CHEMICAL SENSORS
AND BIOSENSORS
Analytical Techniques in the Sciences (AnTS)

Series Editor: David J. Ando, Consultant, Dartford, Kent, UK

A series of open learning/distance learning books which covers all of the major analytical techniques and their application in the most important areas of physical, life and materials science.

Titles Available in the Series

Analytical Instrumentation: Performance Characteristics and Quality
Graham Currell, University of the West of England, Bristol, UK

Fundamentals of Electroanalytical Chemistry
Paul M. S. Monk, Manchester Metropolitan University, Manchester, UK

Introduction to Environmental Analysis
Roger N. Reeve, University of Sunderland, UK

Polymer Analysis
Barbara H. Stuart, University of Technology, Sydney, Australia

Chemical Sensors and Biosensors
Brian R. Eggins, University of Ulster at Jordanstown, Northern Ireland, UK

Forthcoming Titles

Analysis of Controlled Substances
Michael D. Cole, Anglia Polytechnic University, Cambridge, UK

Liquid Chromatography–Mass Spectrometry: An Introduction
Robert E. Ardrey, University of Huddersfield, UK
To Chrissie and Rosanne
Contents

Series Preface xv
Preface xvii
Acronyms, Abbreviations and Symbols xix
About the Author xxiii

1 Introduction 1
 1.1 Introduction to Sensors 1
 1.1.1 What are Sensors? 1
 1.1.2 The Nose as a Sensor 3
 1.2 Sensors and Biosensors – Definitions 4
 1.3 Aspects of Sensors 5
 1.3.1 Recognition Elements 5
 1.3.2 Transducers – the Detector Device 5
 1.3.3 Methods of Immobilization 6
 1.3.4 Performance Factors 7
 1.3.5 Areas of Application 7

2 Transduction Elements 11
 2.1 Electrochemical Transducers – Introduction 12
 2.2 Potentiometry and Ion-Selective Electrodes: The Nernst Equation 12
 2.2.1 Cells and Electrodes 12
 2.2.2 Reference Electrodes 16
 2.2.3 Quantitative Relationships: The Nernst Equation 18
3.4 Molecular Recognition – Spectroscopic Recognition
3.4.1 Introduction 87
3.4.2 Infrared Spectroscopy – Molecular 88
3.4.3 Ultraviolet Spectroscopy – Less Selective 88
3.4.4 Nuclear Magnetic Resonance Spectroscopy – Needs Interpretation 88
3.4.5 Mass Spectrometry 88
3.5 Molecular Recognition – Biological Recognition Agents 89
3.5.1 Introduction 89
3.5.2 Enzymes 90
3.5.3 Tissue Materials 92
3.5.4 Micro-Organisms 94
3.5.5 Mitochondria 94
3.5.6 Antibodies 94
3.5.7 Nucleic Acids 96
3.5.8 Receptors 97
3.6 Immobilization of Biological Components 98
3.6.1 Introduction 98
3.6.2 Adsorption 100
3.6.3 Microencapsulation 100
3.6.4 Entrapment 101
3.6.5 Cross-Linking 101
3.6.6 Covalent Bonding 102

Further Reading 106

4 Performance Factors 107
4.1 Introduction 107
4.2 Selectivity 108
4.2.1 Ion-Selective Electrodes 108
4.2.2 Enzymes 110
4.2.3 Antibodies 110
4.2.4 Receptors 110
4.2.5 Others 111
4.3 Sensitivity 111
4.3.1 Range, Linear Range and Detection Limits 111
4.4 Time Factors 113
4.4.1 Response Times 113
4.4.2 Recovery Times 114
4.4.3 Lifetimes 114
4.5 Precision, Accuracy and Repeatability 115
4.6 Different Biomaterials 117
Chemical Sensors and Biosensors

4.7 Different Transducers
 4.7.1 Urea Biosensors
 4.7.2 Amino Acid Biosensors
 4.7.3 Glucose Biosensors
 4.7.4 Uric Acid

4.8 Some Factors Affecting the Performance of Sensors
 4.8.1 Amount of Enzyme
 4.8.2 Immobilization Method
 4.8.3 pH of Buffer

