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Preface

Carbodiimides are the diimides derived from carbon dioxide, and they are extensively used
in the formation of peptide amide bonds from carboxylic acids and amines. This reaction
was utilized by the Nobel laureate Sheehan in the total synthesis of penicillin. He also was
the first to use water soluble carbodiimides to crosslink gelatin. Khorana, another Nobel
laureate, demonstrated that carbodiimides can also be used in the synthesis of nucleotides.
Today, carbodiimides are used extensively in the synthesis and modification of proteins.
Proteomics is the new frontier of chemical research.

I became involved in carbodiimide chemistry in my research work on isocyanates at
the former Donald S. Gilmore Research Laboratories of the Upjohn Company in North
Haven, CT. Carbodiimides are readily synthesized from isocyanates using a phospholene
oxide catalyst. This reaction can be conducted without a solvent, and the byproduct is
carbon dioxide. We used this reaction in the manufacture of a liquid version of MDI
(4,4′-diisocyanatodiphenylmethane), which today is sold in huge quantities worldwide. By
reacting MDI with dicarboxylic acids in a vented extruder we manufactured a family of
thermoplastic polyamide elastomers, which are sold today by the Dow Chemical Company.
Also, N-sulfonylcarbodiimides were synthesized for the first time in our laboratories. They
are the precursors of the antidiabetic sulfonamides, such as Upjohn’s Tolbutamide (Orinase).
Because of the close relationship of isocyanates with carbodiimides we studied many linear
and cyclic carbodiimide reactions, especially their cycloaddition reactions.

This book reviews the technical literature on carbodiimides with emphasis on the last
decades of the old century and the new century. The carbodiimides are subdivided into
alkyl and aryl isocyanates, which cover a major portion of the book.

The remaining chapters are carbodiimides with unsaturated substituents, halogenated car-
bodiimides, acyl-, thioacyl- and imidoylcarbodiimides, silicon substituted carbodiimides,
nitrogen substituted carbodiimides, phosphorous substituted carbodiimides, sulfur sub-
stituted carbodiimides, metal substituted carbodiimides, cyclic carbodiimides, polymeric
carbodiimides and application of carbodiimides.

The last chapter includes the numerous biochemical applications of carbodiimides, and
the chapters on silicon substituted carbodiimides and metal substituted carbodiimides in-
clude their role as precursors for ceramic materials.

xiii
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xiv Preface

Environmental considerations, spectroscopic properties, and the toxicology of carbodi-
imides are discussed in the general introduction.

The text should prove valuable to researchers and technologists in organic and bio-
chemistry, especially in the new emerging fields of proteomics and nanotechnology. The
future of these vibrant fields with endless possibilities is bright indeed.



JWBK177-FM JWBK177/Ulrich July 27, 2007 18:15

Acknowledgements

I would like to acknowledge the contributions of my former co-workers at the Donald S.
Gilmore Research Laboratories of the Upjohn Company, especially Dr R.H. Richter and B.
Tucker who were involved in the synthesis and cycloaddition reactions of carbodiimides;
Dr L.M. Alberino who participated in the synthesis of polycarbodiimides; Dr K. Onder
and Dr W.J. Farrissey, Jr, who played a major role in the development of thermoplastic
polyamides based on carbodiimide chemistry; Dr H.W. Temme and Dr C.P. Smith, who de-
veloped novel polymeric catalysts for the conversion of isocyanates into carbodiimides; and
A. Odinak, who developed the liquid MDI process. I would especially like to acknowledge
the encouragement of the late Dr A.A.R. Sayigh.

In the initial carbodiimide research the valuable contributions of Prof. Dr W. von Eggers-
Doering of Harvard University are acknowledged, and special thanks go to Prof. Dr D.M.
Crothers, the former Chairman of the Chemistry Department of Yale University in New
Haven, Connecticut, who allowed my access to Yale’s fine technical libraries, which helped
immensely in the compilation of the literature to this book.

