a larger application. The Semantic Web offers many benefits to any system that uses information—which is just about any system—and can quickly extend your system’s capabilities to better leverage available information and services. The overall applications serve the system architect, whereas the detailed information and data management areas benefit information architects responsible for data formats and data processing.

Technical management gains insight into the power, risks, and benefits of the Semantic Web. The Semantic Web is a strategic technology—one that truly provides a solution with a significant advantage. It offers a new approach to extremely tough but lucrative challenges that employ vast amounts of information and services. Awareness of the Semantic Web is required for any solution that depends on dynamic information and service resources. The code examples provide credibility to the technology and insights into its own challenges for better planning.

Tools You Will Need

We highly recommend that you reinforce your learning by downloading and customizing the numerous coding examples throughout the book. All the software tools are open source and readily available from the World Wide Web. We include all necessary links and instructions. Your computer is compatible with all of these tools as long your operating system supports a Java 1.5 virtual machine. That’s it! As we cover each tool in the book, we provide download, installation, and configuration instructions. In addition, we summarize all the tools with instructions in Appendix F.

What’s on the Website

The book comes with an extensive website companion at http://semwebprogramming.org. Here you can access all related articles, complete code examples, and ontologies, as well as have an opportunity to get involved in the ongoing discussions and activities. The site also contains any book and code updates to reflect the continual expansion and evolution of the Semantic Web. We welcome comments on the book and examples.