FUNDAMENTALS OF ELECTRO-ANALYTICAL CHEMISTRY

Paul Monk
Manchester Metropolitan University, Manchester, UK
FUNDAMENTALS OF ELECTROANALYTICAL CHEMISTRY
Analytical Techniques in the Sciences (AnTS)

Series Editor: David J. Ando, Consultant, Dartford, Kent, UK

A series of open learning/distance learning books which covers all of the major analytical techniques and their application in the most important areas of physical, life and materials sciences.

Titles Available in the Series

Analytical Instrumentation: Performance Characteristics and Quality
Graham Currell, University of the West of England, Bristol, UK

Fundamentals of Electroanalytical Chemistry
Paul M. S. Monk, Manchester Metropolitan University, Manchester, UK

Forthcoming Titles

Polymer Analysis
Barbara H. Stuart, University of Technology, Sydney, Australia

Environmental Analysis
Roger N. Reeve, University of Sunderland, UK
Contents

Series Preface xi
Preface xiii
Acronyms, Abbreviations and Symbols xv
About the Author xxi

1 Explanatory Foreword 1
 1.1 Electroanalysis 1
 1.2 Nomenclature and Terminology (IUPAC and Non-IUPAC) 3
 1.3 This Book 9
 Reference 10

2 Introductory Overview and Discussion of Experimental Methodology 11
 2.1 Overview of the Differences between Equilibrium and Dynamic Measurements 12
 2.2 The Magnitude of the Current: Rates of Electron Transfer, Mass Transport, and their Implications 17
 2.3 The Implications of Using Diffusive or Convective Control 23
 Reference 24

3 Equilibrium Measurements: ‘Frustrated’ Equilibrium with No Net Electron Transfer 25
 3.1 Introduction: What is ‘Equilibrium’? Concepts of ‘Frustrated’ Equilibrium 26
3.2 Revision: \textit{emf}, Electrode Potentials and the SHE

