DRUG DESIGN OF ZINC-ENZYME INHIBITORS
FUNCTIONAL, STRUCTURAL, AND DISEASE APPLICATIONS

Edited by
Claudiu T. Supuran
Jean-Yves Winum
DRUG DESIGN OF ZINC-ENZYME INHIBITORS
Wiley Series in Drug Discovery and Development

Binghe Wang, Series Editor

Drug Delivery: Principles and Applications
Edited by Binghe Wang, Teruna Siahaan, and Richard A. Soltero

Computer Applications in Pharmaceutical Research and Development
Edited by Sean Ekins

Glycogen Synthase Kinase-3 (GSK-3) and Its Inhibitors: Drug Discovery and Development
Edited by Ana Martinez, Ana Castro, and Miguel Medina

Drug Transporters: Molecular Characterization and Role in Drug Disposition
Edited by Guofeng You and Marilyn E. Morris

Aminoglycoside Antibiotics: From Chemical Biology to Drug Discovery
Edited by Dev P. Arya

Drug-Drug Interactions in Pharmaceutical Development
Edited by Albert P. Li

Dopamine Transporters: Chemistry, Biology, and Pharmacology
Edited by Mark L. Trudell and Sari Izenwasser

Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications
Edited by Claudiu T. Supuran and Jean-Yves Winum
DRUG DESIGN OF ZINC-ENZYME INHIBITORS
FUNCTIONAL, STRUCTURAL, AND DISEASE APPLICATIONS

Edited by
Claudiu T. Supuran
Jean-Yves Winum
CONTENTS

PREFACE ix
CONTRIBUTORS xi

PART I INTRODUCTION 1

1. Introduction to Zinc Enzymes as Drug Targets 3
 Claudiu T. Supuran and Jean-Yves Winum

PART II DRUG DESIGN OF CARBONIC ANHYDRASE INHIBITORS AND ACTIVATORS 13

2. Carbonic Anhydrases as Drug Targets: General Presentation 15
 Claudiu T. Supuran

3. Zinc Binding Functions in the Design of Carbonic Anhydrase Inhibitors 39
 Jean-Yves Winum, Jean-Louis Montero, Andrea Scozzafava, and Claudiu T. Supuran

4. X-Ray Crystallography of Carbonic Anhydrase Inhibitors and Its Importance in Drug Design 73
 Vincenzo Alterio, Anna Di Fiore, Katia D’Ambrosio, Claudiu T. Supuran, and Giuseppina De Simone

5. Antiglaucoma Carbonic Anhydrase Inhibitors as Ophthalmologic Drugs 139
 Francesco Mincione, Andrea Scozzafava, and Claudiu T. Supuran

6. Diuretics with Carbonic Anhydrase Inhibitory Activity: Toward Novel Applications for Sulfonamide Drugs 155
 Daniela Vullo, Alessio Innocenti, and Claudiu T. Supuran

7. Drug Design of Carbonic Anhydrase Inhibitors as Anticonvulsant Agents 171
 Anne Thiry, Jean-Michel Dogné, Claudiu T. Supuran, and Bernard Masereel
8. Carbonic Anhydrase Inhibitors Targeting Cancer: Therapeutic, Immunologic, and Diagnostic Tools Targeting Isoforms IX and XII
 Silvia Pastorekova, Monika Barathova, Juraj Kopacek, and Jaromir Pastorek

9. Fluorescent- and Spin-Labeled Sulfonamides as Probe for Carbonic Anhydrase IX
 Alessandro Cecchi, Laura Ciani, Sandra Ristori, and Claudiu T. Supuran

10. Drug Design of Antiobesity Carbonic Anhydrase Inhibitors
 Giuseppina De Simone and Claudiu T. Supuran

11. Dual Carbonic Anhydrase and Cyclooxygenase-2 Inhibition
 Jean-Michel Dogné, Anne Thiry, Bernard Masereel, and Claudiu T. Supuran

12. Advances in the Inhibitory and Structural Investigations on Carbonic Anhydrase Isozymes XIII and XV
 Mika Hilvo, Giuseppina De Simone, Claudiu T. Supuran, and Seppo Parkkila