Last but not least I would like to thank my wife Franziska for her patience, constant
encouragement and support of this undertaking.

xv



JWBK177-FM JWBK177/Ulrich July 27, 2007 18:15

xvi



JWBK177-01 JWBK177/Ulrich June 27, 2007 11:6

1
General Introduction

Carbodiimides are a unique class of reactive organic compounds having the heterocumu-
lene structure R N C N R. They can be formally considered to be the diimides of
carbon dioxide or the anhydrides of 1,3-substituted ureas, and they are closely related to
the monoimides of carbon dioxide, the isocyanates. The substituent R can be alkyl, aryl,
acyl, aroyl, imidoyl or sulfonyl, but nitrogen, silicon, phosphorous and metal substituted
carbodiimides are also known. The unsubstituted carbodiimide HN C NH is isomeric
with cyanamide, H2NCN. Mono substituted carbodiimides, generated in the thermolysis
of 1-substituted tetrazoles, can be isolated at liquid nitrogen temperature but isomerize to
the cyanamides at higher temperatures.1

Cyanamide is a relevant molecule in prebiotic chemistry, and it was recently shown that
water-ice catalyzes the rearrangement of cyanamide to carbodiimide. Carbodiimide could
act as a condensation agent in the assembly of amino acids into peptides.2 In the peptide
synthesis, using substitued carbodiimides as condensation agents, formation of L L bonds
is favored over D D bonds by a ratio of 6:1.3

Carbodiimides are widely used to mediate the attachment of biomarkers to polypeptides.
Examples include carbodiimides with ferrocenyl substituents. Also, peptides are covalently
modified with ferrocenecarboxylic acid using EDCCl and N-hydroxy-succinimide to pro-
mote the coupling to surface lysines. They also mediate the attachment of substituents to
single walled nanotubes (SWNTs) and multiwalled nanotubes (MWNTs). Also, microdots
are attached to virus molecules using a water soluble carbodiimide. The attachment of viral
DNA to gold particles is used in the manufacture of a new type of vaccine.

The first synthesis of carbodiimides was reported by Weith in 1873.4 However, car-
bodiimides were already synthesized by Hinterberger5 and Zinin6 in 1852, and Biziro7 in
1861. The earlier authors obtained carbodiimides by desulfurization of 1,3-disubstituted
thioureas’ but did not recognize their structure.

Carbodiimides are exceedingly useful compounds in organic synthesis. Of particular
significance is their use as dehydrating agents in the synthesis of β-lactam antibiotics,

Chemistry and Technology of Carbodiimides Henri Ulrich
C© 2007 John Wiley & Sons, Ltd
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nucleotides and peptides. In 1953, Khorana and Todd8 reported the use of carbodiimides,
especially dicyclohexylcarbodiimide, in the synthesis of ortho- and pyrophosphate esters.
The use of carbodiimides in the synthesis of peptides was reported by Sheehan and Hess in
1955.9 Sheehan and Henery-Logan used dicyclohexylcarbodiimide in the total synthesis of
penicillic acid in 1957.10 Sheehan published a book on the synthesis of penicillin in 1982.11

He also used a water soluble carbodiimide to crosslink gelatin.12

Merrifield received the nobel price in 1985 for the synthesis of polypeptides using poly-
meric substrates.13 Dicyclohexylcarbodiimide (DCC) is used in this automated stepwize
synthesis of polypeptides to activate the carboxyl group. The Merrifield method allows the
synthesis of polypeptides, such as ribonuclease A, consisting of 124 amino acids. Oligonu-
cleotides are also synthesized using a carbodiimide in the automated condensation step.14

Carbodiimides are also ‘zero length’ protein crosslinking agents, which promote formation
of covalent crosslinks between reactive side groups of amino acids, but do not remain as a
part of the crosslink. Also, blocked carbodiimides are used as crosslinking agents.15

