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Preface

The main objective of this book is to present all relevant information necessary for RF and
microwave transistor oscillator design including well-known and new theoretical approaches
and practical circuit schematics and designs, as well as to suggest optimum design approaches,
which combine effectively analytic calculations and computer-aided design. This book can
be useful for lecturing to promote the analytical way of thinking and combine effectively
theory and practice of RF and microwave engineering. As often happens, a new result is a
long-forgotten old one. Therefore, not only new results based on new technologies or circuit
schematics are given, but some old ideas, schematics or approaches are also introduced, that
could be very useful in modern practice or could contribute to the development of new ideas
or techniques.

As a result, this book is intended for and can be recommended to:� university-level professors and researchers, as possible reference and well-founded material
for creative research and teaching activity which will contribute to strong background for
graduates and postgraduates students;� R&D staff, to combine the theoretical analysis and practical aspects, including computer-
aided design (CAD) and to provide a sufficient basis for new ideas in theory and practical
circuit techniques;� practising RF designers and engineers, as an anthology of many well-known and new prac-
tical transistor oscillator circuits with detailed descriptions of their operational principles
and applications and clear practical demonstration of theoretical results.

Chapter 1 presents the most commonly used design techniques for analysing nonlinear cir-
cuits, in particular, transistor oscillators. There are several approaches to analyse and design
nonlinear circuits, depending on their main specifications. That means an analysis both in
the time domain to determine transient circuit behaviour and in the frequency domain to
improve power and spectral performances when parasitic effects such as instability and spurious
emission must be eliminated or minimized. Using the time-domain technique, it is relatively
easy to describe a nonlinear circuit with differential equations, which can be solved analytically
in explicit form for only some simple cases. Under the assumption of slowly varying amplitude
and phase, it is possible to obtain the separate truncated first-order differential equations for
the amplitude and phase of the oscillation process from the original second-order nonlinear
differential equation. However, generally it is necessary to use numerical methods. The time-
domain analysis is limited to its inability to operate with the circuit immittance (impedance or

xi
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admittance) parameters as well as the fact that it can be practically applied only for circuits
with lumped parameters or ideal transmission lines. The frequency-domain analysis is less
ambiguous because a relatively complex circuit can often be reduced to one or more sets of
immittances at each harmonic component. For example, using a quasilinear approach, the
nonlinear circuit parameters averaged by the fundamental component allow one to apply a
linear circuit analysis. Advanced modern CAD simulators incorporate both time-domain and
frequency-domain methods as well as optimization techniques to provide all the necessary
design cycles.

Chapter 2 introduces the principles of oscillator design, including start-up and steady-
state operation conditions, basic oscillator configurations using lumped and transmission-line
elements and simplified equation-based oscillator analysis and design techniques. An immit-
tance design approach is introduced and applied to series and parallel feedback oscillators,
including circuit design and simulation aspects. Numerous practical examples of RF and mi-
crowave oscillators using MOSFET, MESFET and bipolar devices, including the descriptions
of their circuit realizations, are given.

Applying dc bias to the active device does not generally result in the negative resistance
condition. This condition has to be induced in these devices and it is determined by the physical
mechanism in the device and chosen circuit topology. The transistor in the oscillator circuits
is mostly represented as the active two-port network, whose operation principle is reflected
through its equivalent circuit. The influence of the circuit and transistor parameters can result
in a hysteresis effect or oscillation instability in practical design. In high-frequency practical
implementation, the presence of the parasitic device and circuit elements can contribute to the
multi-resonant circuits. The possibility of an operation mode with different natural frequen-
cies depends on the value of the coupling coefficient between resonant circuits. Therefore, the
stability conditions for a steady-state single-frequency operation for a multi-resonant circuit,
in general, and two coupled resonant circuits, in particular, are analytically derived. The sev-
eral examples of stability criteria for different single-resonant and double-resonant oscillator
circuits are described and analysed in Chapter 3. In addition, the phase plane method as a qual-
itative method of an analysis of the dynamics of the oscillation systems and a Nyquist stability
criterion are shown and illustrated by several examples of the oscillator circuits described by
second-order differential equations.

