INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

I. Doležel
Czech Technical University, Praha, Czech Republic

P. Karban
University of West Bohemia, Plzeň, Czech Republic

P. Šolin
University of Nevada, Reno, U.S.A.
Academy of Sciences of the Czech Republic, Praha, Czech Republic
INTEGRAL METHODS
IN LOW-FREQUENCY
ELECTROMAGNETICS
INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

I. Doležel
Czech Technical University, Praha, Czech Republic

P. Karban
University of West Bohemia, Plzeň, Czech Republic

P. Šolin
University of Nevada, Reno, U.S.A.
Academy of Sciences of the Czech Republic, Praha, Czech Republic
CONTENTS

List of Figures xi
List of Tables xxiii
Preface xxv
Acknowledgments xxvii

1 Electromagnetic Fields and their Basic Characteristics 1

1.1 Fundamentals 1
 1.1.1 Maxwell's equations in integral form 2
 1.1.2 Maxwell's equations in differential form 3
 1.1.3 Constitutive relations and equation of continuity 3
 1.1.4 Media and their characteristics 4
 1.1.5 Conductors 4
 1.1.6 Dielectrics 5
 1.1.7 Magnetic materials 5
 1.1.8 Conditions on interfaces 6

1.2 Potentials 8
 1.2.1 Scalar electric potential 8
 1.2.2 Magnetic vector potential 9
 1.2.3 Magnetic scalar potential 10

1.3 Mathematical models of electromagnetic fields 10
1.3.1 Static electric field 10
1.3.2 Static magnetic field 12
1.3.3 Quasistationary electromagnetic field 14
1.3.4 General electromagnetic field 15
1.4 Energy and forces in electromagnetic fields 16
1.4.1 Energy of electric field 17
1.4.2 Energy of magnetic field 18
1.4.3 Forces in electric field 19
1.4.4 Forces in magnetic field 23
1.5 Power balance in electromagnetic fields 24
1.5.1 Energy in electromagnetic field and its transformation 24
1.5.2 Balance of power in linear electromagnetic field 24

2 Overview of Solution Methods 27

2.1 Continuous models in electromagnetism 27
 2.1.1 Differential models 28
 2.1.2 Integral and integrodifferential models 31
2.2 Methods of solution of the continuous models 32
 2.2.1 Analytical methods 33
 2.2.2 Numerical methods 33
 2.2.3 Methods based on the stochastic approach 33
 2.2.4 Specific methods 34
2.3 Classification of the analytical methods 34
 2.3.1 Methods built on the basic laws of electromagnetics 34
 2.3.2 Methods based on various transforms 35
 2.3.3 Direct solution of the field equations 43
2.4 Numerical methods and their classification 46
2.5 Differential methods 48
 2.5.1 Difference methods 48
 2.5.2 Weighted residual methods 53
 2.5.3 Variational and other related methods 58
2.6 Finite element method 62
 2.6.1 Discretization of the definition area and selection of the approximate functions 63
 2.6.2 Computation of the functional and its extremization 73
 2.6.3 Further prospectives 76
2.7 Integral and integrodifferential methods 76
2.8 Important mathematical aspects of numerical methods 76
 2.8.1 Stability 77
 2.8.2 Convergence 78
 2.8.3 Accuracy 78
2.9 Numerical schemes for parabolic equations 78
3 Solution of Electromagnetic Fields by Integral Expressions

3.1 Introduction

3.2 1D integration area
 3.2.1 Review of typical problems
 3.2.2 Electric field generated by a solitary filamentary conductor of infinite length
 3.2.3 Electric field of charged thin circular ring
 3.2.4 Magnetic field generated by a solitary filamentary conductor of infinite length
 3.2.5 Magnetic field of thin circular current carrying loop
 3.2.6 Electric field generated by a system of uniformly charged parallel thin filaments of infinite length
 3.2.7 Magnetic field generated by a system of currents carrying parallel filamentary conductors of infinite length

3.3 2D integration area
 3.3.1 Review of typical problems
 3.3.2 Magnetic field of an infinitely long massive conductor carrying DC current
 3.3.3 Magnetic field of a massive ring of rectangular cross section

3.4 Forces acting in the system of long massive conductors
 3.4.1 Self-inductance of a massive ring of rectangular cross section
 3.4.2 Radial force on a massive ring of rectangular cross section
 3.4.3 Cylindrical air-core coils and their parameters
 3.4.4 Electric field of an idealized thundercloud

3.5 3D integration area
 3.5.1 Review of typical problems
 3.5.2 Magnetic field around a helicoidal air-core coil

4 Integral and Integrodifferential Methods

4.1 Integral versus differential models

4.2 Theoretical foundations
 4.2.1 Electrostatic fields produced by charged bodies
 4.2.2 Eddy currents in linear homogeneous systems
 4.2.3 Planar and axisymmetric arrangements