The most widely used carbodiimides are dicyclohexylcarbodiimide (DCC) and diiso-
propylcarbodiimide (DICDI). Carbodiimides with primary alkyl substituents are usually
less stable. The most stable aliphatic carbodiimide is di-t-butylcarbodiimide. For racem-
ization free esterifications, peptide couplings and for dehydration reactions bis[[4-(2,2-
dimethyl-1,3-dioxolyl)]methyl]carbodiimide (BDDC) was introduced in 1994.16 Another
group of important aliphatic carbodiimides are the water soluble aliphatic carbodiimides.
They usually contain a tertiary amino group in the side chain. Numerous carbodiimides
with one alkyl substituent having a terminal t-amino group attached to the side chain
have been synthesized. They are usually converted to the more water soluble quaternary
ammonium salts by alkylation with MeI or other alkylating agents. Examples include
N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide (EDC), and its hydrochloride (EDCCl,
sometimes referred to as EDAC). For the solid phase synthesis of peptides a poly-
meric version of EDC was obtained by treating Merrifield resins with EDC in DMF at
100 ◦C or in refluxing acetonitrile.17 Polyamine carbodiimides combining the phos-
phate activating property of EDC with the DNA binding property of spermine have also
been synthesized from the corresponsing thiourea and HgO.18 Another useful carbodi-
imide is ferrocenylcarbodiimide (FCDI) which reacts with guanine and thymine bases of
single stranded DNA.19 Also, a bipyridyl-tagged carbodiimide, used as a chelating tag, was
synthesized.20

In the aromatic series, carbodiimides having a substituent in the o-position are preferred.
Examples include N,N′-di-o-tolylcarbodiimide and N,N′-di-2,6-diethylcarbodiimide, the
latter being a useful stabilizer for polyester based polyurethanes.21

The use of carbodiimides in organic synthesis includes the Moffat oxidation of primary
alcohols to aldehydes using a dicyclohexylcarbodiimide/DMSO adduct as reagent. Also,
conversion of alcohols or phenols into hydrocarbons via hydrogenation of acylisoureas
derived from the corresponding carbodiimide adducts is a useful reaction. Furthermore,
aldoximes, on treatment with carbodiimides, are converted into nitriles, and numerous uses
of carbodiimides as condensation agents or catalysts are known (see Chapter 13).

Another useful synthetic method for the synthesis of complex heterocyclic com-
pounds is the aza-Wittig reaction, involving carbodiimides as intermediates.22 This re-
action was discovered by Staudinger and Hauser in 1921.23 Carbodiimides have also
found use as agricultural chemicals and pharmaceutical intermediates. For example,
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N-arenesulfonyl-N′-alkylcarbodiimides are precursors of the antidiabetic sulfonyl ureas.24

Sulfonylureas are also potent herbicides.
Carbodiimides are used in numerous industrial applications. Their reactivity with car-

boxylic acids is being utilized in the stabilization of many polyester based polymers.
For this purpose sterically hindered aromatic carbodiimides are used.25 Isocyanato sub-
stituted oligomeric and polymeric carbodiimides are also being used in some polymer
applications.26 The elimination of chlorofluorocarbons (CFCs) as blowing agents for rigid
polyurethane insulation foams prompted the development of partially or totally carbon
dioxide blown foams based on polymeric isocyanates, having polycarbodiimide segments
in their backbone structure. The use of efficient carbodiimide catalysts in combination
with the more costly HFCs (hydrogen containing fluorocarbons) affords partially carbon
dioxide blown rigid foams. Of course, low density open cell carbodiimide foams are also
obtained from polymeric isocyanates using a phospholene oxide catalyst.27 The reaction of
4,4′-diphenylmethane diisocyanate (MDI) with a carbodiimide catalyst is used to formulate
a liquid MDI product for RIM (reaction injection molding) and thermoplastic polyurethane
elastomer applications.28

The use of dicarbodiimides as monomers in polyaddition reactions have not as yet
found wide utility. However, polymers containing carbodiimide groups are known, and
further nucleophilic reactions of these polymers with numerous substrates are reported.
Carbodiimides, generated in situ from isocyanates are used as catalyst in the formation
of polyamides from diisocyanates and dicarboxylic acids.29 Also, homoleptic lanthanide
amidinates, made from carbodiimides, exhibit high catalytic activity for the ring opening
polymerization of ε-caprolactone at room temperature.30

Polymeric nanoaggregates are the result of self-assembly of block copolymers. For ex-
ample, PEO-b-PAA on reaction with EDC methiodide undergoes self-association to form
short rods, vesicles, encapsulated spheres and long fibers.31 The attachment of nanotubes
and microdots to engineered viruses is also mediated using EDC.32