13. Mechanism and Inhibition of the β-Class and γ-Class Carbonic Anhydrases
 James G. Ferry and Claudiu T. Supuran

14. Fungal and Nematode Carbonic Anhydrases: Their Inhibition in Drug Design
 Rebecca A. Hall and Fritz. A. Mühlschlegel

15. Crystallographic Studies on Carbonic Anhydrases from Fungal Pathogens for Structure-Assisted Drug Development
 Uta-Maria Ohndorf, Christine Schlicker, and Clemens Steegborn

16. Malaria Parasite Carbonic Anhydrase and Its Inhibition in the Development of Novel Therapies of Malaria
 Jerapan Krungkrai, Sudaratana R. Krungkrai, and Claudiu T. Supuran

17. Inhibitors of Helicobacter pylori α- and β-Carbonic Anhydrases as Novel Drugs for Gastroduodenal Diseases
 Isao Nishimori, Hiroaki Takeuchi, and Claudiu T. Supuran

18. QSAR of Carbonic Anhydrase Inhibitors and Their Impact on Drug Design
 Adriano Martinelli and Tiziano Tuccinardi

19. Selectivity Issues in the Design of CA Inhibitors
 Claudiu T. Supuran and Jean-Yves Winum
20. Bicarbonate Transport Metabolons

Daniel E. Johnson and Joseph R. Casey

21. Metal Complexes of Sulfonamides as Dual Carbonic
Anhydrase Inhibitors

Marc A. Ilies

22. Drug Design Studies of Carbonic Anhydrase Activators

Claudia Temperini, Andrea Scozzafava,
and Claudiu T. Supuran

PART III DRUG DESIGN OF MATRIX METALLOPROTEINASE
INHIBITORS

23. Matrix Metalloproteinases: An Overview

Hideaki Nagase and Robert Visse

24. MMP Inhibitors Based on Earlier Succinimide Strategies:
From Early to New Approaches

M. Amélie Santos

25. Drug Design of Sulfonylated MMP Inhibitors

Armando Rossello and Elisa Nuti

26. ADAMs and ADAMTs Selective Synthetic Inhibitors

Armando Rossello, Elisa Nuti, and Alfonso Maresca

27. QSAR Studies of MMP Inhibitors

Tiziano Tuccinardi and Adriano Martinelli

PART IV DRUG DESIGN OF BACTERIAL ZINC PROTEASE
INHIBITORS

28. Bacterial Zinc Proteases as Orphan Targets

Claudiu T. Supuran

29. Botulinus Toxin, Tetanus Toxin, and Anthrax
Lethal Factor Inhibitors

Antonio Mastrolorenzo and Claudiu T. Supuran

30. Clostridium histolyticum Collagenase Inhibitors
in the Drug Design

Claudiu T. Supuran

31. Other Bacterial Zinc Peptidases as Potential
Drug Targets

Kunihiko Watanabe
PART V DRUG DESIGN STUDIES OF OTHER ZINC-CONTAINING ENZYMES

32. Angiotensin Converting Enzyme (ACE) Inhibitors
 Ana Cámara-Artigas, Vicente Jara-Pérez, and Montserrat Andújar-Sánchez
 751

33. P-III Metalloproteinase (Leucoylysin-B) from Bothrops leucurus Venom: Isolation and Possible Inhibition
 Eladio F. Sanchez and Johannes A. Eble
 789

34. CaaX-Protein Prenyltransferase Inhibitors
 Martin Schlitzer, Regina Ortmann, and Mirko Altenkämper
 813

35. Histone Deacetylase Inhibitors
 Paul W. Finn
 859

36. Recent Development of Diagnostic and Therapeutic Agents Targeting Glutamate Carboxypeptidase II (GCPII)
 Youngjoo Byun, Ronnie C. Mease, Shawn E. Lupold, and Martin G. Pomper
 881

37. Targeting HIV-1 Integrase Zinc Binding Motif
 Mario Sechi, Mauro Carcelli, Dominga Rogolino, and Nouri Neamati
 911

38. Inhibitors of Histidinol Dehydrogenases as Antibacterial Agents
 Pascale Joseph, François Turtaut, Stephan Köhler, and Jean-Yves Winum
 937

39. Dihydroorotase Inhibitors
 Mihwa Lee, Megan J. Maher, Richard I. Christopherson, and J. Mitchell Guss
 951

40. APOBEC3G: A Promising Antiviral Target
 Claudiu T. Supuran and Jean-Yves Winum
 981

Index
 989
In recent years, the life sciences research has considerably attracted scientists to investigate metalloenzymes and their modulators of activity (inhibitors and/or activators) to meet the challenges for improving human health by discovering new therapeutic targets.