4.3 Static and harmonic problems in one dimension
 4.3.1 Electric field of a thin charged circular ring
 4.3.2 Current density in a harmonic current carrying massive hollow conductor
4.3.3 Current density in a system consisting of a harmonic current carrying massive hollow cylindrical conductor—a coaxial shielding pipe 165

4.4 Static and harmonic problems in two dimensions 170
4.4.1 Electric field of a thin rectangular plate 171
4.4.2 Electric field of a charged cylinder 174
4.4.3 Harmonic currents in a long conductor of arbitrary cross section 180

4.5 Static problems in three dimensions 185
4.5.1 Electric field of two charged cubes 186
4.5.2 Electric field of two charged plates 191

4.6 Time-dependent eddy current problems in one dimension and two dimensions 191
4.6.1 Massive conductor carrying time-dependent current 192
4.6.2 Pulse current in a long conductor of rectangular profile 200
4.6.3 Short-circuit effects in a three-phase system 204

4.7 Static and 2D eddy current problems with motion 206
4.7.1 Distribution of charge in a system of two moving conductors 207

5 Indirect Solution of Electromagnetic Fields by the Boundary Element Method 217
5.1 Introduction 217
5.1.1 Fundamental concepts 219
5.1.2 Green’s functions of common differential operators 224
5.2 BEM-based solution of differential equations 226
5.2.1 Particular steps of the solution 226
5.2.2 Illustrative example in one dimension 227
5.2.3 Multidimensional problems 230
5.3 Problems with 1D integration area 230
5.3.1 Two eccentrically placed charged cylinders 231
5.3.2 Magnetic field in the air gap of a rotating machine 234
5.3.3 Electric field near a high-voltage three-phase line 239
5.3.4 Magnetic field of a massive conductor above a ferromagnetic plate 241

6 Integral Equations in Solution of Selected Coupled Problems 245
6.1 Continual induction heating of nonferrous cylindrical bodies 245
6.1.1 Introduction 245
6.1.2 Formulation of the technical problem 246
6.1.3 Mathematical model and its solution 246
6.1.4 Illustrative example 247
6.1.5 Conclusion 255
6.2 Induction heating of a long nonmagnetic cylindrical billet rotating in a uniform magnetic field 255
 6.2.1 Introduction 255
 6.2.2 Formulation of the technical problem 256
 6.2.3 Continuous mathematical model of the problem 256
 6.2.4 Example of computation 261
 6.2.5 Conclusion 266

6.3 Pulsed Induction Accelerator 266
 6.3.1 Introduction 266
 6.3.2 Formulation of the problem 268
 6.3.3 Continuous mathematical model 269
 6.3.4 Discretized model and its numerical solution 273
 6.3.5 Example of calculation 274

7 Numerical Methods for Integral Equations 281
 7.1 Introduction 281
 7.1.1 Model problem 281
 7.1.2 Projection methods 282
 7.2 Collocation methods 283
 7.2.1 Optimal collocation points in one dimension 285
 7.2.2 Optimal basis functions in one dimension 285
 7.2.3 Efficient assembly of the collocation matrix 288
 7.2.4 Optimal collocation points in two dimensions 289
 7.2.5 Transformation of points from reference to physical elements 289
 7.2.6 Optimal basis functions in two dimensions 292
 7.2.7 Efficient assembly of the collocation matrix 293
 7.3 Galerkin methods 293
 7.3.1 Schur complement method for partially orthonormal basis 296
 7.4 Numerical example 296
 7.4.1 Basic features of the proposed higher-order technique 297
 7.4.2 Illustrative example 298

Appendix A: Basic Mathematical Tools 301
 A.1 Vectors, matrices, and systems of linear equations 301
 A.1.1 Vectors 301
 A.1.2 Matrices 304
 A.1.3 Systems of linear equations 306
 A.1.4 Eigenvalues and eigenvectors of matrices 310
 A.2 Vector analysis 311
 A.2.1 Differential and integral operations with vectors in Cartesian coordinates 311
A.2.2 Other orthogonal coordinate systems 315

Appendix B: Special Functions 319

B.1 Bessel functions 319
 B.1.1 Bessel functions of the first kind 320
 B.1.2 Bessel functions of the second kind 321
 B.1.3 Hankel functions 321
 B.1.4 Modified Bessel functions 322
 B.1.5 Asymptotic forms of Bessel functions 322
 B.1.6 Some other useful relations 324
 B.1.7 Computation of Bessel and other related functions 324

B.2 Elliptic integrals 325
 B.2.1 Incomplete and complete elliptic integrals of the first kind 325
 B.2.2 Incomplete and complete elliptic integrals of the second kind 325
 B.2.3 Incomplete and complete elliptic integrals of the third kind 326
 B.2.4 Some other useful formulas 328

B.3 Special polynomials 329
 B.3.1 Legendre polynomials of the first kind 329
 B.3.2 Chebyshev polynomials of the first kind 330