3.2.1 Terminology and Symbolisms

3.2.2 Reference Electrodes

3.3 The Nernst Equation and its Permutations

3.3.1 Limitations of the Nernst Equation

3.4 Differences between Concentration and Activity

3.4.1 Brief Discourse on Ion–Ion Interactions

3.4.2 Activities

3.4.3 Activity Coefficients

3.4.4 Revision of Debye–Hückel Theory

3.5 Applications Based on Calculations with the Nernst Equation

3.5.1 pH Determination and the pH Electrode

3.5.2 Ion-Selective Electrodes

3.5.3 Potentiometric Determination of Solubility Constants

3.6 Causes and Treatment of Errors

3.6.1 Current Passage through a Cell Causing Internal Compositional Changes

3.6.2 Current Passage through Reference Electrodes

3.6.3 Determination of Concentration when the Mean Ionic Activity Coefficient is Unknown

3.6.4 Cell Design and the Effects of ‘IR Drop’

3.6.5 Additional Sources of Potential Owing to Ionic Transport and Junction Potentials

4 Potentiometry: True Equilibrium and Monitoring Systems with Electron Transfer

4.1 Introduction to Potentiometry

4.1.1 Redox Titrations: End Points and Shapes of Curves

4.1.2 Determination of Equilibrium Constants and Solubility Constants

4.2 Redox Indicators

4.3 Treatment of Errors

4.3.1 Routine Errors

4.3.2 Errors Caused by Low Precision of Volume Determination: Use of Gran Plots

4.3.3 Errors Caused by Poor ISE Selectivity

5 Coulometry

5.1 Introduction to Coulometry and Faraday’s Laws

5.1.1 Faradaic and Non-Faradaic Charge
5.1.2 The Effects of Absorption, Capacitance and the Electrode Double-Layer

5.2 Stripping

5.3 Microelectrodes

5.4 Introduction to Electron Mediation

5.5 Treatment of Errors

6 Analysis by Dynamic Measurement, A: Systems under Diffusion Control

6.1 Experimental Introduction to Dynamic Electrochemistry

6.2 Chronoamperometry: Current Determined with Time

6.2.1 The Nernst Layer ('Depletion' Layer)

6.2.2 The Cottrell Equation

6.3 Polarography at Hg Electrodes

6.3.1 The Polarographic Experiment

6.3.2 Polarography: the Dropping-Mercury Electrode

6.3.3 Treatment of Polarographic Data: Obtaining $E_{1/2}$ and its Use

6.3.4 Determination of Equilibrium Constants: Shifts in $E_{1/2}$ on Complexation

6.4 Linear-Sweep and Cyclic Voltammetry at Solid Electrodes

6.4.1 The Randles-Sevčik Equation

6.4.2 The Effect of Slow Electron Transfer: Semiconducting Electrodes

6.4.3 Quantification of Diffusion Phenomena

6.4.4 Mechanistic Data from Voltammetry

6.5 Improving Sensitivity: Pulse Methods

6.5.1 Normal Pulse Voltammetry

6.5.2 Differential Pulse Voltammetry

6.5.3 Square-Wave Pulse Voltammetry

6.6 Stripping Voltammetry

6.7 The Glucose Sensor: a Worked Example of Voltammetric Analysis

6.8 Causes and Treatment of Errors

6.8.1 Polarographic 'Peaks'

6.8.2 IR Drop: the Luggin Capillary

7 Analysis by Dynamic Measurement, B: Systems under Convection Control

7.1 Introduction to Convective Systems
Fundamentals of Electroanalytical Chemistry

7.2 The Rotated Disc Electrode
 7.2.1 Discussion of the Experiment 197
 7.2.2 The Levich Equation 202
7.3 Flow Cells, Channel Electrodes and Wall-Jet Electrodes
 7.3.1 Flow Cells and Channel Electrodes 210
 7.3.2 The Wall-Jet Electrode 215
7.4 The Rotated Ring-Disc Electrode 218
7.5 Rate Constants of Electron Transfer
 7.5.1 The Tafel Approach to Electrode Kinetics 225
 7.5.2 The Butler–Volmer Approach 226
 7.5.3 Koutecky–Levich Plots and Measurement of the Rates of Electron Transfer 232
7.6 Causes and Treatment of Errors 234
Reference 236

8 Additional Methods

8.1 Spectroelectrochemistry 238
 8.1.1 Introduction: What is Spectroelectrochemistry? 238
 8.1.2 Electrochemical UV–Visible Spectroscopy 239
 8.1.3 Electrochemical EPR Spectroscopy 247
8.2 Electroanalytical Measurements Involving Impedance
 8.2.1 What is Impedance? 253
 8.2.2 Impedances of Real Cells: Quantification of Diffusion Phenomena and the Warburg Impedance 262
8.3 Causes and Treatment of Errors 270
 8.3.1 Discontinuities in an OTE Conductor 270
 8.3.2 Total Internal Reflection in UV–Visible Spectroscopy 270
 8.3.3 Large Absorbances and the Optical Band Edge 271
 8.3.4 Stray EPR Absorptions 273
Reference 274

9 Electrode Preparation

9.1 Preparation and Characterization of Solid Electrode Surfaces 276
 9.1.1 Cleaning Electrode Surfaces 276
 9.1.2 Manufacturing Electrodes 280
 9.1.3 Making Reference Electrodes 284
9.2 Microelectrodes 286
9.3 Screen-Printed Electrodes 287
Reference 288
10 Data Processing

10.1 Simulation of Electrochemical Data 289
 10.1.1 Sample Programs 293
10.2 Simulation Packages 299
10.3 Web-Based Resources 302
References 304

Appendices

1 Named Electroanalysis Equations Used in the Text 305
2 Writing a Cell Schematic 306
3 The Electrode Potential Series (against the SHE) 307

Responses to Self-Assessment Questions 311
Bibliography 329
Glossary of Terms 337
SI Units and Physical Constants 347
Periodic Table 351
Index 353
Series Preface

There has been a rapid expansion in the provision of further education in recent years, which has brought with it the need to provide more flexible methods of teaching in order to satisfy the requirements of an increasingly more diverse type of student. In this respect, the open learning approach has proved to be a valuable and effective teaching method, in particular for those students who for a variety of reasons cannot pursue full-time traditional courses. As a result, John Wiley & Sons Ltd first published the Analytical Chemistry by Open Learning (ACOL) series of textbooks in the late 1980s. This series, which covers all of the major analytical techniques, rapidly established itself as a valuable teaching resource, providing a convenient and flexible means of studying for those people who, on account of their individual circumstances, were not able to take advantage of more conventional methods of education in this particular subject area.