This book mainly deals with the progress that has been made in the field of drug design and discovery of zinc metalloprotein inhibitors over the past years. Recent trends in zinc metalloenzymes are structured into five parts, comprising 40 chapters contributed by experts in the field from all over the world. Of these contributors, there are many who have contributed to this area for decades as scientists and have been recognized for the same.

The five parts of this book can be read as a whole or individually, independent of each other. In fact, the book not only caters to academic or industrial researchers in any of the areas related to pharmaceutical research and development but also to advanced undergraduates as well as graduates at the beginning of their research career, interested in specific topics of this field.

Part I (Chapter 1) outlines the importance of the zinc ion in biological systems and focuses on the importance of targeting zinc enzymes as a promising strategy for drug design and development.

Part II (Chapters 2–22) deals with one of the most studied zinc enzymes among all metalloproteins, the carbonic anhydrase (CA), and provides a comprehensive up-to-date review on the development of modulators of activity for both eukaryotic and prokaryotic CAs and their potential use in drug discovery. Part III (Chapters 23–27) brings to light the potential of matrix metalloproteinase/ADAM inhibitors as drug candidates. Part IV (Chapters 28–31) discusses the relevance of bacterial zinc protease as potential drug target and the use of inhibitors as anti-infective agents. Finally, Part V (Chapters 32–40) reviews the current and potential clinical applications of other zinc-containing enzymes in the treatment of cancer and viral and bacterial infections.

All the data given in this book provide a chemical, biological, and pharmacological framework for understanding the clinical utility of compounds targeting zinc metalloproteins for the treatment of various diseases.

We express our deepest gratitude to all our coworkers and colleagues who have contributed their highly informative manuscripts to this book on time and without whom this book would not have been possible.
We would also like to thank Prof. Binghe Wang who got this book included in the important collection of Wiley book series on drug discovery and development, which he is editing.

We also appreciate the editorial assistance and advice rendered with patience by Jonathan Rose and Lauren Hilger at John Wiley & Sons during the making of this book.

Montpellier, France

Florence, Italy

February 2009

Jean-Yves Winum

Claudiu T. Supuran

The editors, Dr. Jean-Yves Winum and Dr. Claudiu T. Supuran (Florence, Zaza restaurant)
CONTRIBUTORS

Mirko Altenkämper, Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg-Lahn, Germany

Vincenzo Alterio, Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy

Montserrat Andújar-Sánchez, Departamento Química Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento s/n Almería, 04120, Spain

Monika Barathova, Institute of Virology, Centre of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic

Youngjoo Byun, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21212, USA

Ana Cámara-Artigas, Departamento Química Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento s/n Almería, 04120, Spain

Mauro Carcelli, Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy

Joseph R. Casey, Membrane Protein Research Group, Departments of Physiology, University of Alberta, Edmonton, Canada T6G 2H7; Membrane Protein Research Group, Departments of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7

Alessandro Cecchi, Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Richard I. Christopherson, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia

Laura Ciani, Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Katia D’Ambrosio, Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy

Giuseppina De Simone, Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy
CONTRIBUTORS

Anna Di Fiore, Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy

Jean-Michel Dogné, Drug Design and Discovery Center, FUNDP, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium

Johannes A. Eble, Center for Molecular Medicine, Department Vascular Matrix Biology, Excellence Cluster Cardio-Pulmonary System, Frankfurt University Hospital, Frankfurt am Main, Germany

James G. Ferry, Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802-4500, USA

Paul W. Finn, InhibOx Limited, Pembroke House, 36-37 Pembroke Street, Oxford OX1 1BP, UK

J. Mitchell Guss, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2042, Australia

Rebecca A. Hall, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK

Mika Hilvo, Institute of Medical Technology and School of Medicine, University of Tampere and Tampere University Hospital, Biokatu 6, 33014 University of Tampere, Finland

Marc A. Ilies, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA

Alessio Innocenti, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Room 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Vicente Jara-Pérez, Departamento Química Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento s/n Almería, 04120, Spain

Danielle E. Johnson, Membrane Protein Research Group, Departments of Physiology, University of Alberta, Edmonton, Canada T6G 2H7