Generally, RF and microwave transistor oscillator design is a complex problem. Depending
on the technical requirements, it is necessary to define the configuration of the oscillator
circuit, choose a proper transistor type, evaluate and measure the parameters of the transistor
nonlinear model under small- and large-signal conditions. Finally, an appropriate nonlinear
simulator must be used to simulate the oscillator performance in time and frequency domains.
An oscillator analysis can be based on the two-port network approach to describe the active
device and feedback circuit. In this case, the basic parameters of the transistor equivalent circuit
can be directly measured, or approximated on the basis of experimental data, with sufficient
accuracy across a wide frequency range. However, the values of the external feedback circuit
elements are initially unknown. The process of determining the optimum values of the feedback
and load parameters can be time-consuming and, in a typical case, calls for much simulation.
Consequently, it is convenient to use an analytic method of optimizing oscillator design. This
method should incorporate the explicit expressions for feedback elements and load impedance
in terms of the transistor equivalent circuit elements and its static volt–ampere and voltage–
capacitance characteristics. Chapter 4 presents both the empirical and analytic optimum design
approaches applied to series and parallel feedback oscillators, including circuit design and
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simulation aspects, and high-efficiency design techniques as well. Typical practical examples
of RF and microwave oscillators using MOSFET, MESFET, HEMT, and bipolar devices,
including the descriptions of their circuit configurations, are given.

Chapter 5 describes different oscillator noise models to express a clear relationship between
the resonant circuit and active device noise model parameters. The simple Leeson linear model
for a feedback oscillator, which was derived empirically, is based on the expectations that the
contribution to the real oscillator output spectrum is provided by two basic processes. The
first process is a result of the phase fluctuations due to the additive white noise at frequency
offsets close to the carrier. The second process is a result of the low-frequency fluctuations or
flicker noise up-converted to the carrier region because of the active device nonlinear effects.
The nonlinear Kurokawa analysis based on the sinusoidal representation of the current in the
negative-resistance oscillator extends the oscillator noise model by introducing relationships
between the noise power, stability conditions and amplitude-to-phase conversion. However,
such a noise generation mechanism does not consider the mixing effect from the inherent
nonlinear behaviour of the active device when the current at the output of the active device
must be represented by a Fourier series expansion. Thus, the phase noise generated around the
fundamental frequency of the oscillation generally is an equal contribution of two simultaneous
and correlated phenomena: additive phase noise due to phase modulation process and converted
phase noise due to conversion from one sideband to another.

Voltage-controlled oscillators are key components in many applications, especially in wire-
less communication systems, measurement equipment, or military applications. A growing
market of wireless applications requires highly integrated circuit solutions, where both high-
performance transistors and passive elements with high quality factors can be used. Chapter 6
discusses the varactor modelling issues, varactor nonlinearity and its effect to frequency mod-
ulation, and resonant circuit techniques to improve VCO tuning linearity using lumped and
transmission-line elements. Various practical examples of VCO implementation techniques
based on using different types of active devices, circuit schematic approaches and hybrid or
monolithic integrated circuit technologies are shown and described.

The rapid growth of new-generation wireless communication systems has created a strong
demand for designing single-chip radio transceivers in a fully monolithic CMOS process with
extremely small size due to better integration, low cost and low operating voltage. To increase
the integration level, all passive components must be integrated monolithically into a single
chip. In this case, the elements of a resonant LC circuit of the voltage-controlled oscillator as
a core part of the synthesizers should feature high quality factors over frequency tuning range.
Chapter 7 discusses the technological aspects to realize MOS varactors and spiral inductors,
basic concepts of circuit design and implementation issues, oscillator phase noise and the effect
of low-frequency flicker noise. Also included are various practical examples of differential,
complementary and quadrature CMOS VCOs using different process technologies.

Wideband voltage-controlled oscillators are used in a variety of RF and microwave sys-
tems, including broadband measurement equipment, wireless and TV applications and military
electronic countermeasure systems. Among wideband tunable signal sources such as YIG-
tuned oscillators, wideband VCOs are preferable because of their small size, low weight, high
settling time speed and capability of fully monolithic integration. Therefore, modern radar
and communication applications demand VCOs that are capable of being swept across a wide
range of potential threat frequencies with a speed and settling time far beyond that of the YIG-
tuned oscillators. This chapter discusses the basic concepts of wideband VCO circuit design
and gives specific circuit solutions using lumped elements and transmission lines to improve
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their frequency tuning characteristics. Various examples of the RF and microwave VCO cir-
cuit configurations using bipolar, MOSFET and MESFET devices are analysed, their circuit
parameters are calculated or optimized to provide maximum tuning bandwidth or minimum
tuning linearity. Also included are numerous practical examples of wideband VCOs for RF
and microwave applications in radar or telecommunication systems.