Following upon the success of the ACOL series, which by its very name is predominately concerned with Analytical Chemistry, the Analytical Techniques in the Sciences (AnTS) series of open learning texts has now been introduced with the aim of providing a broader coverage of the many areas of science in which analytical techniques and methods are now increasingly applied. With this in mind, the AnTS series of open learning texts seeks to provide a range of books which will cover not only the actual techniques themselves, but also those scientific disciplines which have a necessary requirement for analytical characterization methods.

Analytical instrumentation continues to increase in sophistication, and as a consequence, the range of materials that can now be almost routinely analysed has increased accordingly. Books in this series which are concerned with the techniques themselves will reflect such advances in analytical instrumentation, while at the same time providing full and detailed discussions of the fundamental concepts and theories of the particular analytical method being considered. Such books will cover a variety of techniques, including general instrumental analysis,
spectroscopy, chromatography, electrophoresis, tandem techniques, electroanalytical methods, X-ray analysis and other significant topics. In addition, books in the series will include the application of analytical techniques in areas such as environmental science, the life sciences, clinical analysis, food science, forensic analysis, pharmaceutical science, conservation and archaeology, polymer science and general solid-state materials science.

Written by experts in their own particular fields, the books are presented in an easy-to-read, user-friendly style, with each chapter including both learning objectives and summaries of the subject matter being covered. The progress of the reader can be assessed by the use of frequent self-assessment questions (SAQs) and discussion questions (DQs), along with their corresponding reinforcing or remedial responses, which appear regularly throughout the texts. The books are thus eminently suitable both for self-study applications and for forming the basis of industrial company in-house training schemes. Each text also contains a large amount of supplementary material, including bibliographies, lists of acronyms and abbreviations, and tables of SI Units and important physical constants, plus where appropriate, glossaries and references to original literature sources.

It is therefore hoped that this present series of textbooks will prove to be a useful and valuable source of teaching material, both for individual students and for teachers of science courses.

Dave Ando
Dartford, UK
Preface

This present book is no more than an introduction to electroanalytical chemistry. It is not a textbook, but is intended for those wanting to learn at a distance, or in the absence of a suitable tutor. Accordingly, the approach taken is that of a series of tutorial questions and worked examples, interspersed with questions for students to attempt in their own time. In no way is this meant to be a definitive text: students who have mastered these topics are recommended to consult the books and articles listed in the Bibliography at the end.

Electroanalysis is a relatively simple topic in concept, so the first few chapters are intended to be extremely straightforward. Some aspects of the later chapters are more challenging in scope but, as students build on the earlier sections, these latter parts should also appear relatively painless.

A word about errors. I have used the phrase 'treatment of errors' fairly liberally. A few of my colleagues take this phrase to mean the statistical manipulation of data once the latter have been obtained. I have followed a different tack, and mean here those errors and faults which can creep into an actual experimental measurement. Indeed, this book is not long enough to describe the actual manipulation of data.

Perhaps I should mention a few of these colleagues. I am delighted to work with such professionals as Dr Brian Wardle and Dr David Johnson of my own Department, namely Chemistry and Materials, at the Manchester Metropolitan University (MMU). They have both read this book in manuscript form from end to end. Additionally, my friends Dr Séamus Higson of the Materials Science Centre, University of Manchester Institute of Science and Technology (UMIST) and Dr Roger Mortimer of the Department of Chemistry, Loughborough University, have also read the entire manuscript. The kind encouragement of these four, together with their perceptive and shrewd comments, have made the preparation of this book much more enjoyable. I also wish to thank Professor Arnold Fogg of Loughborough University and Dr Alan Bottom for their comments within the
context of a stimulating correspondence. I have incorporated just about all of the comments received from these wise men, and I extend my heart-felt thanks to all of them. Nevertheless, all errors remaining are entirely my own.

I also wish to thank Dr Lou Coury and Dr Adrian Bott of Bioanalytical Systems, Inc. for their enthusiasm, and permission to reproduce Figures 6.16, 6.18, 6.19, 10.1 and 10.3. I gladly thank Dr Manfred Rudolph for his description of the DigiSim™ program, Dr Mike Dawson of E G & G for his help concerning the Condecon program, and Dr Keith Dawes of Windsor Scientific for his help, and the permission to reproduce Figure 10.2.