Pascale Joseph, Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France

Stephan Köhler, Centre d’Etudes d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR 5236 CNRS-UM1-UM2, Université Montpellier II, cc100, Place E. Bataillon, 34095 Montpellier, France

Juraj Kopacek, Institute of Virology, Centre of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic

Jerapan Krungkrai, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
CONTRIBUTORS

Sudaratana R. Krungkrai, Unit of Biochemistry, Department of Medical Science, Faculty of Science, Rangsit University, Paholyothin Road, Patumthani 12000, Thailand

Mihwa Lee, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia

Shawn E. Lupold, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21212, USA

Megan J. Maher, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2042, Australia

Alfonso Maresca, Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, Room 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy

Adriano Martinelli, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy

Bernard Masereel, Drug Design and Discovery Center, FUNDP, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium

Antonio Mastrolorenzo, Dipartimento di Scienze Dermatologiche, Università degli Studi di Firenze, Villa Basilewsky, Via Lorenzo Magnifico 104, 50129 Firenze, Italy

Ronnie C. Mease, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21212, USA

Francesco Mincione, U.O. Oculistica Az. USL 3, Val di Nievole, Ospedale di Pescia, Pescia, Italy

Jean-Louis Montero, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France

Fritz. A. Mühlenschlegel, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; East Kent Hospitals NHS Trust Clinical Microbiology Service, Ashford, Kent, TN24 0LZ, UK

Hideaki Nagase, Department of Matrix Biology, The Kennedy Institute of Rheumatology Division, Imperial College London, London W6 8LH, UK

Nouri Neamati, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 304, Los Angeles, CA 90089, USA

Isao Nishimori, Department of Gastroenterology, Kochi Medical School, Nankoku, Kochi 783-8505, Japan

Elisa Nuti, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
Uta-Maria Ohndorf, Department of Physiological Chemistry, Ruhr-University Bochum, MA2/141, 44801 Bochum, Germany

Regina Ortmann, Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg-Lahn, Germany

Seppo Parkkila, Institute of Medical Technology and School of Medicine, University of Tampere and Tampere University Hospital, Biokatu 6, 33014 University of Tampere, Finland

Jaromir Pastorek, Institute of Virology, Centre of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic

Silvia Pastorekova, Institute of Virology, Centre of Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic

Martin G. Pomper, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, MD 21212, USA

Sandra Ristori, Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Dominga Rogolino, Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, V.le Usberti 17/A, Campus Universitario, 43100 Parma, Italy

Armando Rossello, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy

Eladio F. Sanchez, Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil; Post-Graduate Program, Hospital Santa Casa, Belo Horizonte, Brazil

M. Amélia Santos, Centro de Química Estrutural, Instituto Superior Técnico-UTL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Christine Schlicker, Department of Physiological Chemistry, Ruhr-University Bochum, MA2/141, 44801 Bochum, Germany

Martin Schlitzer, Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg-Lahn, Germany

Andrea Scozzafava, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Room 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy

Mario Sechi, Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy

Clemens Steegborn, Department of Physiological Chemistry, Ruhr-University Bochum, MA2/141, 44801 Bochum, Germany
Claudiu T. Supuran, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Room 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy

Hiroaki Takeuchi, Department of Laboratory Medicine, Kochi Medical School, Nankoku, Kochi 783-8505, Japan

Claudia Temperini, Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Anne Thiry, Drug Design and Discovery Center, FUNDP, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium

Tiziano Tuccinardi, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy

François Turtaut, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France

Robert Visse, Department of Matrix Biology, The Kennedy Institute of Rheumatology Division, Imperial College London, London W6 8LH, UK

Daniela Vullo, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Room 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy

Kunihiko Watanabe, Laboratory of Applied Microbiology, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan

Jean-Yves Winum, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM1-UM2 Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex, France
PART I

INTRODUCTION
1.1 INTRODUCTION

Drug target is an old concept that was suggested at the end of the nineteenth and the beginning of the twentieth century by Ehrlich and Langley who developed the idea that compounds display biological activity by binding to cellular constituents.\(^1\)