Further Reading

5 Electrochemical Sensors and Biosensors

5.1 Potentiometric Sensors – Ion-Selective Electrodes
 5.1.1 Concentrations and Activities
 5.1.2 Calibration Graphs
 5.1.3 Examples of Ion-Selective Electrodes
 5.1.4 Gas Sensors – Gas-Sensing Electrodes

5.2 Potentiometric Biosensors
 5.2.1 pH-Linked
 5.2.2 Ammonia-Linked
 5.2.3 Carbon Dioxide-Linked
 5.2.4 Iodine-Selective
 5.2.5 Silver Sulfide-Linked

5.3 Amperometric Sensors
 5.3.1 Direct Electrolytic Methods
 5.3.2 The Three Generations of Biosensors
 5.3.3 First Generation – The Oxygen Electrode
 5.3.4 Second Generation – Mediators
 5.3.5 Third Generation – Directly Coupled Enzyme Electrodes
 5.3.6 NADH/NAD^+
 5.3.7 Examples of Amperometric Biosensors
 5.3.8 Amperometric Gas Sensors

5.4 Conductometric Sensors and Biosensors
 5.4.1 Chemiresistors
 5.4.2 Biosensors Based on Chemiresistors
 5.4.3 Semiconducting Oxide Sensors

5.5 Applications of Field-Effect Transistor Sensors
 5.5.1 Chemically Sensitive Field-Effect Transistors (CHEMFETs)
5.5.2 Ion-Selective Field-Effect Transistors (ISFETs) 166
5.5.3 FET-Based Biosensors (ENFETs) 166
Further Reading 168

6 Photometric Applications 171
6.1 Techniques for Optical Sensors 171
6.1.1 Modes of Operation of Waveguides in Sensors 171
6.1.2 Immobilized Reagents 173
6.2 Visible Absorption Spectroscopy 174
6.2.1 Measurement of pH 174
6.2.2 Measurement of Carbon Dioxide 175
6.2.3 Measurement of Ammonia 175
6.2.4 Examples That Have Been Used in Biosensors 176
6.3 Fluorescent Reagents 176
6.3.1 Fluorescent Reagents for pH Measurements 177
6.3.2 Halides 177
6.3.3 Sodium 177
6.3.4 Potassium 178
6.3.5 Gas Sensors 178
6.4 Indirect Methods Using Competitive Binding 178
6.5 Reflectance Methods – Internal Reflectance Spectroscopy 182
6.5.1 Evanescent Waves 182
6.5.2 Reflectance Methods 183
6.5.3 Attenuated Total Reflectance 185
6.5.4 Total Internal Reflection Fluorescence 186
6.5.5 Surface Plasmon Resonance 187
6.6 Light Scattering Techniques 191
6.6.1 Types of Light Scattering 191
6.6.2 Quasi-Elastic Light Scattering Spectroscopy 192
6.6.3 Photon Correlation Spectroscopy 192
6.6.4 Laser Doppler Velocimetry 193
Further Reading 194

7 Mass-Sensitive and Thermal Sensors 197
7.1 The Piezo-Electric Effect 198
7.1.1 Principles 198
7.1.2 Gas Sensor Applications 198
7.1.3 Biosensor Applications 200
7.1.4 The Quartz Crystal Microbalance 200
7.2 Surface Acoustic Waves
7.2.1 Plate Wave Mode
7.2.2 Evanescent Wave Mode
7.2.3 Lamb Mode
7.2.4 Thickness Shear Mode
7.3 Thermal Sensors
7.3.1 Thermistors
7.3.2 Catalytic Gas Sensors
7.3.3 Thermal Conductivity Devices

Further Reading

8 Specific Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Determination of Glucose in Blood – Amperometric Biosensor</td>
<td>214</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Survey of Biosensor Methods for the Determination of Glucose</td>
<td>214</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Aim</td>
<td>214</td>
</tr>
<tr>
<td>8.2</td>
<td>Determination of Nanogram Levels of Copper(i) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent</td>
<td>217</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Background to Stripping Voltammetry – Anodic and Cathodic</td>
<td>217</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Aim</td>
<td>219</td>
</tr>
<tr>
<td>8.3</td>
<td>Determination of Several Ions Simultaneously – ‘The Laboratory on a Chip’</td>
<td>220</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Chemiresistors</td>
<td>220</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Sensor Arrays and ‘Smart’ Sensors</td>
<td>221</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Background to Ion-Selective Field-Effect Transistors</td>
<td>222</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Aim</td>
<td>223</td>
</tr>
<tr>
<td>8.4</td>
<td>Determination of Attomole Levels of a Trinitrotoluene–Antibody Complex with a Luminescent Transducer</td>
<td>224</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Background to Immuno–Luminescent Assays</td>
<td>224</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Aim</td>
<td>224</td>
</tr>
<tr>
<td>8.5</td>
<td>Determination of Flavanols in Beers</td>
<td>227</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Background</td>
<td>227</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Aim</td>
<td>228</td>
</tr>
</tbody>
</table>