Further thanks are also in order, namely to Professor Derek Pletcher of Southampton University for permission to reproduce Figures 6.12, 6.23 and 6.25 and the first two of the three computer programs presented in Chapter 10, to Elsevier Science for permission to reproduce Figures 7.14, 8.1, 8.5 and 8.16, to The Royal Society of Chemistry for permission to reproduce Figures 7.11, 8.3, 8.6 and 8.7, to Wiley-VCH for permission to reproduce Figure 4.3, and to John Wiley & Sons, Inc. for permission to reproduce Figures 3.12, 4.9, 4.10, 6.7, 6.8 and 6.28, plus the third computer program given in Chapter 10. In addition, I wish to acknowledge the following organizations for permission to reproduce further material used in the text, namely The Electrochemical Society, Inc. for Figure 8.14, Oxford University Press for Figure 7.8, the American Chemical Society for Figure 6.27, and the International Society for Optical Engineering (SPIE) for Figure 6.14.

Finally, I would like to thank John Wiley & Sons Ltd and Dave Ando (Managing Editor of the AnTS Series) for commissioning this book, the second title in this series of texts, my friends who have not seen very much of me over the past year, and not least, my precious wife Jo.

Paul Monk
Manchester Metropolitan University
Acronyms, Abbreviations and Symbols

General

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere (amp)</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>ASV</td>
<td>anodic stripping voltammetry; adsorptive stripping voltammetry</td>
</tr>
<tr>
<td>AU</td>
<td>absorbance unit</td>
</tr>
<tr>
<td>C</td>
<td>coulomb</td>
</tr>
<tr>
<td>CE</td>
<td>counter electrode</td>
</tr>
<tr>
<td>CME</td>
<td>chemically modified electrode</td>
</tr>
<tr>
<td>CSV</td>
<td>cathodic stripping voltammetry</td>
</tr>
<tr>
<td>CT</td>
<td>charge transfer</td>
</tr>
<tr>
<td>CV</td>
<td>cyclic voltammogram</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DME</td>
<td>dropping-mercury electrode</td>
</tr>
<tr>
<td>EIS</td>
<td>electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>ESR</td>
<td>electron spin resonance</td>
</tr>
<tr>
<td>F</td>
<td>farad (unit of capacitance)</td>
</tr>
<tr>
<td>G</td>
<td>gauss</td>
</tr>
<tr>
<td>HMDE</td>
<td>hanging mercury-drop electrode</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ISE</td>
<td>ion-selective electrode</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>LSV</td>
<td>linear-sweep voltammetry</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>MFE</td>
<td>mercury-film electrode</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OTE</td>
<td>optically transparent electrode</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal</td>
</tr>
<tr>
<td>RDE</td>
<td>rotated disc electrode</td>
</tr>
<tr>
<td>RE</td>
<td>reference electrode</td>
</tr>
<tr>
<td>RRDE</td>
<td>rotated ring-disc electrode</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SCE</td>
<td>saturated calomel electrode</td>
</tr>
<tr>
<td>SHE</td>
<td>standard hydrogen electrode</td>
</tr>
<tr>
<td>SI (units)</td>
<td>Système International (d’Unités) (International System of Units)</td>
</tr>
<tr>
<td>STP</td>
<td>standard temperature and pressure</td>
</tr>
<tr>
<td>TIR</td>
<td>total internal reflection</td>
</tr>
<tr>
<td>TISAB</td>
<td>total ionic strength adjustment buffer</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>UV–vis</td>
<td>ultraviolet and visible</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>WE</td>
<td>working electrode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>activity</td>
</tr>
<tr>
<td>A</td>
<td>area</td>
</tr>
<tr>
<td>Abs</td>
<td>absorbance</td>
</tr>
<tr>
<td>B</td>
<td>magnetic field strength (flux density)</td>
</tr>
<tr>
<td>c</td>
<td>concentration of analyte</td>
</tr>
<tr>
<td>(c^\ominus)</td>
<td>standard concentration under standard conditions, i.e. 1 mol per unit volume</td>
</tr>
<tr>
<td>C</td>
<td>capacitance</td>
</tr>
<tr>
<td>D</td>
<td>diffusion coefficient</td>
</tr>
<tr>
<td>e</td>
<td>electronic charge (charge on an electron)</td>
</tr>
<tr>
<td>E</td>
<td>potential; electrode potential; energy</td>
</tr>
<tr>
<td>(E^\ominus)</td>
<td>formal electrode potential</td>
</tr>
<tr>
<td>(E^\ominus_{O,R})</td>
<td>standard electrode potential</td>
</tr>
<tr>
<td>(E^\ominus_{O,R})</td>
<td>electrode potential for the O,R couple under standard conditions</td>
</tr>
<tr>
<td>(E_b)</td>
<td>baseline potential in pulse voltammetry and polarography</td>
</tr>
<tr>
<td>(E_f)</td>
<td>final potential in a voltammogram</td>
</tr>
<tr>
<td>(E_i)</td>
<td>initial potential in a voltammogram</td>
</tr>
<tr>
<td>(E_{in})</td>
<td>electrode potential of a redox indicator</td>
</tr>
<tr>
<td>(E_{O,R})</td>
<td>electrode potential for the O,R couple</td>
</tr>
<tr>
<td>(E_s)</td>
<td>switch potential in cyclic voltammetry</td>
</tr>
<tr>
<td>(E_{1/2})</td>
<td>polarographic half-wave potential</td>
</tr>
<tr>
<td>emf</td>
<td>electromotive force</td>
</tr>
<tr>
<td>f</td>
<td>linear rotation rate</td>
</tr>
</tbody>
</table>
Acronyms, Abbreviations and Symbols