Review articles on carbodiimides were published by Khorana in 1953,8 by Kurzer and
Douraghi-Zadeh in 1967,33 by Mikolajczyk and Kielbasinski in 198134 and by Williams and
Ibrahim in 1981.35 Carbodiimides containing silicon, germanium, tin and lead substituents
were reviewed by Gordetsov and coworkers in 1982,36 N-functionalized carbodiimides by
Vovk and Samarai in 199237 and polycarbodiimides by Pankratov in 1993.38 A review on
the synthesis of heterocycles by the aza-Wittig reaction appeared in 1991.39

Aliphatic and aromatic carbodiimides are liquids or solids at room temperature. The
stability of substituted dialkylcarbodiimides increases as follows: RCH2 < R2CH < R3C.40

Dimethylcarbodiimide should be used freshly prepared, but it can be stored for several days
below room temperature. Unsaturation in the aliphatic substituents decreases the stability
of carbodiimides. For example, diallylcarbodiimide is unstable.

In the aromatic carbodiimides, the solid products are more stable than the liquid products.
N-alkyl-N′-arylcarbodiimides are less stable than diarylcarbodiimides. The introduction of
electron attracting groups into the aromatic substituents seems to increase the polymeriza-
tion tendency of the resulting carbodiimide. In contrast, electron donating substituents on
the aromatic ring of arylalkylcarbodiimides enhance their reactivity with carboxylates.41

The cumulative bonds in carbodiimides are not linear. X-ray studies show bond an-
gles variing from 166◦ to 170◦ for N,N′-diaryl- as well as N-aryl-N′-alkylcarbodiimides.42

The bonding of the N C N bond may be due to steric interaction between the two
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nitrogen substituents. A geometry search, using the INDO method, revealed that the lowest
energy state of dimethylcarbodiimide has a dihedral angle of 90◦.43 The configurational
flexibility of diisopropylcarbodiimide has been studied by 1H-NMR measurement.44 Car-
bodiimides are best characterized by their infrared spectra, which show a very strong
absorption between 2150 and 2100 cm−1 attributable to the N C N stretching.45

Aliphatic carbodiimides give rise to a single peak in the 2140–2125 cm−1 range, while
aromatic carbodiimides exhibit two bands in this region. Vibrational dynamics of the

N C N stretching in DCC was investigated by the transient grating method.46 The
Raman spectrum of carbodiimides shows a strong absorption at 1460 cm−1 which can
be attributed to the symmetric vibrations.47 In 13C-NMR spectra the chemical shift of the
sp-hybridized center carbon is approximately 135 to 140 ppm.48 This signal can be used
to differentiate between carbodiimide and cyanamide structures, because in cyanamides
the signal appears at 112 to 117 ppm. Dicyclohexylcarbodiimide shows a single signal
in the 14N-NMR spectrum indicating a symmetric structure.49 The 15N-NMR spectra of
carbodiimides were also investigated and the chemical shift is about 270 ppm. It was
found that the spectrum of N-ethyl-N′-(3-dimethylamino)propylcarbodiimide hydrochlo-
ride indicated the presence of three isomers.50 At neutral pH, the cyclic forms account for
approximately 7 %.

Similar results were obtained in another NMR study.51 A study of the conformation of
DCC by 1H-NMR at low temperature showed that the carbodiimide group exerts a sig-
nificant preference for the equatorial position.52 The He(I) photoelectronic spectrum of
dimethylcarbodiimide shows bands at 9.5, 11.55 and 12.26 eV; the first maximum con-
sists of two ionizations representing two orbitals on the N C N part with both π

and n character.53 Also, electron energy loss spectra of DCC, polysilyl- and polytitanyl-
carbodiimides are recorded.54 The UV absorption spectrum of dimethylcarbodiimide in
heptane solution shows a strong band at 206.6 nm and three bands at 247.5, 254 and 260 nm
due to the allowed n–π transitions polarized perpendicularly to the plane of the CNC angle.55

The extinction coefficient of 1-ethyl-3-(3-dimethylamino)propylcarbodiimide (EDC) in
water is ε (214 nm) = 6 × 103 L/mol/cm. The UV assay is used for testing of side
reactions.56 Also, 13C and 15N-labeled EDC were synthesized.57