Further Reading

213
Contents

Responses to Self-Assessment Questions 233
Bibliography 251
Glossary of Terms 253
SI Units and Physical Constants 259
Periodic Table 263
Index 265
There has been a rapid expansion in the provision of further education in recent years, which has brought with it the need to provide more flexible methods of teaching in order to satisfy the requirements of an increasingly more diverse type of student. In this respect, the open learning approach has proved to be a valuable and effective teaching method, in particular for those students who for a variety of reasons cannot pursue full-time traditional courses. As a result, John Wiley & Sons Ltd first published the Analytical Chemistry by Open Learning (ACOL) series of textbooks in the late 1980s. This series, which covers all of the major analytical techniques, rapidly established itself as a valuable teaching resource, providing a convenient and flexible means of studying for those people who, on account of their individual circumstances, were not able to take advantage of more conventional methods of education in this particular subject area.

Following upon the success of the ACOL series, which by its very name is predominately concerned with Analytical Chemistry, the Analytical Techniques in the Sciences (AnTS) series of open learning texts has now been introduced with the aim of providing a broader coverage of the many areas of science in which analytical techniques and methods are now increasingly applied. With this in mind, the AnTS series seeks to provide a range of books which will cover not only the actual techniques themselves, but also those scientific disciplines which have a necessary requirement for analytical characterization methods.

Analytical instrumentation continues to increase in sophistication, and as a consequence, the range of materials that can now be almost routinely analysed has increased accordingly. Books in this series which are concerned with the techniques themselves will reflect such advances in analytical instrumentation, while at the same time providing full and detailed discussions of the fundamental concepts and theories of the particular analytical method being considered. Such books will cover a variety of techniques, including general instrumental analysis, spectroscopy, chromatography, electrophoresis, tandem techniques,
electroanalytical methods, X-ray analysis and other significant topics. In addition, books in the series will include the application of analytical techniques in areas such as environmental science, the life sciences, clinical analysis, food science, forensic analysis, pharmaceutical science, conservation and archaeology, polymer science and general solid-state materials science.

Written by experts in their own particular fields, the books are presented in an easy-to-read, user-friendly style, with each chapter including both learning objectives and summaries of the subject matter being covered. The progress of the reader can be assessed by the use of frequent self-assessment questions (SAQs) and discussion questions (DQs), along with their corresponding reinforcing or remedial responses, which appear regularly throughout the texts. The books are thus eminently suitable both for self-study applications and for forming the basis of industrial company in-house training schemes. Each text also contains a large amount of supplementary material, including bibliographies, lists of acronyms and abbreviations, and tables of SI Units and important physical constants, plus where appropriate, glossaries and references to original literature sources.

It is therefore hoped that this present series of textbooks will prove to be a useful and valuable source of teaching material, both for individual students and for teachers of various science courses.

Dave Ando
Dartford, UK
Preface

This book is derived partly from the author's earlier book, *Biosensors: An Introduction*, originally published in 1996. Much of the same material is used here, although now it is set in the style of an open learning book, following the presentation of the Analytical Chemistry by Open Learning (ACOL) Series and now set in the style of the new Analytical Techniques in the Sciences (AnTS) Series. The scope of the previous book is broadened to cover chemical sensors as well as biosensors.

The original *Biosensors* book evolved out of a lecture course in biosensors (given at the University of Ulster), as there were very few suitable textbooks available at that time. A number of part-time students were unable to attend the formal lectures, but used the *Biosensors* textbook in open learning mode, helped by informal tutorials. These students, on average, performed at least as well in the examinations as the corresponding full-time students.