- F: Faraday constant
- G: Gibbs function (Gibbs energy)
- G': Gibbs function (Gibbs energy) at frustrated equilibrium
- G^Θ: standard Gibbs function (Gibbs energy)
- H: enthalpy
- H': enthalpy at frustrated equilibrium
- i: current density
- I: current; ionic strength; intensity of an EPR absorption
- I_{circuit}: current through a circuit
- I_d: diffusion current in polarography
- I_D: current at a disc electrode
- I_K: kinetic current
- I_p: peak current in a voltammogram
- I_R: current at a ring electrode
- j: flux
- k: general constant, e.g. calibration constant
- k_n: rate constant of a chemical reaction (the subscript, where indicated, gives the order of reaction)
- k': rate constant of a pseudo-order reaction
- k_{et}: rate constant of electron transfer
- K: equilibrium constant
- K_S: solubility constant (solubility product)
- l: length; optical path length
- L: inductance; Avogadro constant
- m: mass
- n: number of electrons transferred
- N: collection efficiency at an RRDE
- N_0: RRDE collection efficiency when no homogeneous reaction occurs
- N_k: kinetic collection efficiency at an RRDE
- p: pressure
- p^Θ: SI standard pressure
- q: electric charge density
- Q: electric charge
- r: radial distance from the centre of an electrode’s surface
- R: resistance; molar gas constant
- R_{cell}: resistance of a cell
- s: selectivity coefficient of an ion-selective electrode
- S: entropy; intensity of an EPR signal
- S': entropy at frustrated equilibrium
- t: time; transport number
- T: thermodynamic temperature; optical transmission (transmittance)
- v: velocity
- V: volume; applied potential
Fundamentals of Electroanalytical Chemistry

V_f flow rate of solution
X width coefficient of a channel electrode
z charge on a particle
Z impedance
Z' real component of Z^*
Z'' imaginary component of Z^*
Z^* overall impedance
Z_W Warburg impedance

α transfer coefficient; irreversibility coefficient
γ_\pm mean ionic activity coefficient
δ thickness of Nerst depletion region (layer)
ε extinction coefficient
η overpotential
η_s viscosity
θ phase angle between current and potential in impedance
λ wavelength
Λ ionic conductivity
ν scan rate (‘sweep rate’) in polarography and voltammetry;
 stoichiometric number
ξ extent of reaction
ρ density
σ electronic conductivity
τ time-scale of observation; length of a cycle, e.g. lifetime of a
 dropping-mercury electrode drop
ν kinematic viscosity
ω angular rotation rate
Ω ohm

Standard Electroanalytical Prefixes and Suffixes

a anodic
b cathodic
d disc
et electron transfer
f flow
j junction
lim limiting
p peak
r ring
Chemical Species

bipm 4,4'-bipyridine
bipy 2,2'-bipyridine
cp cyclopentadiene
det diethylenetriamine
DMF N,N-dimethylformamide
DPB diphenyl benzidine
e- electron
EDTA ethylenediaminetetraacetic acid
EtOH ethanol
GC glassy carbon
HV heptyl viologen (1,1'-diheptyl-4,4'-bipyridilium)
ITO indium–tin oxide
M general metal species
MB Methylene Blue
MV methyl viologen (1,1'-dimethyl-4,4'-bipyridilium)
PC propylene carbonate
X general anion species
About the Author

Paul Monk

The author was brought up in Hastings, on England’s south coast, where he attended a local comprehensive school. Despite this education, he achieved entrance to the University of Exeter to read Chemistry. Having obtained a B.Sc. degree and then a doctorate (in 1989) on the electrochemistry of the viologens, he was awarded a fellowship at the University of Aberdeen to study the electrochromism of thin films of tungsten trioxide.