Appendix C: Integration Techniques 333

C.1 Analytical calculations of some integrals over typical elements 333
 C.1.1 Rectangle 334
 C.1.2 Triangle 338
 C.1.3 A ring of rectangular cross section 344
 C.1.4 A brick 345

C.2 Techniques of numerical integration 346
 C.2.1 Numerical integration in one dimension 347
 C.2.2 Numerical integration in two dimensions 355
 C.2.3 Numerical integration in three dimensions 365

References 375

Topic Index 385
LIST OF FIGURES

1.1. Interface between two media in electric field. 7
1.2. Interface between two media in magnetic field. 7
1.3. Interface between two media in current field. 8
1.4. Computation of electric potential from distribution of volume charge ρ. 11
1.5. Computation of potential from distribution of surface charge σ. 12
1.6. Computation of vector potential from distribution of current density J. 13
1.7. Computation of forces in a system of charged bodies. 19
1.8. Attraction of dielectric between two plates of a capacitor. 20
1.9. Derivation of Maxwell’s tensor. 22
1.10. Computation of 2D force effects using Maxwell’s approach. 22
2.1. A single-layered coil. 30
2.2. Equivalent circuit of a single-layered coil. 30
2.3. An infinitely long charged cylinder. 35
2.4. Two infinitely long cylindrical electrodes. 36
2.5. A rectangular grid in the transformed area. 37
2.6. Equipotential lines in the system of two long cylindrical electrodes. 37
2.7. Arrangement of the bundle conductor. 39
2.8. Magnetic field distribution in the system. 40
2.9. Distribution of the module of magnetic flux density in the system. 41
2.10. Distribution of the module of magnetic flux density along the x axis. 41
2.11. A thin conductor of radius r placed eccentrically in a metal sheath. 42
2.12. Potential in a system of two charged parallel thin conductors. 42
2.13. Two infinitely long conductive cylinders separated by an air gap. 43
2.14. Distribution of the scalar potential near the air gap. 47
2.15. The seven-point scheme. 49
2.16. A higher-order 1D scheme. 50
2.17. The investigated cylinder. 55
2.18. An approximate solution for $k = 1$ (dashed line) and the exact solution for $k = 2$ (full line). 58
2.19. An approximate solution for $k = 1$ (dashed line) and the exact solution for $k = 2$ (full line). 62
2.20. An approximate abscissa (dashed line) and the exact solution (full line). 64
2.21. Exact solution (full line), point collocation (long dashing), weighted residual method (short dashing), and least-square method (dotted line). 66
2.22. Linear elements in 1D. 67
2.23. The shape function for an element. 67
2.24. The arrangement with four points. 68
2.25. Particular shape functions for the solved example. 69
2.26. Lagrange’s polynomial for the solved example. 69
2.27. A general linear triangle. 70
2.28. A general quadratic triangle. 70
2.29. A general linear tetrahedral element. 71
2.30. A general quadratic tetrahedral element. 72
2.31. Computation of relevant quantities on a triangular element. 75
2.32. The grid for solving (2.74). 79
3.1. Charged filamentary conductor of infinite length. 84
3.2. The graph of function $E_r(r)$ for $Q' = 10^{-9}$ C/m. 85
3.3. The graph of function $\varphi(r)$ for $Q' = 10^{-9}$ C/m and $\varphi_0 = 0$. 86
3.4. Arrangement of the charged circular filament. 86
3.5. Distribution of the equipotentials in the vicinity of the loop. 88
3.6. Distribution of the module of electric field strength in the vicinity of the loop. 89
3.7. Distribution of the module of electric field strength along the z axis. 89
3.8. Filamentary conductor of infinite length carrying current $i(t)$. 90
3.9. The graph of function $B_{\alpha}(r)$ for $I = 10$ A. 90
3.10. The graph of function $A_\alpha(r)$ for $I = 10$ A and $A_{\alpha 0}(t) = 0$. 91
3.11. A thin direct current carrying circular turn. 91
3.12. Distribution of force lines in the vicinity of the thin ring ($R = 0.2$ m, $I = 100$ A). 93
3.13. Distribution of the module $|\mathbf{B}|$ of magnetic flux density in the vicinity of the thin ring ($R = 0.2$ m, $I = 100$ A). 94
3.14. Distribution of the module $|\mathbf{B}|$ of magnetic flux density along the z axis ($R = 0.2$ m, $I = 100$ A). 94
3.15. A system of thin charged parallel conductors of infinite length. 95
3.16. A system of thin charged parallel conductors of infinite length taking into account the influence of the earth. 96
3.17. A system of filamentary parallel current carrying conductors of infinite length. 97
3.18. A massive conductor of a general cross section. 98
3.19. A massive conductor of rectangular cross section. 99
3.20. The arrangement of the investigated hollow conductor. 100
3.21. Magnetic field of the hollow conductor. 101
3.22. Distribution of the module of the magnetic flux density in the region of the hollow conductor. 101