Chapter 9 discusses phase noise reduction techniques and gives specific resonant circuit
solutions using lumped and distributed parameters for frequency stabilization and phase noise
reduction. Phase noise improvement can also be achieved by appropriate low-frequency load-
ing and feedback circuitry optimization. The feedback system incorporated into the oscillator
bias circuit can provide significant phase noise reduction over a wide frequency range from the
high frequencies up to microwaves. Particular discrete implementations of a bipolar oscillator
with collector and emitter noise feedback circuits are described. Also a filtering technique based
on a passive LC filter to lower the phase noise in the differential oscillator is presented. Several
topologies of fully integrated CMOS voltage-controlled oscillators using filtering techniques
are shown and discussed. A novel noise-shifting differential VCO based on a single-ended
classical three-point circuit configuration with common base can improve the phase noise
performance by a proper circuit realization. An optimal design technique using an active el-
ement based on a tandem connection of a common source FET device and a common base
bipolar transistor with optimum coupling of the active element to the resonant circuit is pre-
sented. The phase noise in microwave oscillators can also be reduced using negative resistance
compensation increasing the loaded quality factor of the oscillator resonant circuit. Finally, a
new approach utilizing a nonlinear feedback loop for phase noise suppression in microwave
oscillators is discussed.
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1
Nonlinear circuit design methods

This chapter presents the most commonly used design techniques for analysing nonlinear cir-
cuits, in particular, transistor oscillators. There are several approaches to analyse and design
nonlinear circuits, depending on their main specifications. This means an analysis both in the
time domain to determine transient circuit behaviour and in the frequency domain to improve
power and spectral performances when parasitic effects such as instability and spurious emis-
sion must be eliminated or minimized. Using the time-domain technique, it is relatively easy
to describe a nonlinear circuit with differential equations, which can be solved analytically
in explicit form for only a few simple cases. Under an assumption of slowly varying ampli-
tude and phase, it is possible to obtain separate truncated first-order differential equations for
the amplitude and phase of the oscillation process from the original second-order nonlinear
differential equation. However, generally it is required to use numerical methods. The time-
domain analysis is limited to its inability to operate with the circuit immittance (impedance
or admittance) parameters as well as the fact that it can be practically applied only for cir-
cuits with lumped parameters or ideal transmission lines. The frequency-domain analysis is
less ambiguous because a relatively complex circuit can often be reduced to one or more
sets of immittances at each harmonic component. For example, using a quasilinear approach,
the nonlinear circuit parameters averaged by fundamental component allow one to apply a
linear circuit analysis. Advanced modern CAD simulators incorporate both time-domain and
frequency-domain methods as well as optimization techniques to provide all necessary design
cycles.

This chapter also includes a brief introduction of simulator tools based on the Ansoft
Serenade circuit simulator. In addition, some practical equations, such as the Taylor and Fourier
series expansions, Bessel functions, trigonometric identities and the concept of the conduction
angle, which simplify the circuit design procedure, are given.

1.1 SPECTRAL-DOMAIN ANALYSIS

The best way to understand the oscillator electrical behaviour and the fastest way to calculate
its basic electrical characteristics such as output power, efficiency, phase noise, or harmonic
suppression, is to use a spectral-domain analysis. Generally, such an analysis is based on the
determination of the output response of the nonlinear active device when the multiharmonic

RF and Microwave Transistor Oscillator Design A. Grebennikov
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2 NONLINEAR CIRCUIT DESIGN METHODS

signal is applied to its input port, which analytically can be written in the form

i(t) = f [v(t)] (1.1)

where i(t) is the output current, v(t) is the input voltage and f (v) is the nonlinear transfer
function of the device. Unlike the spectral-domain analysis, time-domain analysis establishes
the relationships between voltage and current in each circuit element in the time domain when
a system of nonlinear integrodifferential equations is obtained applying Kirchhoff’s law to the
circuit to be analysed.

The voltage v(t) in frequency domain generally represents the multiple frequency signal at
the device input in the form

v(t) = V0 +
N∑

k=1

Vk cos(ωk t + φk) (1.2)

where V0 is the constant voltage, Vk is the voltage amplitude and φk is the phase of the kth-order
harmonic component ωk, k = 1, 2, . . . , N , and N is the number of harmonics.