He joined the staff of the Department of Chemistry and Materials, Manchester Metropolitan University in 1991 as a Lecturer in Physical Chemistry. He was promoted to Senior Lecturer in 1998.

He enjoys writing, and is also the author of the books Electrochromism: Fundamentals and Applications and The Viologens, both of these published by John Wiley & Sons.

Paul Monk is married, in which state he is instructed to profess great happiness, and is also a Methodist Local Preacher.
Learning Objectives

- To appreciate that electroanalysis is an analytical tool in which electrochemistry provides the analytical methodology.
- To understand the fundamental differences between potentiometric and amperometric electroanalytical measurements, namely potentiometric measurements are those of the potential made at zero current (i.e. at equilibrium), while amperometric measurements are of the current in response to imposing a perturbing potential (dynamic, i.e. a non-equilibrium measurement).
- To learn the standard nomenclature of electroanalysis.
- To appreciate that while the majority of electroanalytical variables follow the IUPAC system of units, a majority of the common electrochemical equations, if containing variables of length (or units derived from length), will still use the unit of centimetre.
- To appreciate that the fine-detail of electroanalytical nomenclature is important, for example, the way an electrode potential or concentration is written has important implications.
- To notice that the way in which a complicated electrochemical word or term can be split up into its component parts will aid the understanding of its meaning.

1.1 Electroanalysis

Analysts always ask questions such as ‘what is it?’, ‘how much of it is present?’, and sometimes, ‘how fast does it change?’. Electrochemistry is an ideal analytical tool for answering each of these questions – sometimes simultaneously. Here,
<table>
<thead>
<tr>
<th>Feature</th>
<th>Potentiometry</th>
<th>Amperometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property measured</td>
<td>Potential of electrode (at zero current)</td>
<td>Current through an electrode</td>
</tr>
<tr>
<td>Analytical methodology</td>
<td>Quantitative and monitoring</td>
<td>Qualitative and quantitative</td>
</tr>
<tr>
<td>Concentration range</td>
<td>10^{-7} to 1 mol dm^{-3}</td>
<td>Generally 10^{-8} to $10^{-4} \text{ mol dm}^{-3}$, but can be as low as 10^{-15}</td>
</tr>
<tr>
<td>Relative precision</td>
<td>0.1 to 5%</td>
<td>2 to 3%, and lower detection limits</td>
</tr>
<tr>
<td>Particular advantages</td>
<td>Useful for titrating coloured or turbid solutions (and also for direct measurements in these solutions)</td>
<td>Can readily follow kinetics of fast reactions. More versatile than potentiometry for the elucidation of reaction mechanisms</td>
</tr>
<tr>
<td>Major disadvantages</td>
<td>The measured quantity is activity and not concentration</td>
<td>Apparatus can be expensive (but much cheaper than many non-electrochemical alternatives). Measurements sensitive to contaminants Measurements sensitive to dissolved oxygen (although this is not true for square-wave voltammetry)</td>
</tr>
</tbody>
</table>
we will use the word 'electroanalysis' to mean the use of electrochemistry in an analytical context.

In this present book, we will look at the analytical use of two fundamentally different types of electrochemical technique, namely potentiometry and amperometry. The distinctions between the two are outlined in some detail in Chapter 2. For now, we will anticipate and say that a potentiometric technique determines the potential of electrochemical cells – usually at zero current. The potential of the electrode of interest responds (with respect to a standard reference electrode) to changes in the concentration of the species under study. The most common potentiometric methods used by the analyst employ voltmeters, potentiometers or pH meters. Such measurements are generally relatively cheap to perform, but can be slow and tedious unless automated.