3.23. Distribution of magnetic flux density along line a (see Fig. 3.20). 102
3.24. Distribution of magnetic flux density along line b (see Fig. 3.20). 102
3.25. A circular ring of the rectangular cross section. 103
3.26. Arrangement of the investigated ring. 105
3.27. Magnetic field in the domain of the investigated ring. 106
3.28. Lines of the constant module of magnetic flux density. 107
3.29. Module of the magnetic flux density along the \(z \) axis. 107
3.30. Module of the magnetic flux density along the radius \(r \) for \(z = 0 \). 108
3.31. Arrangement of the conductors. 108
3.32. Two long conductors of rectangular cross sections in a general position. 109
3.33. Arrangement with one circular conductor. 110
3.34. Computation of the self-inductance of a massive ring. 111
3.35. Two ideal massive concentric turns. 118
3.36. A coil consisting of two segments. 122
3.37. Real and idealized thunderclouds. 129
3.38. Method of images for the idealized thundercloud. 130
3.39. Considered dependencies of charge density \(\varrho \). 133
3.40. Distribution of potential in the cloud and its vicinity for charge density according to line 1 in Fig. 3.39. 134
3.41. Distribution of potential in the cloud and its vicinity for charge density according to line 2 in Fig. 3.39. 135
3.42. Distribution of potential in the cloud and its vicinity for charge density according to line 3 in Fig. 3.39. 136
3.43. Geometry of the investigated helicoidal coil. 137
3.44. Derivation of the field equations. 138
3.45. Distribution of function \(r A_{\varphi} \) in the vicinity of the turns of the coil: (a) \(\Phi = 0^\circ \), (b) \(\Phi = 90^\circ \). 143
3.46. Distribution of function \(r A_{\varphi} \) in the vicinity of the turns of the coil: (c) \(\Phi = 180^\circ \), (d) \(\Phi = 270^\circ \). 144
4.1. Meshing can become tedious with complicated 3D geometries. 146
4.2. The investigated system of charged bodies. 149
4.3. General system of current carrying bodies with moving parts. 150
4.4. Current carrying bodies with moving parts in the \(x, y \) coordinate system. 153
4.5. Long single massive conductor carrying time-variable current. 154
4.6. Magnetic flux density near a long thin current carrying conductor. 155
4.7. Current carrying bodies with moving parts in the \(r, z \) coordinate system. 156
4.8. Geometry of the thin circular ring. 157
4.9. Nonequidistant radial subdivision of the ring, \(n = 24 \). 160
4.10. Piecewise-constant radial distribution of \(\sigma/Q \) for \(R_1 = 0.1 \text{ m}, n = 24 \). 161
4.11. Piecewise-constant radial distribution of \(\sigma/Q \) for \(R_1 = 0.1 \text{ m}, n = 500 \). 161
4.12. Radial distribution of the potential \(\varphi \) in the vicinity of the ring. 162
4.13. Distribution of potential along the \(z \) axis \((R_1 = 0.1 \text{ m}, n = 60)\). 162
4.15. Schematic view of a massive hollow conductor. 163
4.16. Distribution of the modulus of current density \(J_z \) along the radius \(r \). 165
4.17. A hollow conductor of circular shape in a shielding pipe. 167
4.18. Discretization of the system. 168
4.19. Distribution of the real part of the phasor of current density along the radius of both the conductor and pipe \((I_1 = 6000 \text{ A}, f = 100 \text{ Hz}, m = 48, \text{ and } n = 12)\). 169
4.20. Dependence of the real and imaginary components of the total current \(I_2 \) induced in the shielding pipe on frequency \(f \) of the field current \(I_1 \) \((I_1 = 6000 \text{ A}, m = 32, n = 8)\). 170
4.21. Convergence of the total current \(I_2 \) induced in the pipe on the radius \(r \) of the artificial boundary \((|I_1| = 6000 \text{ A}, f = 100 \text{ Hz})\). 170
4.22. Comparison of results obtained by the integral method and the FEM \((|I_1| = 6000 \text{ A}, f = 100 \text{ Hz}, \text{ radius of the artificial boundary for FEM } r = 1 \text{ m})\). 171
4.23. The investigated thin rectangular plate. 172
4.24. Computation of the charge density \(\sigma(x, y) \) in the thin plate. 173
4.25. Approximate charge density over one-fourth of the plate. 174
4.26. Electric field in the \(yz \)-plane. 175
4.27. Electric field in the \(xz \)-plane. 175
4.28. Cylindrical surface carrying a charge \(Q \). 176
4.29. Discretization of the surface of the cylinder. 176
4.30. Approximate radial distribution of \(\sigma/Q \) in the base. 179
4.31. Approximate distribution of \(\sigma/Q \) along the shell. 180
4.32. Nonuniform subdivision of the base. 180
4.33. Long massive conductor of an arbitrary cross section. 181
4.34. Massive conductor of the first type. 183
4.35. Distribution of the modulus of eddy current density along line ABCNA (see Fig. 4.34.) for \(I = 6 \, \text{A} \) and frequency \(f = 1 \, \text{MHz} \) (version I). 183