The spectral domain analysis based on substituting Equation (1.2) in Equation (1.1) for a
particular nonlinear transfer function of the active device determines an output spectrum as
a sum of the fundamental-frequency and higher-order harmonic components, the amplitudes
and phases of which will determine the output signal spectrum. Generally, this is a complicated
procedure which requires a harmonic balance technique to numerically calculate an accurate
nonlinear circuit response. However, the solution can be found analytically in a simple way
when it is necessary to estimate only the basic performance of on oscillator in the form of the
output power and efficiency. In this case, a technique based on a piecewise-linear approximation
of the device transfer function can provide a clear insight into the basic oscillator behaviour
and its operation modes. It can also serve as a good starting point for a final computer-aided
design and optimization procedure.

The result of the spectral-domain analysis is shown as a summation of the harmonic com-
ponents, the amplitudes and phases of which will determine the output signal spectrum. This
problem can be solved analytically by using trigonometric identities, piecewise-linear approx-
imation or Bessel functions.

1.1.1 Trigonometric identities

The use of trigonometric identities is very convenient when the transfer characteristic of the
nonlinear element can be represented by the power series

i = a0 + a1v + a2v
2 + . . . + anv

n (1.3)

If the effect of the input signal represents a single harmonic oscillation in the form

v = V cos(ωt + φ) (1.4)

then, by substituting Equation (1.4) into Equation (1.3), the power series can be written as

i = a0 + a1V cos(ωt + φ) + a2V 2 cos2(ωt + φ) + . . . + an V n cosn(ωt + φ) (1.5)

To represent the right-hand side of Equation (1.5) as a sum of first-order cosine components,
the following trigonometric identities, which replace the nth-order cosine components, can be
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used:

cos2 ψ = 1

2
(1 + cos 2ψ) (1.6)

cos3 ψ = 1

4
(3 cos ψ + cos 3ψ) (1.7)

cos4 ψ = 1

8
(3 + 4 cos 2ψ + cos 4ψ) (1.8)

cos5 ψ = 1

16
(10 cos ψ + 5 cos 3ψ + cos 5ψ) (1.9)

where ψ = ωt + φ.
By using the appropriate substitutions from Equations (1.6–1.9) and equating the signal

frequency component terms, Equation (1.5) can be rewritten as

i = I0 + I1 cos(ωt + φ) + I2 cos 2(ωt + φ) + I3 cos 3(ωt + φ) + . . . + In cos n(ωt + φ)

(1.10)

where

I0 = a0 + 1

2
a2V 2 + 3

8
a4V 4 + . . .

I1 = a1V + 3

4
a3V 3 + 5

8
a5V 5 + . . .

I2 = 1

2
a2V 2 + 1

2
a4V 4 + . . .

I3 = 1

4
a3V 3 + 5

16
a5V 5 + . . .

Comparing Equations (1.3) and (1.10), we find:� For nonlinear elements, the output spectrum contains frequency components which are
multiples of the input signal frequency. The number of the highest-frequency component
is equal to the maximum degree of the power series. Therefore, if it is necessary to know
the amplitude of n-harmonic response, the volt–ampere characteristic of nonlinear element
should be approximated by not less than an n-order power series.� The output dc and even-order harmonic components are determined only by the even voltage
degrees in the device transfer characteristic given by Equation (1.3). The odd-order harmonic
components are defined only by the odd voltage degrees for the single harmonic input signal
given by Equation (1.4).� The current phase ψk of the kth-order harmonic component ωk = kω is k times larger than
the input signal current phase ψ :

ψk = ωk t + φk = k(ωt + φ) (1.11)

that is also applied to their initial phases defined as

φk = kφ (1.12)
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Figure 1.1 Piecewise-linear approximation technique

1.1.2 Piecewise-linear approximation

The piecewise-linear approximation of the active device current–voltage transfer characteristic
is a result of replacing the actual nonlinear dependence i = f (vin), where vin the voltage applied
to the device input, by an approximate one that consists of straight lines tangential to the actual
dependence at the specified points. Such a piecewise-linear approximation for the case of two
straight lines is shown in Figure 1.1a.

The output current waveforms for the actual current–voltage dependence (dashed curve) and
its piecewise-linear approximation by two straight lines (solid curve) are plotted in Figure 1.1b.
Under large-signal operation mode, the waveforms corresponding to these two dependencies
are practically the same for the most part with negligible deviation for small values of the
output current close to the pinch-off region of the device operation and significant deviation
close to the saturation region of the device operation. However, the latter case results in a
significant nonlinear distortion and is used only for high-efficiency operation modes when the
active period of the device operation is minimized. Hence, at least two first output current
components, dc and fundamental, can be calculated through a Fourier series expansion with a
sufficient accuracy. Therefore, such a piecewise-linear approximation with two straight lines
can be effective for a quick estimate of the oscillator output power and efficiency.