Commonly, most of the drug targets can be defined as human genome-derived proteins (or proteins belonging to pathogenic organisms) that undergo a selective interaction with compounds administered to treat or diagnose a disease.\(^2\) Target identification and validation constitute the most important steps in the process of drug discovery. At present, there is an enormous interest in identifying and validating "druggable" targets in the human proteome and applying structure-based drug design to discover new therapies for important human diseases. The human genome is a huge reservoir of putative drug targets, and its sequencing has allowed identification of about 8000 targets of pharmacological interest. Nevertheless, for all classes of approved therapeutic drugs, around 300 targets have been disclosed with increasing frequency: 270 being encoded by the human genome and the remaining belonging to pathogenic organisms.\(^3,4\) Several promising targets for drug intervention have been revealed in recent years, and their knowledge is helpful for molecular dissection of the mechanism of action of drugs and for predicting features that guide new drug design and the search for new targets.
According to Imming et al., drug targets can be divided into several categories: (i) enzymes, (ii) substrates, metabolites, and proteins, (iii) receptors, (iv) ion channels, (v) transport proteins, (vi) DNA/RNA and the ribosome, (vii) targets for monoclonal antibodies, (viii) various physicochemical mechanisms, and (ix) unknown mechanisms of action.

Among these different classes of drug targets, enzymes have long been considered valuable drug targets for the treatment of major human diseases, as several thousands of enzymes are encoded in the human genome, and they play a key role in virtually every physiological/pathological process. At present, at least 66 human enzymes and 20 bacterial, viral, fungal, or parasite enzymes are targets of approved drugs, for example, up to 40% of the known drug targets. Enzymes containing metals (metalloenzymes) are of increasing interest and importance, as the genetic consequences of metalloprotein regulation become better understood. The largest category of metalloproteins is constituted by zinc enzymes, with more than 300 representatives presently known, covering all major six enzyme classes established by the International Union of Biochemistry (i.e., oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases). Over the past few years, substantial evidence has been accumulated implicating the zinc enzymes in the pathophysiology and pathogenesis of a variety of human disorders ranging from infections to cancer. The relevance of zinc metalloproteins to biomedical sciences has increased much in the past few years, and modulation of their activity with small-molecule drugs, designed to interact with a clearly defined ligand binding site, constitutes a challenging area in drug design and discovery. Furthermore, the availability of different high-resolution X-ray crystal structures of such enzymes and of their complexes with substrates and/or inhibitors has provided a wealth of information with a profound effect on the way we understand their biological functions.

In this chapter, we present an overview of the role of zinc in biological systems and explain why zinc proteins constitute promising targets for drug intervention.

1.2 IMPORTANCE OF ZINC IN BIOLOGICAL SYSTEMS: STRUCTURAL, REGULATORY, AND CATALYTIC ROLES

Among the transition and group II elements, zinc is the second most abundant metal, after iron, in all biological systems including microorganisms, plants, and animals. It is stable as dication (Zn$^{2+}$), has Lewis acid properties (it can accept a pair of electrons), and lacks redox activity, as it possesses a full d-shell d10 orbital. This ubiquitous element is considered an essential, nontoxic micronutrient, and its several biochemical roles regarding the structure and function of proteins, including enzymes, transcription factors, hormonal receptor sites, and biological membranes, have been recognized. Zn(II) is highly regulated under normal physiological conditions, as this metal ion plays a key role in a wide variety of processes such as DNA and RNA synthesis, transmission of the genetic message, growth and development, signal transduction, apoptosis, brain and immune function, lipid metabolism, and so on.
In addition, the zinc ion is also closely involved in intracellular signaling and neuromodulation functions.7,8

Physiologically, approximately 98% of the total zinc in an organism is found within the cell (40% in the nucleus and 50% in cytoplasm, organelles, and specialized vesicles), while the remaining is found in the cell membrane.7,9 The total zinc concentration in eukaryotic cells was reported to be in the high micromolar range, with a concentration around 200 \(\mu\text{M}.10\) Furthermore, zinc deficiency is detrimental in many aspects to the normal function of the organism, with notable effects on growth and immune functions.7 The cytosolic concentration of free \(\text{Zn}^{2+}\) is very low and can be estimated in the subfemtomolar range, but it increases under oxidative stress conditions.11

At the molecular level, the intracellular \(\text{Zn}^{2+}\) is most often tightly bound to proteins considered an essential cofactor for hundreds of enzymes and thousands of metabolic and regulatory proteins, fulfilling both structural and catalytic roles.