4.36. Ratio of \(R'_{\text{eff}}/R'_0 \) versus the frequency for the conductor. 184

4.37. Detail of Fig. 4.36 for higher frequencies. 184

4.38. Ratio of \(L'_{\text{eff}}/L'_0 \) versus frequency of the harmonic current. 185

4.39. Thin strip conductor. 185

4.40. Distribution of the modulus of eddy current density along the curve ABCDA for \(I = 6 \, \text{A} \) and frequency \(f = 1 \, \text{MHz} \) (version I). 185

4.41. Arrangement with two charged cubes. 186

4.42. Approximate distribution of the charge density \(\sigma \) on the face ABCD, \(n = 12 \). 187

4.43. Approximate distribution of the charge density \(\sigma \) on the face EFGH, \(n = 12 \). 188

4.44. Planes A and B where the electric potential is calculated. 188

4.45. Approximate distribution of the electric potential in the plane A. 189

4.46. Approximate distribution of the electric potential in the plane B. 189

4.47. Approximate distribution of the electric field strength \(\mathbf{E} \) in the system. 190

4.48. The arrangement containing two charged thin plates. 191

4.49. Approximate distribution of the electric charge \(\sigma \) in the plane ABCD. 192

4.50. Approximate distribution of the electric charge \(\sigma \) in the plane EFGH. 192

4.51. The investigated conductor. 193

4.52. The reference and integration points. 193

4.53. Radial distribution of the modulus of steady-state current density. 197

4.54. Time evolution of the current density at \(r = 0.0005 \, \text{m} \). 197

4.55. Time evolution of the current density at \(r = 0.002548 \, \text{m} \). 198

4.56. Time evolution of the current density at \(r = 0.00495 \, \text{m} \). 198

4.57. Pulse current \(i(t) = 20000(e^{-100t} - e^{-10000t}) \). 199

4.58. Discretization of the ring. 199

4.59. Distribution of the current density along the radius of the conductor at different time instants. 200

4.60. Time evolution of the current density at three different radii (integrodifferential method). 201
4.61. Space and time distributions of current densities within the conductor. 202
4.62. Time evolution of the equivalent resistance per unit length $R'(t)$. 202
4.63. Time evolution of the internal inductance per unit length $L'(t)$. 203
4.64. Time evolution of the current density at three different radii (finite difference method). 203
4.65. Distribution of the current density along the radius of the conductor for $t = 0.003$ s calculated by the integrodifferential and finite difference methods. 204
4.66. Scheme of a conductor of rectangular profile. 205
4.67. Discretization of the profile and position of the check points. 205
4.68. Time evolution of the current density at the point A. 206
4.69. Time evolution of the current density at the point B. 206
4.70. Time evolution of the current density at the point C. 207
4.71. The steady-state harmonic current densities at points A, B, and C. 207
4.72. Arrangement comprising three massive conductors. 208
4.73. Time evolution of the short-circuit currents. 208
4.74. Time evolution of the x-component of short-circuit forces. 209
4.75. Time evolution of the y-component of short-circuit forces. 209
4.76. Arrangement of two charged conductors. 210
4.77. Discretization of the conductors. 210
4.78. Distribution of surface charge along each conductor at three various time-levels. 211
4.79. Geometry of the investigated arrangement. 211
4.80. Time dependence of the field current. 212
4.81. Time evolution of current density at point A. 215
4.82. Time evolution of current density at point B. 215
4.83. Time evolution of current density at point C. 215
5.1. Different types of boundary conditions. 222
5.2. Splitting the boundary into linear segments. 223
5.3. Function $f = x^3 - 4x$ in interval $(0, 2)$. 227
5.4. Two infinitely long eccentric cylinders. 231
5.5. Equipotential \((u = \text{const})\) and force \((v = \text{const})\) lines in transformed plane \(u, v\). 233

5.6. Equipotentials in the real plane \(x, y\). 234

5.7. Convergence of the capacitance \(C'\). 234

5.8. Distribution of potential between points \(A\) and \(B\) (see Fig. 5.4). 235

5.9. Distribution of potential between points \(P\) and \(Q\) (see Fig. 5.4). 236

5.10. Distribution of the module of electric field strength between points \(A\) and \(B\) (see Fig. 5.4). 236

5.11. The cross section of the investigated machine. 237

5.12. Several positions of the rotor and stator. 238

5.13. Dependence of the magnetic reluctance on the angle of shifting. 238

5.14. The investigated arrangement with the high-voltage three-phase line. 239

5.15. The definition area of the problem. 239

5.16. Distribution of potential below the high-voltage line. 240

5.17. Distribution of component \(E_x\) below the high-voltage line. 241

5.18. Distribution of component \(E_y\) below the high-voltage line. 241

5.19. Distribution of module \(|E|\) below the high-voltage line. 242

5.20. Arrangement with a massive conductor above a ferromagnetic plate. 242

5.21. Distribution of the force lines in the system. 243

5.22. Distribution of magnetic vector potential along the \(x\) axis. 243

5.23. Distribution of magnetic vector potential along the \(y\) axis. 244

5.24. Distribution of magnetic flux density perpendicular to the \(x\) axis. 244

5.25. Distribution of magnetic flux density perpendicular to the \(y\) axis. 244

6.1. Two basic possibilities of continual induction heating: (a) static body, moving inductor and (b) moving body, static inductor. 246