In this case, the piecewise-linear active device transfer current–voltage characteristic is
defined by

i =
{

0 vin ≤ Vp

gm(vin − Vp) vin ≥ Vp
(1.13)

where gm is the device transconductance, Vp is the pinch-off voltage.
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Figure 1.2 Schematic definition of conduction angle

Let us assume the input signal to be of cosinusoidal form

vin = Vbias + Vin cos ωt (1.14)

where Vbias is the input dc bias voltage.
At the point on the plot when voltage vin(ωt) becomes equal to a pinch-off voltage Vp and

where ωt = θ , the output current i(θ ) has value zero. At this moment

Vp = Vbias + Vin cos θ (1.15)

and θ can be calculated from

cos θ = − Vbias − Vp

Vin
(1.16)

As a result, the output current represents a periodic pulsed waveform described by the
cosinusoidal pulses with the maximum amplitude Imax and width 2θ as

i =
{

Iq + I cos ωt −θ ≤ ωt < θ

0 θ ≤ ωt < 2π − θ
(1.17)

where the conduction angle 2θ indicates the part of the RF current cycle during which device
conduction occurs, as shown in Figure 1.2. When the output current i(ωt) has value zero, one
can write

i = Iq + I cos θ = 0 (1.18)

Taking into account that, for a piecewise-linear approximation, I = gmVin, Equation (1.17)
can be rewritten as

i = gmVin(cos ωt − cos θ ) (1.19)
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When ωt = 0, then i = Imax and

Imax = I (1 − cos θ ) (1.20)

The angle θ characterizes the class of the active device operation. If θ = π or 180◦, the
device operates in the active region during the entire period (class A operation). When θ = π/2
or 90◦, the device operates half a wave period in the active region and half a wave period in the
pinch-off region (class B operation). The values of θ > 90◦ correspond to class AB operation
with a certain value of the quiescent output current. Therefore, the double angle 2θ is called
the conduction angle, the value of which directly indicates the class of the active device
operation.

The Fourier series expansion of the even function when i(t) = i(−t) contains only even
component functions and can be written as

i(t) = I0 + I1 cos ωt + I2 cos 2ωt + I3 cos 3ωt + . . . (1.21)

where the dc, fundamental-frequency and nth-order harmonic components are calculated by

I0 = 1

2π

θ∫
−θ

gmVin(cos ωt − cos θ ) d(ωt) = γ0(θ )I (1.22)

I1 = 1

π

θ∫
−θ

gmVin(cos ωt − cos θ ) cos ωt d(ωt) = γ1(θ )I (1.23)

In = 1

π

θ∫
−θ

gmVin(cos ωt − cos θ ) cos(nωt) d(ωt) = γn(θ )I (1.24)

where γ n(θ ) are called the coefficients of expansion of the output current cosinusoidal pulse
or the current coefficients [1]. They can be analytically defined as

γ0(θ ) = 1

π
(sin θ − θ cos θ ) (1.25)

γ1(θ ) = 1

π

(
θ − sin 2θ

2

)
(1.26)

γn(θ ) = 1

π

[
sin(n − 1)θ

n(n − 1)
− sin(n + 1) θ

n(n + 1)

]
(1.27)

where n = 2, 3, . . . .

The dependencies of γn(θ ) for the dc, fundamental-frequency, second- and higher-order
current components are shown in Figure 1.3. The maximum value of γn(θ ) is achieved when
θ = 180◦/n. A special case is θ = 90◦, when odd current coefficients are equal to zero, i.e.,
γ3(θ ) = γ5(θ ) = . . . = 0. The ratio between the fundamental-frequency and dc components
γ1(θ )/γ0(θ ) varies from 1 to 2 for any values of the conduction angle, with a minimum value
of 1 for θ = 180◦ and a maximum value of 2 for θ = 0◦. It is necessary to pay attention to
the fact that, for example, the current coefficient γ3(θ ) becomes negative within the interval
of 90◦ < θ < 180◦. This implies appropriate phase changes of the third current harmonic
component when its values are negative. Consequently, if the harmonic components for which
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Figure 1.3 Dependencies of γn(θ ) for dc, fundamental- and higher-order current components

γn(θ ) > 0 achieve positive maximum values at times corresponding to the midpoints of the
current waveform, the harmonic components for which γn(θ ) < 0 can achieve negative max-
imum values at these times. As a result, combination of different harmonic components with
proper loading will result in flattening of the current or voltage waveforms, thus improving ef-
ficiency of the oscillator. The amplitude of corresponding current harmonic component can be
obtained as

In = γn(θ)gmVin = γn(θ )I (1.28)

Sometimes it is necessary for an active device to provide a constant value of Imax at any
value of θ . This requires an appropriate variation of the input voltage amplitude Vin. In this
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case, it is more convenient to use the other coefficients when the nth-order current harmonic
amplitude In is related to the maximum current waveform amplitude Imax, that is

αn = In

Imax
(1.29)

From Equations (1.20), (1.28) and (1.29) it follows that

αn = γn(θ )

1 − cos θ
(1.30)

and the maximum value of αn(θ ) is achieved when θ = 120◦/n.