Substituent effects on the stability of carbodiimides show that electron negative sub-
stituents, such as F, Cl, OH and NH2 destabilize carbodiimides, while electropositive sub-
stituents increase the stability of carbodiimides. However, the electronegative substituent
NO2 stabilizes carbodiimides by a π -acceptor complex.58

Carbodiimides have chiral structures similar to allenes, i.e., they can exist in opti-
cally active forms. Schloegl and Mechtler60 were the first to report a partial optical
separation of N,N′-diferrocenylcarbodiimide into enantiomers by chromatography on
acetylated cellulose, but other authors doubt the validity of these results. According to
theoretical calculations a separation of carbodiimide enantiomers is not possible.59 N,N′-
diferrocenylcarbodiimide was also obtained in optically active form by kinetic resolution
in the reaction with (-)-S-6,6′-dinitrodiphenic acid.60 Cervinka and coworkers isolated both
enantiomers of (R,S)-N,N′-bis(α-phenylethyl)carbodiimide, and they found that they un-
dergo racemization at room temperature.61 A recent study on the racemization mechanism
of macrocyclic carbodiimides indicates that the open chain as well as the large ring car-
bodiimides racemize by nitrogen inversion or trans-rotation, while medium size cyclic
carbodiimides racemize by cis-rotation.62
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The cycloaddition of chiral (-)menthylcarbodiimide with prochiral ketenes affords chi-
rally selective cycloadducts.63 In the reaction of an optically active alcohol with dicy-
clohexylcarbodiimide complete inversion of the configuration occurs after hydrolysis.64

Treatment of arenesulfenic acids with alcohols, thiols or secondary amines in the presence
of optically active carbodiimides affords the corresponding optically active arenesulfenic
acid derivatives.65 DCC is used to convert an optically active selenoxide into the corre-
sponding optically active selenimide with TsNH2.66

Carbodiimides are used in the laboratory as stabilizing agents, coupling agents and
as condensation agents and a potential for exposure exists during these operations. The
aliphatic carbodiimides are reported to be irritating to the skin, eyes and the respiratory
tract. Contact dermatitis caused by DCC was reported.67

DCC has a higher contact hypersensitivity in the mouse ear swelling test than DICDI.68

Exposure to diisopropylcarbodiimide can cause temporary blindness.69

The mammalian toxicity of carbodiimides is low. For example, DCC has a LD50 in rats
of 2.6 g kg–1.70 DCC also shows antitumor activity in mice.71 The oral LD50 of diisopropy-
lcarbodiimide in mice is 36 mg/Kg. Carbodiimide (EDC) modified glycosaminoglycans
are a new class of anticancer agents.72 EDC hydrochloride, when administered to animals,
exerts a carcinostatic effect on experimental tumors.73 Di(triphenylmethyl)carbodiimide
is more toxic to a malignant than a normal cell line. EDC is used in the preparation
of a meningococcal group C polysaccharide-tetanus toxoid conjugate used as human
vaccine.74 No epidemiological studies have associated carbodiimides with cancer risk in
humans.
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2

Alkyl- and Arylcarbodiimides

2.1 Introduction

The alkyl-, alkylaryl- and diarylcarbodiimides are the diimides derived from carbon dioxide,
however, no direct formation of carbodiimides from amines and carbon dioxide is known.
Interestingly, carbodiimides can be obtained from amines and carbon dioxide via a switteri-
onic titanium complex (see Section 2.2.8).1 The major starting materials for the synthesis of
carbodiimides are isocyanates, 1,3-disubstituted ureas or 1,3-disubstituted thioureas. The
synthesis of isocyanates requires the use of the toxic carbonyl chloride or its oligomers. A
book on the synthesis and reactions of isocyanates appeared in 1996.2

Symmetrical carbodiimides, i.e., molecules with the same substituent on both nitrogen
atoms, are best prepared from alkyl or aryl isocyanates in the presence of a phospholene
oxide catalyst, the byproduct being carbon dioxide gas. No solvent is required for this
reaction. Unsymmetrical carbodiimides or alkylarylcarbodiimides are also obtained from
isocyanates, either by reaction with amines and subsequent dehydration of the intermediate
1,3-disubstituted ureas, or by reaction of isocyanates with iminophosphoranes (aza-Wittig
reaction).