6.2. The solved arrangement. 248

6.3. Possible ways of discretization of axisymmetric bodies. 250

6.4. Computation of selected integrals over a rectangular ring. 251

6.5. Time evolution of eddy current densities at the selected points of the pipe. 252

6.6. Time evolution of the average Joule losses in the pipe. 253

6.7. Time evolution of the temperature at the selected points of the pipe. 253
6.8. Time evolution of the effective value of eddy current density along the radius of the pipe in its center. 254
6.9. Comparison of the distribution of the effective current density at two specified points of the pipe. 254
6.10. Comparison of the time evolution of temperature at two specified points of the pipe. 255
6.11. Induction heating of static cylinder by a classical static inductor. 256
6.12. Induction heating of rotating cylinder by static inductor. 257
6.13. Detailed view of the solved arrangement. 257
6.14. The investigated system. 262
6.15. Steady-state eddy current densities along the radii of the billet \((n = 6000 / \text{min}) \), angles \(\varphi = 0^\circ, 30^\circ, 60^\circ, 90^\circ, 120^\circ, 150^\circ \). 264
6.16. Comparison of the distribution of eddy current density along the radius of the billet for angle \(\varphi = 30^\circ \) (integral method and FEM). 265
6.17. Distribution of the specific average Joule losses along the radius of the billet for \(n = 6000 / \text{min} \). 266
6.18. Distribution of the temperature along the radius of the billet at various time levels \((n = 6000 / \text{min}) \). 267
6.19. Dependence of the total Joule losses \(W'_J \) generated in the billet on the number of revolutions \(n \) (s\(^{-1}\)). 267
6.20. Dependence of the drag torque \(T'_{dc} \) of the billet on the number of revolutions \(n \) (s\(^{-1}\)). 268
6.21. Dependence of the total Joule losses \(W'_J \) per unit length generated in the billet on its radius \(R \) (\(n = 200 \text{ s}^{-1} \)). 268
6.22. Dependence of the drag torque \(T'_{dc} \) per unit length produced by the billet on its radius \(R \) (\(n = 200 \text{ s}^{-1} \)). 269
6.23. A simplified arrangement of pulsed induction accelerator. 269
6.24. Flow chart of the algorithm. 271
6.25. Inductor with the projectile. 272
6.26. Geometry of the field coil and projectile. 275
6.27. Scheme of the measuring circuit. \(U_0 \)-voltage source STATRON 2225, \(2 \times 60 \text{ V}, 2.5 \text{ A} \); \(V_c, V_i, V_L \)-oscilloscope TDS 2014B, four channels, 100 MHz; \(R_N \)-resistor 10 \(\Omega \), 10 W; \(S_N \)-push button for switching the thyristor; \(C_1, \ldots, C_4 \)-capacitors HITANO 4.7 \(\text{mF}, 63 \text{ V} \); \(D_1, D_2 \)-diodes IN5408; \(T \)-thyristor KT708 (\(U_{\text{Max}} = 700 \text{ V} \)), \(I_{AVG} = 15 \text{ A} \), case TO-48; \(R_0 \)-resistance of the feeding circuitry; \(R_L \)-resistance of the field coil; \(L \)-field coil. 275
6.28. Measured and calculated currents (related to their maximum value 360 A) in the field circuit. 276
6.29. Time evolution of the Lorentz force acting on the projectile. 277
6.30. Time evolution of the current pulses with various amplitudes. 277
6.31. Time evolution of trajectories of the projectile for currents in Fig. 6.30. 278
6.32. Time evolution of the beginning parts of the trajectories for currents in Fig. 6.30. 278
6.33. Time evolution of velocities of the projectile for currents in Fig. 6.30. 279
6.34. Time evolution of the beginning parts of the velocities for currents in Fig. 6.30. 279
7.1. Lagrange-Gauss-Lobatto nodal shape functions, $p = 2$. 286
7.2. Lagrange-Gauss-Lobatto nodal shape functions, $p = 3$. 286
7.3. Lagrange-Gauss-Lobatto nodal shape functions, $p = 4$. 286
7.4. Lagrange-Gauss-Lobatto nodal shape functions, $p = 5$. 287
7.5. Construction of a quadratic bubble basis function in the element K_m. 287
7.6. Construction of a quadratic vertex function associated with the vertex c_m. 288
7.7. Fekete points in a reference triangle, $p = 1, 2, \ldots, 15$. 290
7.8. Reference map for quadrilateral elements. 291
7.9. Reference map for triangular elements. 292
7.10. Decomposition of the matrix S and vectors A, G for the Schur complement method. 296
7.11. Distribution of current density along the radius of a massive conductor for $t = 0.002$ s. 300
7.12. Distribution of current density along the radius of a massive conductor for $t = 0.003$ s. 300
A.1. Interpretation of the cross product of vectors p and q. 303
A.2. Connectedness of a domain. 312
A.3. Determination of the cylindrical coordinates of point P. 317
B.1. Evolution of Bessel functions J for $n = 0, 1, 2, 3$. 320
B.2. Evolution of Bessel functions Y for $n = 0, 1, 2, 3$. 321
B.3. Evolution of modified Bessel functions I for $n = 0, 1, 2, 3$. 322
B.4. Evolution of modified Bessel functions K for $n = 0, 1, 2, 3$. 323
B.5. Dependence of the complete elliptic integral $K(k)$ on parameter k. 326