1.1.3 Bessel functions

The Bessel functions are used to analyse the oscillator operation mode when a nonlinear
behaviour of the active device can be described by exponential functions. The transfer voltage–
ampere characteristic of the bipolar transistor is approximated by the simplified exponential
dependence neglecting reverse base–emitter current as

i(vin) = Isat

[
exp

(
vin

VT

)
− 1

]
(1.31)

where Isat is the minority carrier saturation current and VT is the temperature voltage. If the
effect of the input signal given by Equation (1.14) is considered, then Equation (1.31) can be
rewritten as

i(ωt) = Isat

[
exp

(
Vbias

VT

)
exp

(
Vin cos ωt

VT

)
− 1

]
(1.32)

The current i(ωt) in Equation (1.32) is the even function of ωt and, consequently, it can
be represented by the Fourier-series expansion given by Equation (1.21). To determine the
Fourier components, the following expression is used:

exp

(
Vin cos ωt

VT

)
= I0

(
Vin

VT

)
+ 2

∞∑
k=1

Ik

(
Vin

VT

)
cos(kωt) (1.33)

where Ik(Vin/VT ) are the kth-order modified Bessel functions of the first kind for an argument
of Vin/VT , shown in Figure 1.4 for the zeroth- and first-order components. It should be noted
that I0(0) = 1 and I1(0) = I2(0) = . . . = 0, and with an increase of the component number its
amplitude appropriately decreases.

According to Equation (1.33), the current i(ωt) defined by Equation (1.31) can be rewritten
as

i(ωt) = Isat

[
exp

(
Vbias

VT

)
I0

(
Vin

VT

)
− 1

]
+ 2Isat exp

(
Vbias

VT

)
I1

(
Vin

VT

)
cos(ωt)

+ 2Isat exp

(
Vbias

VT

)
I2

(
Vin

VT

)
cos(2ωt) + 2Isat exp

(
Vbias

VT

)
I3

(
Vin

VT

)
cos(3ωt) + . . .

(1.34)
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Figure 1.4 Zeroth- and first-order modified Bessel functions of the first kind

As a result, comparing Equations (1.34) and (1.21) allows the dc, fundamental-frequency
and nth-order Fourier current components to be determined as

I0 = Isat

[
exp

(
Vbias

VT

)
I0

(
Vin

VT

)
− 1

]
(1.35)

I1 = 2Isat exp

(
Vbias

VT

)
I1

(
Vin

VT

)
(1.36)

In = 2Isat exp

(
Vbias

VT

)
In

(
Vin

VT

)
(1.37)

where n = 2, 3, . . . .

When using the Bessel functions, the following relationships can be helpful:

2
dIn (Vin/VT )

d (Vin/VT )
= In+1

(
Vin

VT

)
+ In−1

(
Vin

VT

)
(1.38)

dI0 (Vin/VT )

d (Vin/VT )
= I1

(
Vin

VT

)
(1.39)

2n
(Vin/VT )

In

(
Vin

VT

)
= In−1

(
Vin

VT

)
− In+1

(
Vin

VT

)
(1.40)

In

(
− Vin

VT

)
= (−1)n In

(
Vin

VT

)
(1.41)

1.2 TIME-DOMAIN ANALYSIS

A time-domain analysis establishes the relationships between voltage and current in each circuit
element in the time domain when a system of equations is obtained, applying Kirchhoff’s law
to the circuit to be analysed. Normally, in a nonlinear circuit, such a system will be composed



JWBK153-01 JWBK153-Grebennikov March 13, 2007 23:50

10 NONLINEAR CIRCUIT DESIGN METHODS

of nonlinear integrodifferential equations. The solution to this system can be found by applying
numerical integration methods. Therefore, the choices of the time interval and the initial point
are very important to provide a compromise between speed and accuracy of calculation; the
smaller the interval, the smaller the error, but the number of points to be calculated for each
period will be greater, which will make the calculation slower.