An amperometric technique relies on the current passing through a polarizable electrode. The magnitude of the current is in direct proportion to the concentration of the electroanalyte, with the most common amperometric techniques being polarography and voltammetry. The apparatus needed for amperometric measurement tends to be more expensive than those used for potentiometric measurements alone. It should also be noted that amperometric measurements can be overly sensitive to impurities such as gaseous oxygen dissolved in the solution, and to capacitance effects at the electrode. Nevertheless, amperometry is a much more versatile tool than potentiometry.

The differences between potentiometry and amperometry are summarized in Table 1.1. It will be seen that amperometric measurements are generally more precise and more versatile than those made by using potentiometry, so the majority of this book will therefore be concerned with amperometric measurements.

1.2 Nomenclature and Terminology (IUPAC and Non-IUPAC)

The experimental practice of electrochemistry has a long history. For example, more than 200 years have passed since Volta first looked at the twitching of animal tissues in response to the application of an electric impulse. The literature of electrochemistry was huge even before the International Union of Pure and Applied Chemistry (IUPAC) first deliberated in a systematic code of electrochemical symbols in 1953. Accordingly, many of the IUPAC recommendations will not be followed here.

We will now look at each of the major variables in turn.

Redox couple. Two redox states of the same material are termed a 'redox couple', e.g.

\footnote{Strictly speaking, it responds to changes in activity, as defined in Chapter 3.}
\[\text{AgCl}_\text{(s)} + e^- = \text{Ag}_\text{(s)} + \text{Cl}^- \text{(aq)} \]

The electron in this equation will come from (or go to) an electrode if current flows.

Electrode potential. Potentiometric experiments determine potentials. The two components of the redox couple are only together at equilibrium at a single energy specific to the system under study and at the conditions employed. This energy, when expressed as a voltage, is termed the **electrode potential**, \(E \). The 'electrode potential' is also known as the 'redox potential' or 'reduction potential'. Some texts for physicists call \(E \) the 'electrode energy'.

Unless stated otherwise, we normally assume that the solution is aqueous. \(E \) is normally written with a subscript to indicate the two redox states involved. \(E_{\text{Fe}^{2+},\text{Fe}} \), for example, is the electrode potential for the ferrous ion–iron metal system. Note that we expect a different electrode potential if different redox states are involved, so \(E_{\text{Fe}^{2+},\text{Fe}} \neq E_{\text{Fe}^{3+},\text{Fe}} \). It is the usual practice to write the oxidized form of the couple first.

SAQ 1.1

Write symbols for the electrode potential for the following couples:

(a) bromine and bromide;
(b) silver and silver cation;
(c) ferrocene, \(\text{Fe(cp)}_2 \), and the ferrocene radical cation, \(\text{Fe (cp)}_2^{*+} \).

There are several different electrode potentials we shall need to use, for example, \(E \), which is the potential of a half-cell reaction. It is not usually described with any form of superscript, but will have subscripts, as shown above.

\(E^\Theta \) is the **standard electrode potential**, and represents a value of \(E \) measured (or calculated) when all activities are 1, when the applied pressure \(p \) is 1 atmosphere and with all redox materials participating in their standard states. As for \(E \), \(E^\Theta \) should be cited with subscripts to describe the precise composition of the redox couple indicated. Note that \(E^\Theta \) is often written as \(E^0 \), thus explaining why standard electrode potentials are commonly called '\(E \) nought'. The symbol '\(\Theta \)' implies standard conditions i.e. 298 K, \(p^\Theta \) and unit activities throughout.

1 This exposition has been greatly simplified. At equilibrium, the sums of the electrochemical potentials, \(\bar{\mu} \), within each of the two half cells comprising the overall cell are the same, and \(\bar{\mu} \) is related to the chemical potential, \(\mu \), by the relationship \(\bar{\mu} = \mu + nF\phi \). The occurrence of a potential \(E \) at the electrode is a manifestation of the difference in electric field, \(\Delta\phi \) between the electrodes and their respective couples in solution, as a function of their separation distances.

2 The SI unit of pressure is the pascal, Pa. The SI standard pressure is 1 bar (10^5 Pa) and is denoted by the symbol \(p^\Theta \). For historical reasons, the electrochemical standard pressure is taken as being 1 atmosphere of pressure; \(p^\Theta \) for the electroanalyst is therefore 101 325 Pa, a 1% difference from the SI value, which causes negligible differences in \(E^\Theta \).
Related to E^\ominus is the formal electrode potential, $E^{0\prime}$ (as discussed in Chapter 6), which can be called ‘the standard electrode potential at 298 K, p^\ominus and unit concentrations throughout’. The differences between E^\ominus and $E^{0\prime}$ are discussed in Chapter 6.