B.6. Dependence of the complete elliptic integral $E(k)$ on parameter k. 327
B.7. Dependence of the complete elliptic integral $\Pi(n, k)$ on k for selected parameters n. 327
B.8. Legendre polynomials up to the fifth order in interval $\langle -1 \leq x \leq 1 \rangle$. 330
B.9. Chebyshev polynomials up to the fifth order in interval $\langle -1 \leq x \leq 1 \rangle$. 331
C.1. Calculation of $\int_S dS/l$ over a rectangle. 335
C.2. Calculation of $\int_S dS/l$ over a triangle. 339
C.3. Calculation of $\int_V [(\cos \varphi dV)/l]$ over a ring of rectangular cross-section 344
C.4. Calculation of $\int_V (dV/l)$ over a brick. 346
C.5. A quadrilateral. 357
C.6. A general triangle. 360
C.7. The reference triangle. 361
C.8. Distribution of the points in the reference triangle for $n = 2$, $n = 3$, and $n = 4$. 362
C.9. A general brick. 366
C.10. A general tetrahedron. 370
C.11. The reference triangle. 371
This Page Intentionally Left Blank
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Comparison of analytical and numerical results for $J_z(r)$.</td>
<td>166</td>
</tr>
<tr>
<td>4.2</td>
<td>Real and imaginary parts of the current in the shielding pipe as functions of discretization parameters m and n.</td>
<td>169</td>
</tr>
<tr>
<td>4.3</td>
<td>Convergence study with respect to the edge subdivision parameter n.</td>
<td>190</td>
</tr>
<tr>
<td>C.1</td>
<td>Closed Newton–Cotes quadrature constants, order $n = 1$ (trapezoidal rule).</td>
<td>349</td>
</tr>
<tr>
<td>C.2</td>
<td>Closed Newton-Cotes quadrature constants, order $n = 2$ (Simpson’s 1/3 rule).</td>
<td>349</td>
</tr>
<tr>
<td>C.3</td>
<td>Closed Newton–Cotes quadrature constants, order $n = 3$ (Simpson’s 3/8 rule).</td>
<td>350</td>
</tr>
<tr>
<td>C.4</td>
<td>Closed Newton–Cotes quadrature constants, order $n = 4$ (Bode’s rule).</td>
<td>350</td>
</tr>
<tr>
<td>C.5</td>
<td>Chebyshev quadrature constants, $n = 2$.</td>
<td>351</td>
</tr>
<tr>
<td>C.6</td>
<td>Chebyshev quadrature constants, $n = 3$.</td>
<td>351</td>
</tr>
<tr>
<td>C.7</td>
<td>Chebyshev quadrature constants, $n = 4$.</td>
<td>352</td>
</tr>
<tr>
<td>C.8</td>
<td>Chebyshev quadrature constants, $n = 5$.</td>
<td>352</td>
</tr>
<tr>
<td>C.9</td>
<td>Lobatto (Radau) quadrature constants, $n = 3$.</td>
<td>353</td>
</tr>
<tr>
<td>C.10</td>
<td>Lobatto (Radau) quadrature constants, $n = 4$.</td>
<td>354</td>
</tr>
</tbody>
</table>
C.11. Lobatto (Radau) quadrature constants, \(n = 5 \). 354
C.12. Lobatto (Radau) quadrature constants, \(n = 6 \). 354
C.13. Gauss quadrature constants, \(n = 2 \). 355
C.14. Gauss quadrature constants, \(n = 3 \). 355
C.15. Gauss quadrature constants, \(n = 4 \). 356
C.16. Gauss quadrature constants, \(n = 5 \). 356
C.17. Minimum numbers of quadrature points for Gauss quadrature points over a quadrilateral. 359
C.18. Gauss quadrature on the quadrilateral, \(n = 0, 1 \). 359
C.19. Gauss quadrature on the quadrilateral, \(n = 2, 3 \). 359
C.20. Gauss quadrature on the quadrilateral, \(n = 4, 5 \). 360
C.21. Minimum and achieved numbers of integration points over the reference triangle. 364
C.22. Integration points for the reference triangle, \(n = 1 \). 365
C.23. Integration points for the reference triangle, \(n = 2 \). 365
C.24. Integration points for the reference triangle, \(n = 3 \). 365
C.25. Integration points for the reference triangle, \(n = 4 \). 365
C.26. Integration points for the reference triangle, \(n = 5 \). 366
C.27. Minimum numbers of integration points over the Gaussian quadrature for the reference cube. 368
C.28. Integration points for the reference cube, \(n = 1 \). 369
C.29. Integration points for the reference cube, \(n = 2, 3 \). 369
C.30. Integration points for the reference cube, \(n = 4, 5 \). 369
C.31. Minimum numbers of integration points over the Gaussian quadrature for the reference tetrahedron. 372
C.32. Integration points for the reference tetrahedron, \(n = 1 \). 372
C.33. Integration points for the reference tetrahedron, \(n = 2 \). 373
C.34. Integration points for the reference tetrahedron, \(n = 3 \). 373
C.35. Integration points for the reference tetrahedron, \(n = 4 \). 373
C.36. Integration points for the reference tetrahedron, \(n = 5 \). 374
Nowadays, most standard problems in low-frequency electromagnetics are modeled via Maxwell's equations and solved by suitable finite element methods (FEMs). This partial differential equations (PDEs)-based approach is used in virtually all modern commercial codes (OPERA, MagNet, FLUX, and others), and its theoretical background can be found in numerous books and other references. Less frequently, finite difference methods (FDMs) are also used to solve PDE-based models—however, these methods are restricted to very simple geometries and lack the option of automatic adaptivity (mesh refinement aimed at the improvement of local resolution), and thus they are not real competitors to finite element methods.