1.2.1 The Structural Role of Zinc

Zinc plays an important role in the structure of proteins and cell membranes. In such structural site, it can be found either as a single metal ion or as part of a cluster of two or more ions, being coordinated only by amino acid residues with no bound solvent molecule(s). Thus, the metal ion ensures an essential role in the stabilization of the protein structure by creating or maintaining secondary/tertiary structural elements in the same manner as a disulfide bridge.12 It can induce the correct folding of protein sequences as zinc fingers, zinc twists, or zinc clusters in numerous regulatory proteins and hormone receptors, contributing to the overall stability of these domains.13 Zinc fingers are structurally diverse and are present in proteins that perform a broad range of functions in various cellular processes. The biological functions of zinc-containing proteins strongly depend on the zinc ion, which ensures integrity and stability and is critical for binding to DNA.13 These structure-stabilizing motifs are as diverse as their functions and are associated with protein–nucleic acid recognition as well as protein–protein interactions.14,15 The zinc ion may also be involved in the maintenance of the structure of chromatin and biomembranes, as it plays a crucial role in the regulation of their functions.14

The biological function of zinc is governed by the composition of its flexible coordination sphere. This can be a slightly distorted tetrahedral or a trigonal bipyramidal coordination polyhedron in most metalloproteins, with the metal ion coordinating three or four amino acid residues.8,16–19 Structural sites are typically characterized by a zinc-centered tetrahedral coordination in which the metal ion is fully coordinated by four Cys residues via thiolate group, generally separated from a relatively short sequence in the protein (Fig. 1.1a). Other ligands may also compete with cysteines for binding \(\text{Zn(II)}\); the second most prevalent ligand is His, which is usually found in combination with Cys, forming structurally related “zinc finger” motifs (Fig. 1.1b).16–19 Examples of non-Cys structural zinc site have also been reported, apart from the catalytic zinc site in matrix metalloproteinase (MMP) class

\textcopyright \text{Dunia Science Publishing Co., Ltd. 2021
of enzymes, with combinations of His and Asp residues coordinating the metal ion (Fig. 1.1c).

Structural zinc sites have important implications for the functioning of metalloproteins. By stabilizing and even inducing the local folding of protein subdomains in the immediate neighborhood of the metal site, one or more amino acid side chains can be orientated toward the active site, thus influencing the enzyme activity by affecting the chemical environment of the active center and/or by influencing the alignment of active site residues for catalysis. 16,17

Besides structural zinc sites involved in protein functions, a number of protein interface zinc sites can be defined, where the zinc ion bridges proteins or their subunits, thus playing an important role in the organization of the quaternary structure and/or active site of the protein. 16,17,20,21 In these structural sites, zinc ions bridge the interfaces of proteins via ligands provided by different polypeptide chains and can cross-link the same protein leading to homodimers/trimers or tetramers. The link of two different proteins through such intermolecular ligands has also been observed. In such cases, zinc ligation is assumed by coordinating not only residues such as His, Glu, and Asp but also Cys, with two amino acid ligands supplied by both protein moieties or three amino acid ligands coming from one protein backbone and one ligand from another protein domain. The resulting protein interface zinc binding sites can function as catalytic, cocatalytic, or structural sites, playing a key role in transduction pathways that regulate a host of cellular functions. 16–21

1.2.2 Catalytic and Cocatalytic Role of Zinc

In catalytic sites, zinc ions participate directly in the catalytic process and generally exhibit a distorted tetrahedral geometry with only three O/N/S ligands bound to the zinc ion, the fourth ligand being a water molecule that is an activated nucleophile for the catalytic process. The coordination number 5 can also be encountered for Zn(II) ions, with a trigonal bipyramidal geometry of the metal center. The zinc ion is essential
for catalytic activity of more than 300 enzymes and is located at the core of the enzyme active site, participating directly in the catalytic mechanism through interaction with substrate molecules undergoing the transformation. The most common coordination feature of Zn(II) in catalytic sites is dominated by histidine side chains coordinating the metal ion, through interaction with the Né atom of the imidazole ring. Other coordinated amino acid residues are Glu, Asp, and Cys. Due to the amphoteric properties of Zn$^{2+}$, a water molecule always participates in the coordination sphere as a fourth or fifth ligand. Catalytic zinc binding sites of some representative metalloenzymes are illustrated in Fig. 1.2, where the ligands (L) are three His residues for the lyases carbonic anhydrases (CAs) and two His residues for the hydrolase carboxypeptidase. The catalytic zinc site of alcohol dehydrogenase is the only one known so far where there is only one His residue bound to the metal ion, being also unique as two cysteine residues participate in the coordination.