After an introductory chapter which describes the general idea of sensors, Chapter 2 discusses in some detail different transduction elements, both electrochemical and photometric. Chapter 3 then describes the various sensing elements used to select particular analytes, while Chapter 4 discusses performance factors such as selectivity, sensitivity, range, lifetimes, etc. Chapter 5 next describes in more detail the applications of electrochemistry in sensors and biosensors. Photometric sensors are described in Chapter 6, with mass-sensitive and thermal-sensitive sensors being discussed in Chapter 7. Finally, Chapter 8 gives five case studies of particular applications in more detail.

I would like to thank my colleagues at the University of Ulster in the Biomedical Environmental Sensor Technology (BEST) Centre for their help and encouragement, Professor John Anderson, Professor Jim McLaughlin, Dr Tony Byrne and Dr Eric McAdams (at UU Jordanstown), Professors Dermot Diamond, Johannes Vos and Malcolm Smyth (at Dublin City University), and from The J Fourier University in Grenoble, France, Drs Pascal Mailley and Serge Cosnier.
I would like to acknowledge the indirect inspiration I have received through the work and contacts with Professor George Guillbault at University College, Cork, Professor Anthony Turner at Cranfield University, and not least, Professor Allen Hill of Oxford University, whose lecture inspired my first interest in writing books on biosensors. I must also mention, through the ‘Eirelec Conferences’, Professor Joe Wang from the University of New Mexico, and Professor Allen Bard from the University of Texas at Austin. I would also like to acknowledge the contributions of some of my former students, namely Dr Edward Cummings, Dr Min Zhou, Mr Shane McFadden, Ms Catriona Hickey and Mr Stephen Toft.

I wish particularly to thank David Ando, the Managing Editor of the AnTS Series, for his great help and encouragement in advising and editing the manuscript.

Above all, I thank my wife Chrissie, without whose dedicated support, encouragement and domestic provisions I would never have completed this book.

Brian R. Eggins
University of Ulster at Jordanstown
Acronyms, Abbreviations and Symbols

A
A* analyte analogue
Ab antibody
AC alternating current
Ag antigen
AMP adenosine 5’-monophosphate
AP acid phosphatase; action potential
ATP adenosine triphosphate
ATR attenuated total reflectance
BOD biological oxygen demand
C coulomb
CHEMFET field-effect transistor, with chemically sensing gate
Cp cyclopentadiene
CPE carbon paste electrode
CV cyclic voltammetry
DAC p-dimethylaminocinnamaldehyde
DC direct current
DEAE diethylaminoethyl
DNA deoxyribonucleic acid
DVM digital voltmeter
ECQM electrochemical quartz crystal microbalance
emf electromotive force
ENFET field-effect transistor, with enzyme gate system
EW evanescent wave
FAD flavin–adenine dinucleotide
Fc ferrocene
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET</td>
<td>field-effect transistor</td>
</tr>
<tr>
<td>FIA</td>
<td>flow-injection analysis</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FMH</td>
<td>flavin mononucleotide</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GDH</td>
<td>glucose dehydrogenase</td>
</tr>
<tr>
<td>GOD</td>
<td>glucose oxidase</td>
</tr>
<tr>
<td>HMDE</td>
<td>hanging-mercury-drop electrode</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>id</td>
<td>internal diameter</td>
</tr>
<tr>
<td>IGFET</td>
<td>insulated-gate field-effect transistor</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>IRE</td>
<td>internal reflection element</td>
</tr>
<tr>
<td>ISA</td>
<td>ionic-strength adjuster</td>
</tr>
<tr>
<td>ISE</td>
<td>ion-selective electrode</td>
</tr>
<tr>
<td>ISFET</td>
<td>ion-selective field-effect transistor</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>LDV</td>
<td>laser Doppler velocimetry</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LMO</td>
<td>lactate monooxidase</td>
</tr>
<tr>
<td>LOD</td>
<td>lactate oxidase</td>
</tr>
<tr>
<td>LSV</td>
<td>linear-sweep voltammetry</td>
</tr>
<tr>
<td>M</td>
<td>molarity (mol dm(^{-3}))</td>
</tr>
<tr>
<td>MIS</td>
<td>metal–insulator–semiconductor</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar (10(^{-3}) mol dm(^{-3}))</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>NAD</td>
<td>nicotinamide–adenine dinucleotide</td>
</tr>
<tr>
<td>NAD(^{+})</td>
<td>nicotinamide–adenine dinucleotide (oxidized form)</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide–adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NMP</td>
<td>(N)-methylphenothiazine</td>
</tr>
<tr>
<td>Ox</td>
<td>oxidized species</td>
</tr>
<tr>
<td>PCS</td>
<td>phase correlation spectroscopy</td>
</tr>
<tr>
<td>PO</td>
<td>peroxidase</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPY</td>
<td>polypyrrole</td>
</tr>
<tr>
<td>QCM</td>
<td>quartz crystal microbalance</td>
</tr>
<tr>
<td>QELS</td>
<td>quasi-elastic light scattering spectroscopy</td>
</tr>
<tr>
<td>R</td>
<td>reduced species</td>
</tr>
<tr>
<td>RF</td>
<td>radiofrequency</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SAW</td>
<td>surface acoustic wave</td>
</tr>
</tbody>
</table>
Acronyms, Abbreviations and Symbols