The electrode potential obtained with linear-sweep polarography, for example, at a dropping-mercury electrode (DME), is different again and is called the half-wave potential, $E_{1/2}$, which is also discussed in Chapter 6.

The phrase ‘electrode potential’ implies a single electrode, but such potentials are in fact determined or calculated from measurements of cells comprising two or more electrodes. This procedure is necessary since it is not possible to measure the energy of a single redox couple at equilibrium:\footnote{While this potential cannot be determined for a single electrode, a potential can be derived if the potential of the other electrode in a cell is defined, i.e. the potential of the standard hydrogen electrode (SHE) is arbitrarily taken as 0.000 V. In this way, a potential scale can then be devised for single electrode potentials – see Section 3.2.} in practice, we have to measure the difference or separation in energy between two (or more) electrodes. This separation is termed the emf, following from the somewhat archaic expression ‘electromotive force’.\footnote{The abbreviation ‘emf’, in upright script, is often used in other textbooks as a ‘direct’, i.e. non-variable, acronym for the electromotive force. Note, however, that in this present text it is used to represent a variable (cell potential) and is therefore shown in italic script.} In other texts, the alternative name E_{cell} is sometimes given to the emf; some texts (rather confusingly) call it just E.

The magnitude of E does not depend on the size of the electrodes – nor does it depend on the material with which the electrode is made, or on the method of measurement. It is therefore an intrinsic quantity.

Current. Amperometric experiments measure current. The current I is the rate at which charge is passed, while the current density is symbolized as i. Current density is defined as the current per unit electrode area A, so we can write the following:

$$i = \frac{I}{A}$$ \hspace{1cm} (1.1)

where current has the unit of the ampere (or ‘amp’, for short).

Note Both area and ampere have the symbol A, but A for ampere is shown in upright script, while A for area is shown as italic – because it’s a variable.

SAQ 1.2

What is the current density if an electrode of area 0.35 cm2 is passing a current of 12 mA?
DQ 1.1

Why use current density at all?

Answer

Current is not measured at equilibrium. Each electroanalytical laboratory will own its own set of electrodes, some large and some small. The current actually measured will be a simple function of the electrode area since charge is passed when electrolyte impinges on an electrode (if it is sufficiently polarized). We see that current is an extrinsic quantity because its value depends on how much ‘something’ we employ during the measurement. In this case, the ‘something’ i.e. the current, relates to the electrode area.

In contrast, current density is intrinsic and does not depend on the electrode area, since, by its definition, the current measured has been adjusted to compensate for differences in area.

In a similar manner to current density, we next distinguish between charge and charge density. The charge that flows is Q, while the charge density, i.e. the charge per unit area, Q/A, is symbolized by q.

Length. It is when we come to units of length that the problems begin. The SI unit of length is the metre, m. Accordingly, the SI unit of concentration is mol m$^{-3}$. Interconversion between concentration in mol m$^{-3}$ and concentration expressed in the more familiar1 units of mol dm$^{-3}$ is simple, i.e.

$$
\text{concentration in mol m}^{-3} = 10^3 \times \text{concentration in mol dm}^{-3}
$$

(1.2)

because there are 1000 cm3 in 1 dm3, and thereby 1000 litres in one cubic metre. We see that concentrations in SI units appear as larger numbers.

SAQ 1.3

11 g of solid KCl are dissolved in 250 cm3 of water. What is the concentration when expressed with the units of mol m$^{-3}$?

It is rare for electrochemists to use SI units in this way, so, like most analysts, they will usually talk in terms of the concentration units that are most convenient. Unfortunately, many of the standard equations encountered in electrochemistry require the concentration unit of mol cm$^{-3}$ (moles per cubic centimetre). The conversion between mol cm$^{-3}$ and the familiar mol dm$^{-3}$ is as follows:

$$
\text{concentration in mol cm}^{-3} = 10^{-3} \times \text{concentration in mol dm}^{-3}
$$

(1.3)

1 Many texts use the symbol ‘M’ for mol dm$^{-1}$. We will not use ‘M’ here in order to emphasize the requirement for interconversion.