This zinc-bound water molecule is crucial for the catalysis promoted by the metal center, as it can be either involved in the catalytic process as hydroxide ion or activated via polarizing effect of the neighboring amino acids of the active site, acting as a nucleophile per se.16,17 Moreover, H$_2$O can be displaced by the substrate (S) or expanded upon interaction with the substrate (Fig. 1.3). The presence of water molecules in the coordination sphere is usually a distinguishing feature that allows to differentiate a catalytic zinc site from a structural one.12
Cocatalytic zinc sites can also be distinguished and are characteristic of multi-zinc-containing enzymes, with two or three metal ions in proximity, with two of them bridged by a side chain moiety of a single amino acid residue, such as Asp, Glu, or His, and sometimes a water molecule. Asp and His are preferred amino acids for these sites. No Cys ligands are found in such sites. Typically, the metal ions are separated by a short distance (around 3 Å) and bridged by at least one common ligand, frequently a water molecule or a carboxylate ligand of those mentioned above. The zinc ion can be bridged with another zinc ion or with another metal ion, such as Cu(II), for example, in Cu–Zn superoxide dismutases (SOD).

In the past decade, there has been a great expansion in our knowledge of the role of metalloenzymes in the physiopathology of several diseases. Catalytic zinc sites provide convenient targets for drug intervention and the design and development of small-molecule drugs that can coordinate directly to the metal, displacing the zinc water in the active site and inhibiting the enzymes. This challenging research area has been extensively dealt with in this book.

1.3 Zinc Metalloproteins as Drug Targets

1.3.1 Targeting Human Zinc Metalloenzymes

Since the identification of the first metalloenzyme, carbonic anhydrase, by Keilin and Mann in 1941, more than 300 different enzymes requiring zinc as essential cofactor have been identified, showing their diverse and important physiological functions.
These enzymes are considered to be very attractive targets for drug therapy, and their inhibitors are included in the armamentarium of modern medicine against human diseases such as cardiovascular, neurological, infectious, and metabolic diseases, as well as cancer.\(^5,6\)

Considering the importance and the diversity of zinc-containing enzymes, this book will focus on the zinc enzymes that are relevant for biomedical applications due to their well-known role in life-threatening diseases. For example, the two most investigated metalloproteins that will be considered in detail in this book are the carbonic anhydrases (dealt with in Part II) and the matrix metalloproteinases (dealt with in Part III).

Carbonic anhydrases (EC 4.2.1.1) that belong to the lyase family are ubiquitous zinc enzymes present in prokaryotes and eukaryotes, all over the phylogenetic tree. These are efficient catalysts for the hydration of carbon dioxide to bicarbonate and protons, playing crucial physiological/pathological roles in acid–base homeostasis, secretion of electrolytes, transport of ions, biosynthetic reactions, and tumorigenesis. These enzymes are of clinical relevance as some isoforms among the 15 known in humans are established drug targets, with many inhibitors that have been reported and developed as diuretics, antiglaucoma, anticancer, and antiobesity agents, or for the management of a variety of neurological disorders, including epilepsy and altitude disease.\(^23,24\) Furthermore, a clear connection has recently been found between CA inhibition and lipogenesis (thus, CA inhibitors might be used as antiobesity agents) as well as tumorigenesis (antitumor drugs/diagnostic tools).\(^23,24\) Thus, Chapters 2–22 will be dedicated not only to this class of enzymes and their inhibitors/activators from mammals (\textit{Homo sapiens} being the most investigated one) but also to the various CAs recently characterized from many bacteria, archaea, protozoa, fungi, yeasts, and nematode species. Many such enzymes are now fully characterized kinetically, and their inhibition/activation studies on many classes of compounds reported, thus constituting an important starting point for the rational drug design of inhibitors with clinical applications.\(^23,24\) Such research is very dynamic nowadays, and the near future may see the emergence of novel therapeutic agents targeting such enzymes.