To analyse a nonlinear system in the time domain, it is necessary to know the voltage–
current relationships for all circuit elements. For example, for linear resistance R, when the
sinusoidal voltage applies and current are flowing through it, the voltage–current relationship
in the time domain is given by

V = RI (1.42)

where V is the voltage amplitude and I is the current amplitude.
For linear capacitance C

i(t) = dq(t)
dt

= dq
dv

dv

dt
= C

dv

dt
(1.43)

For linear inductance L

v(t) = dϕ(t)
dt

= dϕ

di
di
dt

= L
di
dt

(1.44)

where ϕ is the magnetic flux across the inductance.
Nonlinear dependencies, such as q(v) or ϕ(i), should each be expanded in a Taylor series by

subtracting the dc components and substituting into Equations (1.43) and (1.44) to obtain the
expressions for appropriate incremental capacitance and inductance. Then, for the quasilinear
case, the capacitance and inductance can be defined by

C(V0) = dq(v)

dv

∣∣∣∣
v=V0

(1.45)

and

L(I0) = dϕ(i)
di

∣∣∣∣
i=I0

(1.46)

where V0 is the dc bias voltage across the capacitor and I0 is the dc current flowing through
the inductor.

Figure 1.5 shows the simplified (without bias circuits) electrical schematic of a transformer-
coupled MOSFET oscillator with a parallel resonant circuit. To obtain the differential equations

Figure 1.5 Schematic of a transformer-coupled MOSFET oscillator
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for such an oscillator, the drain current i , the gate voltage v applied to the second winding of
the transformer, and the load voltage vR applied to the first winding of this transformer can be
defined by

i = iL + iC + iR (1.47)

vR = L
diL

dt
= 1

C

∫
iCdt = iR R (1.48)

v = M
diL

dt
= M

L
vR (1.49)

where M is the transformer coupling factor.
To simplify the calculation, two preliminary assumptions can be used:� the input current flowing to the gate terminal of the active device is negligible, enabling one

to consider its input impedance as infinite;� the effect of the output voltage vR on the drain current i is ignored, i.e.,

i = f (v). (1.50)

In this case, the derivative of current i(v) with respect to time is written as

di
dt

= di
dv

dv

dt
= gm(v)

dv

dt
(1.51)

where gm = di/dv is the small-signal transconductance of the device transfer characteristic
given by Equation (1.50).

Substituting Equations (1.48) and (1.50) into Equation (1.47) gives

1

L

∫
vRdt + C

dvR

dt
+ vR

R
= f (v) (1.52)

Then, by differentiating Equation (1.52) and using Equations (1.49) and (1.51), we can
write the second-order differential equation for the oscillator in the form

d2v

dt2
+ 1

C

[
1

R
− Mgm(v)

L

]
dv

dt
+ ω2

0v = 0 (1.53)

where

ω0 = 1√
LC

is the oscillator resonant frequency.
Equation (1.53) is a nonlinear equation because its second term depends on the unknown

variable v. This nonlinearity is a result of the active device nonlinearity. From Equation (1.53),
the start-up and steady-state oscillation conditions can be determined, as well as the particular
features of the steady-state oscillations and oscillator transient response. To determine the start-
up conditions, it is necessary to replace nonlinear Equation (1.53) by an appropriate linear one,
with the linear small-signal transconductance gm at the operating bias point. In this case, we
are interested only in the result of the small deviation from an equilibrium point, whether the
oscillations will grow or dissipate.
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Figure 1.6 Oscillations with (a) low and (b) strong feedback factors

The solution of such a linear second-order differential equation is

v = V exp(−δt) sin(ω1t + φ) (1.54)

where V and φ are the voltage amplitude and phase, respectively, depending on the initial
conditions,

δ = 1

2C

(
1

R
− Mgm

L

)
(1.55)

is the dissipation factor, and

ω1 =
√

ω2
0 − δ2 (1.56)

is the free-running oscillation frequency.
From Equation (1.54) it follows that the voltage v at the device input provided by the

feedback circuit creates current i at the device output, which delivers electrical energy to the
oscillation system to compensate for the losses in it. At the same time, the required value of
this energy is the result of the transformation of the energy of the dc current delivered from
the dc current source to the energy of the ac current. If the feedback factor is sufficiently
small when δ > 0, the delivered energy compensates for the dissipated energy only partly. As
a result, this leads to attenuation and dissipation of the oscillations, as shown in Figure 1.6a.
For strong feedback factor when δ < 0, the delivered energy exceeds the dissipated energy,
and the oscillations increase with time, as shown in Figure 1.6b.