Iminophosphoranes can also be used to synthesize symmetrical carbodiimides. In this
case they are reacted with carbon dioxide, thereby mimicking the synthesis of carbodiimides
from amines and carbon dioxide. Another useful synthesis of unsymmetrical carbodiimides,
not requiring the use of carbonyl chloride, is the reaction of carbonimidoyl dihalides with
amines. The synthesis and chemistry of carbonimidoyl halides was reviewed in 1968.3

Isothiocyanates are also major starting materials for carbodiimides either by converting
them into 1,3-disubstituted thiourea intermediates, which are subsequently desulfurized,
or by treating them with iminophosphoranes.

In many of the carbodiimide reactions N,N′-dicyclohexylcarbodiimide (DCC) is used.
However, N,N′-diisopropylcarbodiimide (DIPCD) is also often used. Aliphatic carbodi-
imides, having secondary alkyl groups as substituents, are more stable than carbodiimides

Chemistry and Technology of Carbodiimides Henri Ulrich
C© 2007 John Wiley & Sons, Ltd
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with primary alkyl groups as substituents. N,N′-di-t-butylcarbodiimide is the most stable
aliphatic carbodiimide, but it is also the least reactive. For example, in N-methyl-N′-t-
butylcarbodiimide cycloaddition reactions occur across the less sterically hindred C N
bond (see Section 2.4.2.1)

Steric as well as electronic factors determine the reactivity of carbodiimides. For ex-
ample, N-alkyl-N′-arylcarbodiimides with substituents R NMe2 or Me in the p-position
of the aryl group react faster than N-alkyl-N′-arylcarbodiimides with R NO2 in the
p-position.4

Often reactions of carbodiimides are performed in an aqueous system requiring the
use of water soluble carbodiimides. The workhorse in this application is N-ethyl-N′-(3-
dimethylaminopropyl)carbodiimide (EDC) and its hydrochloride salt (EDCl).5 However,
many other water soluble carbodiimides are also used. Nobel laureat Sheehan used water
soluble carbodiimides in the synthesis of penicillins.

Also, oligomeric and polymeric carbodiimides are used extensively in solid state chem-
istry as shown in Chapter 12.

A major use of DCC is in the formation of peptide bonds, as demonstrated by the
Nobel laureat Khorana in 1955.6 His discovery of the reaction of dibenzyl phosphate with
DCC to give tetrabenzyl pyrophosphate laid the foundation for most of his work with
nucleotides.

2.2 Synthesis of Alkyl- and Arylcarbodiimides

2.2.1 From Thioureas, Isothioureas and Selenoureas

The synthesis of carbodiimides by desulfurization of 1,3-disubstituted thioureas is the
most general method of synthesis because dialkyl-, alkylaryl- and diarylcarbodiimides with
the same or different substituents are obtained. The desulfurization of N,N′-disubstituted
thioureas 1 with yellow mercuric oxide is the classical method of synthesis of carbodiimides
2 used by Weith in 1873.7

RNHCSNHR + HgO −−→ RN C NR + HgS + H2O
1 2

(2.1)

The reaction proceeds best in benzene or acetone, but xylene and carbon disulfide have also
been used as solvents. Since water generated in the reaction may add to the carbodiimide
to form a urea, dehydrating agents, such as CaCl2, Na2SO4, MgSO4 or MgCO3 are added
to the reaction mixture. For example, N-cyclohexyl-N′-isopropyl-carbodiimide is obtained
in 80 % yield by conducting the desulfurization in the presence of MgSO4.8 The water
can also be removed by azeotrope distillation. However, the water is not detrimental in the
synthesis of aliphatic carbodiimides.9

Also, several N-(tosylmethyl)carbodiimides 4 are prepared similarly from the corre-
sponding thiourea 3.10

4-MePhSO2CH2NHCSNHR + HgO −−→ 4-MePhSO2CH2N C NR
3 4

(2.2)
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R [%] mp ◦C (bp)