SCE saturated-calomel electrode
SHE standard hydrogen electrode
SI (units) Système International (d'Unités) (International System of Units)
SPE screen-printed electrode
SPR surface plasmon resonance
TCNQ tetracyanoquinodimethane
TIRF total internal reflection fluorescence
TISAB total-ionic-strength adjustment buffer
TNT trinitrotoluene
TTF tetrathiofulvalene
UV ultraviolet
V volt
vis visible

A absorbance
C concentration; capacitance
f frequency
I electric current; intensity (of light)
L conductance
m mass
R resistance; molar gas constant
t time
T thermodynamic temperature
V electric potential

ε extinction coefficient
λ wavelength
ν frequency (of radiation)
About the Author

Brian Eggins

The author was educated at King Edward's (Five Ways) School, Birmingham, and at Gonville and Caius College, Cambridge University (B.A. and M.A.). He then obtained an M.Sc. degree at The University of Manchester Institute of Science and Technology (UMIST), followed by a Ph.D. at Warwick University. He was then a Research Associate at Colorado University, USA for two years. After a brief period in industry and teaching experience at Grimsby College of Technology, he moved to Ulster Polytechnic (now The University of Ulster).

He is now a Reader in Physical and Analytical Chemistry at the University of Ulster. His research interests include electrochemistry and photo-electrochemistry, as well as biosensors. He has supervised 15 research students and is currently involved in three EU-funded research projects involving groups from four European countries, as well as from Israel. He has lectured in Canada, the USA and Europe. He has published over 100 original research papers, plus is author of Chemical Structure and Reactivity, published by Macmillan, Estructura Quimica y Reactividad, published by Ediciones Bellaterra, SA, and Biosensors: An Introduction, published jointly by John Wiley and Sons, Ltd and B.G. Teubner. He is a Fellow of The Royal Society of Chemistry.
Chapter 1
Introduction

Learning Objectives

- To define different types of sensors.
- To list recognition elements.
- To list the transducers used in sensors.
- To learn the methods of attaching recognition elements to transducers.
- To understand the most important performance factors.
- To know three main areas of application.

1.1 Introduction to Sensors

1.1.1 What are Sensors?

DQ 1.1
What is a sensor?

Answer

We have at least five of these, i.e. our noses, our tongues, our ears, our eyes and our fingers. They represent the main types of sensor. In the laboratory, one of the best known types of sensor is the litmus paper test for acids and alkalis, which gives a qualitative indication, by means of a colour reaction, of the presence or absence of an acid. A more precise method of indicating the degree of acidity is the measurement of pH, either by the more extended use of colour reactions in special indicator solutions, or even by simple pH papers. However, the best method
of measuring acidity is the use of the pH meter, which is an electrochemical device giving an electrical response which can be read by a needle moving on a scale or on a digital read-out device or input to a microprocessor.

In such methods, the sensor that responds to the degree of acidity is either a chemical – the dye litmus, or a more complex mixture of chemical dyes in pH indicator solutions – or the glass membrane electrode in the pH meter.

The chemical or electrical response then has to be converted into a signal that we can observe, usually with our eyes. With litmus, this is easy. A colour change is observed, because of the change in the absorbance of visible light by the chemical itself, which is immediately detected by our eyes in a lightened room. In the case of the pH meter, the electrical response (a voltage change) has to be converted, i.e. transduced (= led through), into an observable response – movement of a meter needle or a digital display. The part of the device which carries out this conversion is called a transducer.