1.3 NEWTON–RAPHSON ALGORITHM

To describe circuit behaviour, it is necessary to solve the nonlinear algebraic equation, or system
of equations, which do not generally admit a closed form solution analytically. One of the most
common numerical methods to solve such equations is a method based on the Newton–Raphson
algorithm [2]. The initial guess for this method is chosen using a Taylor series expansion of
the nonlinear function. Consider a practical case when the device is represented by a two-port
network where all nonlinear elements are functions of the two unknown voltages, input voltage
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vin and output voltage vout. As a result, after combining linear and nonlinear circuit elements,
a system of two equations can be written as

f1(vin, vout) = 0 (1.57)

f2(vin, vout) = 0 (1.58)

Assume that the variables vin0 and vout0 are the initial approximate solution of a system
of Equations (1.57) and (1.58). Then, the variables can be written as vin = vin0 + �vin and
vout = vout0 + �vout, where �vin and �vout are the linear increments of the variables. Applying
a Taylor series expansion to Equations (1.57) and (1.58) yields

f1(vin0 + �vin, vout0 + �vout) = f1(vin0, vout0) + ∂ f1

∂vin

∣∣∣∣
vin=vin0

vout=vout0

�vin

+ ∂ f1

∂vout

∣∣∣∣
vin=vin0

vout=vout0

�vout + o
(
�v2

in + �v2
out + . . .

) = 0 (1.59)

f2 (vin0 + �vin, vout0 + �vout) = f2 (vin0, vout0) + ∂ f2

∂vin

∣∣∣∣
vin=vin0

vout=vout0

�vin

+ ∂ f2

∂vout

∣∣∣∣
vin=vin0

vout=vout0

�vout + o
(
�v2

in + �v2
out + . . .

) = 0 (1.60)

where o(�v2
in + �v2

out + . . .) denotes the second- and higher-order components.
By neglecting the second- and higher-order components, Equations (1.59) and (1.60) can

be rewritten in matrix form

−
[

f1

f2

]
=

⎡⎢⎢⎣
∂ f1

∂vin

∂ f1

∂vout

∂ f2

∂vin

∂ f2

∂vout

⎤⎥⎥⎦ [
�vin

�vout

]
(1.61)

In the phasor form,

−F = J�v (1.62)

where J is the Jacobian matrix of a system of Equations (1.57) and (1.58).
The solution of Equation (1.62) for a nonsingular matrix J can be obtained by

�v = −J−1 F (1.63)

This means that if

v0 =
[

vin0

vout0

]
(1.64)

is the initial guess of this system of equation, then the next (more precise) solution can be
written as

v1 = v0 − J−1 F (1.65)

where

v1 =
[

vin1

vout1

]
(1.66)
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Figure 1.7 Circuit schematic with resistor, diode, and voltage source

Thus, starting with initial guess v0, we compute v1 at the first iteration. For the iteration
n + 1, we can write

vn+1 = vn − J−1 F(vn) (1.67)

The iterative Equation (1.67) is given for a system of two equations; however it can be
directly extended to a system of k nonlinear equations with k unknown parameters. This
iterative procedure is terminated after (n + 1) iterations whenever

|xn+1 − xn| =
√√√√ K∑

k=1

(
xk

n+1 − xk
n

)2
< ε (1.68)

where ε is a small positive number depending on the desired accuracy. For a practical purpose,
it is desirable that the Newton–Raphson algorithm should converge in a few steps. Therefore,
the choice of an appropriate initial guess is crucial to the success of the algorithm.

Consider the circuit shown in Figure 1.7. According to Kirchhoff’s voltage law,

v = vR + vD (1.69)

where vR = i R.

The electrical behaviour of the diode is described by

i(vD) = Isat

[
exp

(
vD

VT

)
− 1

]
(1.70)

Rearranging Equation (1.70) gives the equation for vD in the form

vD = VT ln

(
i

Isat
+ 1

)
(1.71)

Thus, from Equations (1.60) and (1.61) it follows that

v = i R + VT ln

(
i

Isat
+ 1

)
(1.72)

This allows current i to be determined for a specified voltage v. However, because it is
impossible to solve this equation analytically for current i in explicit form, the solution must
be found numerically.

Consider a dc voltage source V with dc current I . For the sinusoidal voltage source, it is
necessary to calculate the Bessel functions for dc, fundamental-frequency and higher-order