Me 95 Oil
CMe3 75 (115/0.01 Torr)
CPh3 90 138–139
C6H11 90 Oil
Ph 94 Oil

In addition to dialkyl-, alkylaryl- and diarylcarbodiimides, heterocyclic carbodiimides, such
as 1,4-dioxan-2-ylcarbodiimides 6 are obtained by desulfurization of the corresponding
thiourea 5.11

5 6

O

O

O

O
NHCSNHR  +  HgO N C NR

(2.3)

R [%] bp ◦C/Torr

i-Pr 71 111–112/10
Ph 65 169–171/10

This method is also used in the synthesis of 13C and 15N labeled EDC, which is ob-
tained in 57 % yield.12 Symmetrical and unsymmetrical glycosyl carbodiimides are also
obtained in good yields in the desulfurization of the corresponding thioureas with HgO.13

Bis-Boc-carbodiimide is obtained similarly as an intermediate in the reaction of N,N′-di
(t-butoxycarbonyl)thiourea with primary amines in the presence of Et3N in DMF.14

A spin labeled carbodiimide derivative 8 is synthesized from the thiourea 7 and HgO.15

HgO+

7 8

C NC6H11N

O

N

N

N

N
NHCSNHC6H11

O

(2.4)

This carbodiimide is useful for probing protonation reactions in proton-pumping enzymes.
Also, highly fluorescent N-alkyl- or N-aryl-N′-[4-(5-phenyloxazol-2-yl)benzyl]carbo-

diimides 10 are prepared from the corresponding thioureas 9 and HgO.16

O

N

Ph CH2NHCSNHR + HgO
O

N

Ph C NR

109

CH2N

(2.5)
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R mp ◦C [%]

Et 41 58
i-Pr 59 70
Ph 78 53

Lead and silver oxide can also be used to affect desulfurization of thioureas. Generally, a
1.5 to 2.5 molar excess of the finely divided oxide gives optimal yields. The oxides and salts
of other elements have also been used to affect the desulfurization of thioureas. Examples
include zinc oxide and salts17 (ZnO, ZnCl2, ZnSO4), aluminumoxide,18 arsenic oxide19

and lead salts.20

The desulfurization of thioureas is also accomplished by either sulfur dioxide or carbon
disulfide. The reaction of thioureas21 or dilithium salts of thioureas22 with sulfur dioxide
at 0 ◦C affords carbodiimides in 38–81 % yield. Thermolysis of dilithio- or bis(bromo-
magnesio)thioureas, or reaction of the salts with carbon disulfide below room temperature
also produces carbodiimides.23

Another useful method to convert thioureas into carbodiimides involves their reaction
with reactive chlorine compounds, such as SOCl2, SO2Cl2, SCl2 or S2Cl2. The use of the
sulfur chlorides involves chloroformamidines as intermediates (see Section 2.2.6).24 The
reaction of thioureas 11 with methanesulfonyl chloride in methylene chloride in the pres-
ence of triethylamine/DMAP (4-dimethylaminopyridine) at room temperature produces
carbodiimides 12 in 85–100 % yield25

RNHCSNHR + MeSO2Cl −−→ RN C NR
11 12

(2.6)

R R1 [%]

Ph Me 91
Ph i-Pr 97
Ph –CH2CH2Ph 97
Ph 2-furfuryl 85
Ph Ph 95
2-Cl-5-MePh n-Pr 100

Sheehan and Hlavka9 used benzenesulfonyl chloride and aqueous potassium carbonate
to synthesize several N-alkyl-N′-(aminoalkyl)carbodiimides 14 from the corresponding
thioureas 13.

RNHCSNH(CH2)nNR1
2 + PhSO2Cl −−→ RN C N(CH2)nNR1

2
13 14

(2.7)

Di-2-pyridylsulfite has also been used to desulfurize thioureas. The yields of carbo- diimides
RN C NR1 (R = R1 = n-Bu, C6H11, Ph and R = Ph, R1 = Me) are 76–90 %.26

The reaction of N,N′-disubstituted thioureas 15 with phosgene (carbonyl chloride) affords
aliphatic and aromatic carbodiimides 16 in good yields.27 For example, addition of phosgene