We can divide sensors into three types, namely (a) physical sensors for measuring distance, mass, temperature, pressure, etc. (which will not concern us here), (b) chemical sensors which measure chemical substances by chemical or physical responses, and (c) biosensors which measure chemical substances by using a biological sensing element. All of these devices have to be connected to a transducer of some sort, so that a visibly observable response occurs. Chemical sensors and biosensors are generally concerned with sensing and measuring particular chemicals which may or may not be biological themselves. We shall usually refer to such a material as the substrate, although the more general term analyte is sometimes used. Figure 1.1 shows schematically the general arrangement of a sensor.

SAQ 1.1

Draw a labelled diagram of a chemical sensor.

![Figure 1.1 Schematic layout of a (bio)sensor. From Eggins, B. R., Biosensors: An Introduction, Copyright 1996. © John Wiley & Sons Limited. Reproduced with permission.](image-url)
1.1.2 The Nose as a Sensor

One might consider the ears, eyes and fingers to be physical sensors as they detect physical sensations of sound, light and heat, etc., respectively. What we detect with the nose – smells – are in fact small quantities of chemicals. The nose is an extremely sensitive and selective instrument which is very difficult to emulate artificially. It can distinguish between many different chemical substances qualitatively and can give a general idea of ‘quantity’ down to very low detection limits. The chemicals to be detected pass through the olfactory membrane to the olfactory bulbs, which contain biological receptors that sense the substrate. The response is an electrical signal which is transmitted to the brain via the olfactory nerves. The brain then transduces this response into the sensation we know as smell. The tongue operates in a similar way.

Figure 1.2 shows a schematic diagram of the nasal olfactory system, illustrating the comparison with our generalized sensor. The nostrils collect the ‘smell sample’, which is then sensed by the olfactory membrane, i.e. the sensing element. The responses of the olfactory receptors are then converted by the olfactory nerve cell, which is the equivalent of the transducer, into electrical

![Figure 1.2](image)

Figure 1.2 (a) Schematic of a sensor, showing the component parts, i.e. analyte, recognition element, transducer, actuator and measuring device. (b) Analogy with the nose as a sensor (actually a biosensor), in which the olfactory membrane is the biological recognition element, the nerve cell is the transducer, the nerve fibre is the actuator and the brain is the measuring element. From Eggins, B. R., *Biosensors: An Introduction*, Copyright 1996. © John Wiley & Sons Limited. Reproduced with permission.
signals which pass along the nerve fibre to the brain for interpretation. Thus, the brain acts as a microprocessor, turning the signal into a sensation which we call smell.

1.2 Sensors and Biosensors – Definitions

There are sometimes differences of usage for the terms *sensors*, *transducers*, *biosensors* and *actuators*, so it is necessary for us to define how they will be used in this book:

- We will use the term *sensor* to describe the whole device, following the Oxford English Dictionary definition, i.e. *a sensor is a device that detects or measures a physical property and records, indicates or otherwise responds to it.* (This is in contrast to the definition in Chambers Dictionary, quoted by Usher and Keating in their book ‘Sensors and Transducers’.)

- We will define a *transducer* as *a device that converts an observed change (physical or chemical) into a measurable signal.* In chemical sensors, the latter is usually an electronic signal whose magnitude is proportional to the concentration of a specific chemical or set of chemicals.

- The term *actuator* i.e. *put into action,* is sometimes encountered. This is the part of the device which produces the display.

We can think of three types of sensor, i.e. physical, chemical and biosensors.

DQ 1.2

Distinguish between chemical sensors, physical sensors and biosensors.

Answer

Physical sensors are concerned with measuring physical quantities such as length, weight, temperature, pressure, and electricity – for their own sakes. This present book is not concerned with these as such except that the response of a sensor is usually in the form of a physical response. The book by Usher and Keating (see the Bibliography) is actually entirely concerned with physical sensors.

*A chemical sensor is defined in R. W. Catterall’s book (see the Bibliography) as *a device which responds to a particular analyte in a selective way through a chemical reaction and can be used for the qualitative or quantitative determination of the analyte.* Such a sensor is concerned with detecting and measuring a specific chemical substance or set of chemicals.*

Biosensors are really a sub-set of chemical sensors, but are often treated as a topic in their own right. A biosensor can be defined as a