Regardless of the quality of the numerical method used, the PDE-based approach has generic limitations that make it impractical for various important problem classes. These problems, typically, are not widely advertised in the literature since they hardly can be tackled by means of existing commercial or academic software. We can give the following examples:

- Multiscale problems involving geometrically incommensurable subdomains such as, for example, thin conductors of one-dimensional nature, coils built of such conductors, two-dimensional charged surfaces, and/or three-dimensional objects. In such situations, the application of FEMs is problematic due to meshing and other problems.

- The above-mentioned difficulties escalate if some parts of the computational arrangement are moving. Then the computational domain changes in time, and the need for frequent remeshing makes the application of FEMs impractical. In contrast to this, integral methods typically do not require meshing in all parts of the computational
domain, such as in the air surrounding charged electrical objects, and thus they can handle motion naturally.

- Problems with uncertain geometries and/or uneasily implementable boundary conditions. As a simple example, let us mention the magnetic field of a time-variable current carrying massive conductor of an arbitrary cross section. In addition to the meshing problems mentioned above, the FEM requires either an appropriate choice of an artificial boundary at a sufficient distance from the solved system or the implementation of some suitable open-boundary technique. These problems are not present in integral models, as the boundary conditions are included in the kernel functions of the corresponding integrals.

Provided that the solved problems are linear and involve homogeneous media, the integral approach is able to avoid many difficulties of PDE-based methods. Historically, integral methods have been used much less frequently in computational electromagnetics compared to PDE-based models. For a long time PDE-based models have attracted more attention than the integral ones since the latter lead to large, fully populated (dense) matrices that are difficult to handle numerically. However, the situation in the domain is changing as progress is being made in the development of higher-order methods that lead to a significant reduction of the number of degrees of freedom, and thus the dense matrices become much smaller and easier to handle. The higher-order methods have a lot of computational potential that has not been explored yet.

The aim of our book is to summarize the current state-of-the-art knowledge on integral methods in low-frequency electromagnetics. It includes theory as well as a lot of examples, which we expect to be interesting for the electrical engineering community. We also expect that readers will appreciate our effort to present the field in a broader context of coupled problems with the dominance of electromagnetic fields, such as induction heating. All computations presented in the book are done by means of our own codes and a significant portion of our own original new results is included. At the end of the book we also discuss novel integral techniques of higher order of accuracy, which undoubtedly represent the future in this field.

We expect that this book will attract new attention to integral methods within the electrical engineering community.

I. Dolezel

P. Karban

P. Solin

Prague, Czech Republic, July 2008
ACKNOWLEDGMENTS

The work of the authors was sponsored partially by the Grant Agency of the Czech Republic (project No. 102/07/0496) and the Grant Agency of the Academy of Sciences of the Czech Republic (project No. IAA100760702).

The authors also express very warm thanks to their families, without whose support the work on this book could never have been successfully finished.
This Page Intentionally Left Blank