Another essential class of zinc metalloproteins that will be taken into consideration is the superfamily of zinc endopeptidases, MMPs and ADAMs (a disintegrin and matrix metalloproteinase domain), which are dealt with in Chapters 23–27. MMPs are zinc endopeptidases that degrade both matrix and nonmatrix proteins. At least 23 MMPs are known in humans where they play an important role in morphogenesis and in a wide range of processes including tissue repair and remodeling. Their abnormal expression contributes to pathological processes, including arthritis, cancer, and cardiac and central nervous system diseases, and inhibition of MMPs has widely been sought as a strategy in the intervention of these disease processes.\(^5,6,25,26\) A large number of MMP/ADAM inhibitors showing selectivity for the various members of this superfamily have been reported in the past few years holding considerable promises mainly in the anticancer and cardiovascular therapy.

Other zinc metalloenzymes of medical relevance, such as angiotensin-converting enzyme (ACE), histone deacetylase, prostate-specific membrane antigen (PSMA), and protein farnesyltransferase, among others, have already demonstrated a crucial
therapeutic potential in various pathological, especially in cancer, neurodegenerative, and inflammatory diseases, and they are reviewed in Chapters 32–36. A special mention should be made of HIV integrase, which is a metalloenzyme containing zinc, (Chapter 37), but Zn(II) is not involved in the catalytic cycle (instead, it seems that Mg(II) is present at the active site). Considering the great importance that the treatment of HIV infection has nowadays gained and the fact that HIV integrase inhibitors were approved for clinical use in 2008, after a successful saga of research and development of more than 15 years, we decided to dedicate a chapter to this interesting zinc enzyme that is in fact not a real zinc enzyme. This is an exception, since, as the title mentions, the main focus of this book is the inhibition of zinc enzymes in which Zn(II) clearly has a catalytic role. Another very recent and quite promising antiviral target is constituted by the APOBEC3F/G family of enzymes that will be dealt with in Chapter 40.

1.3.2 Targeting Bacterial Zinc Metalloenzymes

Infectious diseases still remain the main cause of human deaths worldwide. The emergence and spread of pathogenic bacterial strains resistant to most classes of clinically used antibiotics have created the need for the development of such novel therapeutic agents as possessing a different mechanism of action. Development of new anti-infective agents with a novel mode of action and lacking cross-resistance to the existing drugs is a strong imperative of biomedical research of early twenty-first century, and a highly unaccomplished task until now. In the past 10 years, bacterial genome analysis allowed to define new essential bacterial genes and provided many details concerning the structure of bacterial proteins that play an important role in pathogenesis, with many such prokaryotic zinc metalloenzymes being identified. Metalloproteins that are essential for bacterial growth and are not required by mammalian cells constitute potential targets for antimicrobial drugs and form the basis for future therapies. Several of these orphan (for the moment) targets, such as bacterial proteases, botulinum, tetanus and anthrax lethal factors (LAs), clostridial collagenases, and other bacterial proteases, will be dealt with in Chapters 28–31.

Characterization of many specific as well as ubiquitous proteases in both Gram-positive as well as Gram-negative pathogens has allowed the development of different classes of specific nanomolar-range inhibitors for bacterial proteases such as *Clostridium histolyticum* collagenase, *Botulinum* neurotoxin, and *Tetanus* neurotoxin. Moreover, a number of approaches have been taken to identify inhibitors of the zinc-dependent metalloproteinase lethal factor, a critical component of anthrax toxin and an important potential target for small-molecule drugs.

Identification of zinc metalloenzymes from bacterial genomes has allowed identification of new potential targets for the development of anti-infective agents. This strategy, which has already demonstrated promising results, constitutes a challenging area, considering all the possible targets available in the zinc metalloprotein family with potential therapeutic applications.

Several other chapters of the book deal with zinc enzymes that are just beginning to be investigated in more detail, such as P-III metalloprotease from a highly poisonous
snake (Chapter 33), the histidinol dehydrogenases (which may constitute an interesting class of antibacterials, Chapter 38), or the dihydroorotase inhibitors (with potential for developing antimalarials, Chapter 39).

It is thus clear that the wealth of genomic, structural, biochemical, and synthetic data that has recently emerged in biomedical research of zinc enzymes and their inhibition enables us to dedicate this book to these fascinating fields. Although we clearly understand that due to the vastness of the field, it is not possible to deal with all important enzymes here, we have tried to make a comprehensive review of the literature data for the most relevant representatives, for their inhibitors, and for their biomedical applications.

REFERENCES

